Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2

Größe: px
Ab Seite anzeigen:

Download "Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2"

Transkript

1 Greenche Funktion Frank Eenberger FU Berlin 30.September 2006 Inhalterzeichni Nomenklatur 2 Greenche Theoreme 3 Anwendung in der Elektrotatik 2 4 Anpaung an Randbedingungen 3 5 Eindeutigkeit der Löung 3 6 Beipiel für Dirichletche Randbedingung 4 Nomenklatur Auf meiner Homepage finden ie ein Script in dem die Nomenklatur in allen on mir erfaten Texten erklärt wird. 2 Greenche Theoreme Gauß che Geetz: d S E ( x ) = dx 3 E ( x ) Mit dem Anatz E ( x ) = φ( x ) ψ( x ) in da Gauß che Geetz eingehen. Damit folgt: (x Abhängigkeit im weiteren weggelaen) d S φ( x ) ψ( x ) = dx 3 [φ( x ) ψ( x )] ds φ n ψ = dx 3 [ φ] [ ψ] + φ 2 ψ

2 ds φ ψ n = dx 3 [ φ] [ ψ] + φ 2 ψ () Wobei Gleichung () da erte Greenche Theorem dartellt. Durch ertauchen on ψ und φ: ds φ ψ n = dx 3 [ φ] [ ψ] + φ 2 ψ (2) ds ψ φ n = dx 3 [ ψ] [ φ] + ψ 2 φ (3) und abziehen der beiden Gleichung (2) und (3) on einander erhält man chnell da zweite Greenche Theorem Gleichung (4): ds φ ψ n ψ φ n = dx 3 [ φ] [ ψ] [ φ] [ ψ] + φ 2 ψ ψ 2 φ ds (φ ψ n ψ φ n ) = dx 3 (φ 2 ψ ψ 2 φ) (4) 3 Anwendung in der Elektrotatik Wenn man nun ψ = x = x und φ uner geuchte Potential wählt, ergibt R ich: ds (φ n x x x φ x n ) = (φ 2 x x x x 2 φ) ds (φ n R φ R n ) = ( 4πδ( x x ) φ + R ρ( x ) ) (5) ɛ 0 Für eine unendlich große Volumen geht da Oberflächenintegral gegen Null da φ mindeten eine r Abhängigkeit beitzt und o gilt : I = lim ds (φ a n x x x φ x n ) lim dω a 2 ( a a n x a n x a n a a ) lim dω = 4π lim a a a a = 0 Damit wird die Gleichung (5) zu : 2

3 4πδ( x x ) φ( x ) = φ( x ) = 4πɛ 0 x ρ( x ) x ɛ 0 ρ( x ) x x Die it ein Spezialfall. Nämlich der, wenn da Potential auf dem unendlich weit entferneten Rand definiert it. Diee mu dort Null ein da wir on örtlich begrenzten Feldern augehen. Um andere Randbedingungen zu implementieren könnte man mit einem anderen ψ eingehen. 4 Anpaung an Randbedingungen eingegangen. Nun wählen wir allgemei- Im Abchnitt 2 ind wir mit ψ = ner: x x ψ = x x + F ( x, x ) mit F ( x, x ) = F ( x, x ) damit it auch ψ( x, x ) = ψ( x, x ) und 2 F ( x, x ) = 0. Die Funktion F kann nun genutzt werden um Randbedingungen zu implementieren. Mit der Funktion ψ in Gleichung (4) eingehen und wieder δ-funktion aunutzen: φ( x ) = [ 4πɛ 0 ρ( x ) x x + ds φ ( ψ n φ n ψ)] (6) Auf den erten Blick wirkt e o alob man ψ, ψ n und φ auf der Oberfläche kennen müte. Tatächlich reicht e au ψ oder ψ n zu kennen. Die zeigen wir gleich nun noch Definitionen:. ψ heißt Greenche Funktion (meit G( x, x ) genannt) 2. ψ S = G D ( x, x ) S = 0 Dirichletche Randbedingung Neumannche Randbedin- 3. ψ n S = G S ( x, x ) S = cont = 4π S gung 5 Eindeutigkeit der Löung Im origen Abchnitt wurde behauptet, da eine Randbedingung aureicht um da Problem eindeutig zu löen und mit Dirichletche Randbedingung und Neumanncher Randbedingung übertimmt it. Dazu nehmen wir zwei Löungen φ und φ 2 an und etzen u = φ φ 2 und gehen damit in Gleichung () ein. Wobei ψ = φ = u it, damit folgt: 3

4 ds u u n = dx 3 [ u] [ u] + u 2 u (7) Da beide Löung die Poiiongleichung erfüllen gilt: 2 u = 2 φ ( x ) 2 φ 2 ( x ) = 4π(δ( x ) δ( x )) = 0 Und u = 0 für die Dirichletche Randbedingung oder n u = n φ n φ 2 = cont cont = 0 für die Neumannche Randbedingung. Man ieht da eine on beiden Randbedingungen reicht um die linke Seite on Gleichung (9) zu 0 zu machen. 0 = dx 3 [ u] [ u] 0 = u u = cont Wobei u = 0 da dort φ = φ 2 it. Damit it u = cont = 0 (überall) und die Löungen ind alo gleich. 6 Beipiel für Dirichletche Randbedingung Eine Scheibe om Radiu a liegt in der XY Ebene mit Zentrum im Urprung. Der Raum it Ladungfrei. Da Potential auf der Scheibe ei auf V fetgelegt. Außerhalb der Scheibe ei e 0. Wir betrachten da Problem mit orgegebener Dirichletcher Randbedingung und e wird nur der obere Halbraum mit z > 0 betrachtet.die Grennche Funktion oll alo 0 in der XY Ebene ein. Eine Löung wäre: G D ( x, x ) = x x x x + 2z ez Die Funktion F orgt nun dafür, da G D ( x, x ) = 0 Scheibe it. Außerdem gilt: 2 G D ( x, x ) = 4π(δ( x x ) δ( x + ( x, y, +z ) = 4π(δ( x x ) }{{} =0 wegen Def on x Da x nur im oberen Halbraum it und deweiteren gilt auch: G D ( x, x ) = G D ( x, x ). Nun mit unerer Greenchen Funktion in Gleichung (9) eingehen: φ( x ) = [ 4πɛ 0 ρ( x ) x x + ds (G D ( x, x ) φ n φ n G D( x, x ))] Zum Glück it ρ( x ) = G D ( x, x ) Oberflche = 0 auf Grund der Randbedingung und der Aufgabentellung. 4

5 φ( x ) = 4πɛ 0 ds (V 4πɛ 0 S Scheibe ds ( V Nebenrechnung (anderer Summand analog): n G D( x, x )) z ( x x x x + 2z ez ) z ( x x ) = z [(x x ) 2 + (y y ) 2 + (z z ) 2 ] ( 0.5) = (z z ) x x.5 ds (z z ) (V 4πɛ 0 S x x + (z + z ).5 x x + 2z ez ).5 Da auf der Oberfläche z = 0 gilt : ds 2z (V 4πɛ 0 S x x ).5 ds 2zV ( 4πɛ 0 S (ρ 2 + ρ 2 + 2ρρ co(γ) + z 2 ).5 ) Wobei ρ 2 = x 2 + y 2 und ρ 2 = x 2 + y 2. Da Integral it chwer zu löen dehalb chauen wir un da Potential am Ort x = (0, 0, z) an: φ( x ) = 2πɛ 0 2π 0 a dϕ dρ ρ zv (ρ 2 + z 2 ).5 = zv ɛ 0 (ρ 2 + z 2 ) 0 φ(0, 0, z) = ɛ 0 ( + φ(0, 0, z) = V ɛ 0 ( + zv (a 2 + z 2 ) 0.5 ) z (a 2 + z 2 ) 0.5 ) =a ρ 0.5 ρ =0. Auch für komplizierte orgegebene Potentiale oder noch zuätzliche Ladungerteilungen auf der Scheibe hätte man mit dieer Methode chnell Ergebnie erzielen können. Da Problem tellt nur da finden der Greenchen Funktion dar. Die kann aber leicht mit dem Prinzip der Spiegelladungen gechehen mit dem e ehr leicht it eine Funktion auf einer betimmten Fläche erchwinden zu laen. Dazu poitioniert man eine eine zweite,dritte,ierte... Ladung(en) o im Raum, da die Greenche Funktion auf der Oberfläche erchwindet. So wie im Beipiel gechehen. 5

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r )

Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische. ρ( r ) .7. RANDWERTPROBLEME 39.7 Randwertprobleme Wir haben gesehen, dass sich aus einer gegebenen Ladungsverteilung ρ( r ) das elektrostatische Potential φ( r) mit φ( r) ρ( r ) 4πε r r d3 r berechnen läßt. Hierbei

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophsik Tutorübungen zu Elektromagnetische Feldtheorie (Prof. Wachutka. Aufgabe: Lösung Wintersemester 208/209 Lösung Blatt 6 a Laut der Spiegelladungsmethode

Mehr

6 Methoden zur Lösung des elektrostatischen Randwertproblems

6 Methoden zur Lösung des elektrostatischen Randwertproblems 6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung

Mehr

Jan Auffenberg. Die Lösung der Bewegungsgleichung eines einzelnen Pendels liefert wie in Versuch M1 betrachtet die Eigenfrequenz der Pendel zu:

Jan Auffenberg. Die Lösung der Bewegungsgleichung eines einzelnen Pendels liefert wie in Versuch M1 betrachtet die Eigenfrequenz der Pendel zu: Protokoll zu Veruch M: Gekoppelte Pendel. Einleitung Im folgenden Veruch werden Schwingungen von durch eine weiche Feder gekoppelten Pendeln unterucht, deren Schwingungebenen eich ind. Die chwache Kopplung

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

12.6 Aufgaben zur Laplace-Transformation

12.6 Aufgaben zur Laplace-Transformation 292 12. Aufgaben zu linearen Gleichungen 12.6 Aufgaben zur Laplace-Tranformation A B C D Man löe die folgenden Anfangwertprobleme durch Laplace-Tranformation: 1) ẍ ẋ x = ; x() = ẋ() = 1 2) x (3) 6ẍ + 12ẋ

Mehr

Übungen zu Theoretische Physik II

Übungen zu Theoretische Physik II Physikalisches Institut Übungsblatt 8 Universität Bonn 08.2.206 Theoretische Physik WS 6/7 Übungen zu Theoretische Physik II Prof. Dr. Hartmut Monien, Christoph Liyanage, Manuel Krauß Abgabe: spätestens

Mehr

Ableitungsberechnung mit der Grenzwertmethode. Besonders wichtig ist der Zentraltext über Ableitungen Datei Stand 30.

Ableitungsberechnung mit der Grenzwertmethode. Besonders wichtig ist der Zentraltext über Ableitungen Datei Stand 30. Analyi Ableitungfunktionen Ableitungberechnung mit der Grenzwertmethode Beonder wichtig it der Zentraltet über Ableitungen 400 Datei 40 Stand 0. Dezember 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40 Ableitungfunktionen

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2 1994 Runde ufgabe 1 Zeige, da 1!! 3!... 1995! mindeten 1 Teiler hat. Hinwei: Unter n! verteht man da Produkt der erten n natürlichen Zahlen. eipiel: 5! = 1 3 4 5 = 10 Löung Die Summe S = 1!! 3!... 1995!

Mehr

Vektorrechnung Theorie Manfred Gurtner 2011 Seite 1. Vektorrechnung

Vektorrechnung Theorie Manfred Gurtner 2011 Seite 1. Vektorrechnung Vektorrechnung Theorie Manfred Gurtner Seite Vektorrechnung ink: http://member.chello.at/gut.jutta.gerhard/kur/vektoren.htm http://member.chello.at/gut.jutta.gerhard/kur/vektoren.htm http://www.mathematik.net/vektoral/va.htm

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation

Übungsmaterial. Lösen von Anfangswertproblemen mit Laplacetransformation Prof. Dr. W. Roenheinrich 30.06.2009 Fachbereich Grundlagenwienchaften Fachhochchule Jena Übungmaterial Löen von Anfangwertproblemen mit Laplacetranformation Nachtehend ind einige Anfangwertprobleme zu

Mehr

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 5. Musterlösung zum Übungsblatt 5 vom

Physikalische Chemie II (für Biol./Pharm. Wiss.) FS Lösung 5. Musterlösung zum Übungsblatt 5 vom Phyikaliche Chemie II (ür Biol./Pharm. Wi.) FS 207 Löung 5 Muterlöung zum Übungblatt 5 vom 9.3.208 ph-wert an der Zelloberläche. Die Debye-Länge ergibt ich au der Gouy-Chapman Theorie zu l D F " 0 ". ()

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

Theoretische Physik: Elektrodynamik

Theoretische Physik: Elektrodynamik Ferienkurs Merlin Mitschek, Verena Walbrecht 6.3.25 Ferienkurs Theoretische Physik: Elektrodynamik Vorlesung Technische Universität München Fakultät für Physik Ferienkurs Merlin Mitschek, Verena Walbrecht

Mehr

Lineare Differentialgleichung 2.Ordnung - Beispiel Autofeder

Lineare Differentialgleichung 2.Ordnung - Beispiel Autofeder HL Saalfelen Autofeer Seite 1 von 8 Wilfrie Rohm Lineare Differentialgleichung.Ornung - Beipiel Autofeer Mathematiche / Fachliche Inhalte in Stichworten: Numeriche Löen einer linearen Differentialgleichung.Ornung

Mehr

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion

Z-Transformation. Laplace-Transformation. Laplace-Transformation der Delta-Funktion Z-Tranformation Laplace-Tranformation Laplace-Tranformation der Delta-Funktion Z-Tranformation Für eine Differenengleichung wie.b. f(n+) f(n) = n n (alternative Schreibweie n+ n = n n ) it eine expliite

Mehr

1.1.4 Potential; Äquipotentiallinien bzw. -flächen; potentielle Energie eines geladenen Teilchens im homogenen elektrischen Feld

1.1.4 Potential; Äquipotentiallinien bzw. -flächen; potentielle Energie eines geladenen Teilchens im homogenen elektrischen Feld 1.1.4 Potential; Äquipotentiallinien bzw. -flächen; potentielle nergie eine geladenen Teilchen im homogenen elektrichen Feld Die Charakteriierung eine elektrichen Felde in einem Raumpunkt durch Angabe

Mehr

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ

Lösungen zu Übungs-Blatt Differentialgleichungen 2. Ordnung und PBZ Prof.Dr. B.Grabowki Mathematik III/MST Übung Löungen Löungen zu Übung-Blatt Differentialgleichungen. Ordnung und PBZ Zu Aufgabe ) Geben Sie jeweil mindeten eine Löung folgender Differentialgleichung an

Mehr

Abschlussprüfung Berufliche Oberschule 2014 Physik 12 Technik - Aufgabe I - Lösung

Abschlussprüfung Berufliche Oberschule 2014 Physik 12 Technik - Aufgabe I - Lösung Abchluprüfung Berufliche Oberchule 204 Phyik 2 Technik - Aufgabe I - Löung Ein Motorrad tartet zum Zeitpunkt t 0 0 au dem Silltand herau Der Schwerpunkt von Motorrad und Fahrer befindet ich zu dieem Zeitpunkt

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorleung. Falltudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal pannende Bäume 5. Kürzete Pfade 6. Traveling Saleman Problem 7. Flüe in Netzwerken

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1 Ferienkurs Elektrodynamik WS / Übungsblatt Tutoren: Isabell Groß, Markus Krottenmüller, Martin Ibrügger 9.3. Aufgabe - Geladene Hohlkugel In einer Hohlkugel befindet sich zwischen den Radien r und r eine

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 30. 04. 2009

Mehr

Wachstum und Entwicklung

Wachstum und Entwicklung Wachtum und Entwicklung Potkeyneianiche Wachtumtheorie Intitut für Genoenchaftween im Centrum für Angewandte Wirtchaftforchung Unierität Münter 1 Da Modell (1) 1 1 Y Min ( K, L) u Produktionfunktion (2)

Mehr

Elektrisches Feld P = IU= RI 2 = U2 R C = Q U

Elektrisches Feld P = IU= RI 2 = U2 R C = Q U Elektriche Feld Formeln E-Lehre I Stromtärke I Q t Ohmcher Widertand R U I Elektriche Leitung (inkl. ohmcher Widertand) E-Feld/Kondeator P IU RI 2 U2 R Elektriche Feldtärke Kapazität eine Kondenator ~E

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1

K T 1 s + 1. G S (s) = G S (s) = 1 2s + 1. T n s + 1 T n s. G R (s) = K R. G R (s) = 2s + 1 s. F ω (s) = 1/s 1 + 1/s = 1 Aufgabe : a) Au und K = und T = 2 folgt: Mit und K R = 2, T n = 2 : G S () = K T G S () = 2 G R () = K R T n T n G R () = 2 G 0 () = G R ()G S () = F ω () = / + / = b) Y () = F ω ()W() Die Sprungantwort

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

Postkeynesianische Wachstumstheorie

Postkeynesianische Wachstumstheorie 1 Wachtum und Enticklung Potkeyneianiche Wachtumtheorie Prof. Dr. Wolfgang Ströbele In Zuammenarbeit mit Dipl.-Math. Eric Meyer Lehrtuhl für Volkirtchafttheorie Unierität Münter Da Modell 2 (1) 1 1 Y Min

Mehr

Physik I Übung 3 - Lösungshinweise

Physik I Übung 3 - Lösungshinweise Phyik I Übung 3 - Löunghinweie Moritz Kütt WS / Stefan Reutter Stand:.. Franz Fujara Aufgabe Der erte Blick Ein Fahrradfahrer fährt die Hälfte einer Strecke mit km/h, die zweite Hälfte mit km/h. Schätze

Mehr

Belasteter Stahlbetonbalken ( Versuch Nr.4 )

Belasteter Stahlbetonbalken ( Versuch Nr.4 ) Belateter tahletonalken ( Veruch r. ). Grundlagen Ein tahletonalken mit Rechteckquerchnitt der Ameungen B = mm und H = mm wird mittel eine Prüfzylinder, deen Einzelkraft F durch eine I-Träger-Travere in

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen 1 Abiturprüfung Mathematik 214 Baden-Württemberg Allgemeinbildende Gymnaien Wahlteil Analytiche Geometrie / Stochatik Aufgabe B 1 - Löungen klau_mener@eb.de.elearning-freiburg.de Wahlteil 214 Aufgabe B

Mehr

a) b) Abb. 1: Abgeschrägtes Dodekaeder

a) b) Abb. 1: Abgeschrägtes Dodekaeder Han Waler, [018066] Abgechrägte Dodekaeder Idee und Anregung: Frank Heinrich, Braunchweig 1 Worum geht e? Da abgechrägte Dodekaeder (Abb. 1) it ein archimedicher Körer mit 1 regelmäßigen Fünfecken und

Mehr

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 22 Aufgabe 3 Punkte) Das elektrische Feld liegt parallel zur Grenzfläche, also ist die Welle TE- polarisiert Der Reflektionsfaktor ist laut Skript

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

MATHEMATIK II - SOMMERSEMESTER 2016 LÖSUNGEN ZUM 9. ÜBUNGSBLATT ANALYSIS. Aufgabe 41 = (0, 0) (Hess f )(x, y) = (Hess f )(1, 1) =

MATHEMATIK II - SOMMERSEMESTER 2016 LÖSUNGEN ZUM 9. ÜBUNGSBLATT ANALYSIS. Aufgabe 41 = (0, 0) (Hess f )(x, y) = (Hess f )(1, 1) = MATHEMATIK II - SOMMERSEMESTER 26 LÖSUNGEN ZUM 9. ÜBUNGSBLATT ANALYSIS Aufgabe 4 a) f (x, y) x 2 2x + y 2 + : Notwendige Extremalbedingung erter Ordnung: grad f (x, y) f (x, y) (2x 2, 2y)! (, ) 2x 2 2y

Mehr

Aufgaben zum Impuls

Aufgaben zum Impuls Aufgaben zu Ipul 593. Ein Wagen (Mae 4kg) prallt it einer Gechwindigkeit, / auf einen zweiten ( 5 kg), der ich in gleicher Richtung it der Gechwindigkeit 0,6 / bewegt. a) Wie groß ind die Gechwindigkeiten

Mehr

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen)

Prüfung Modul A, Teil 2 (Mathematik 2) (Fernstudium Bauingenieurwesen) Name: Vorname: Matrikelnummer: TU Dresden, Fachrichtung Mathematik, Dr. N. Koksch 6. Februar 8 Prüfung Modul A, Teil (Mathematik ) (Fernstudium auingenieurwesen) ewertet werden nur solche Lösungsschritte,

Mehr

Übungen zur Theoretischen Physik 1. Übungsblatt

Übungen zur Theoretischen Physik 1. Übungsblatt 1. Übungsblatt 1. In kartesischen Koordinaten gilt: grad Φ( r) = ( Φ x, Φ y, Φ ), div A x A = z x + A y y + A z z rot A = ( A z y A y z, A x z A z x, A y x A x ) y Berechnen Sie: (a) grad Φ( r) für Φ(

Mehr

Übungsblatt 7 Besprechung am /

Übungsblatt 7 Besprechung am / PN - Phyik für Chemiker und Biologen Prof. J. Lipfert WS 07/8 Übungblatt 7 Übungblatt 7 Beprechung am..07/4..07 Aufgabe Raketentechnik: Raketenantriebe funktionieren nach dem Rücktoßprinzip: Der Treibtoff

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

X. Elektrostatik und Magnetostatik in Materie

X. Elektrostatik und Magnetostatik in Materie X. Elektrostatik und Magnetostatik in Materie Dieses Kapitel befasst sich mit den elektromagnetischen Feldern in Materie im stationären Regime, d.h. wenn die mikroskopischen und makroskopischen Felder

Mehr

Laplace Transformation

Laplace Transformation Department Mathematik der Univerität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Laplace Tranformation Die in Netz getellten Kopien der Anleitungfolien ollen nur die Mitarbeit während der Verantaltung erleichtern.

Mehr

Aufgabe 1: Eutektischer Punkt. Liquiduslinie (L) T E. Soliduslinie (S) Eutektisches Mischungsverhältnis. Legierungssystem ohne Mischkristallbildung:

Aufgabe 1: Eutektischer Punkt. Liquiduslinie (L) T E. Soliduslinie (S) Eutektisches Mischungsverhältnis. Legierungssystem ohne Mischkristallbildung: Werktoffe der Elektrotechnik, WS 9 / 1 Löungen zur Zentralübung Seite 1 von Aufgabe 1: Wiederholung: Legierungytem ohne Michunglücke: Liquidulinie (L) Legierungytem ohne Michkritallbildung: Eutekticher

Mehr

Richtungsweisend für Universalbanken

Richtungsweisend für Universalbanken n Deutche Bundebank beurteilt Steuerung nach dem Kundenfoku Richtungweiend für Univeralbanken Von den Umetzungerfolgen einzelner Sparkaen ermutigt, entchied ich der Vortand der Sparkae Berchtegadener Land

Mehr

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels R. Brinkmann http://brinkmann-du.de Seite 1 25.11.213 Bechreibung von Schwingungen. FOS: Die harmoniche Schwingung Veruch: Wir beobachten die Bewegung eine Fadenpendel Lenken wir die Kugel au und laen

Mehr

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 6/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugler http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_6_7/r_ rechenmethoden_6_7/

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Univerität Hamburg WiSe / Dr. Hanna Peywand Kiani 4..2 Anleitung zu Blatt 5 Differentialgleichungen I für Studierende der Ingenieurwienchaften Stabilität, Laplace-Tranformation

Mehr

V6.4 - Erzwungene Schwingungen, Resonanz

V6.4 - Erzwungene Schwingungen, Resonanz V6.4 - Erzwungene Schwingungen, Reonanz Michael Baron, Sven Pallu 31. Mai 2006 Zuammenfaung Im folgenden Veruch betrachten wir da Schwingungverhalten eine gedämpften, periodich erregten Ozillator in Form

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

5 Die Poisson-Approximation

5 Die Poisson-Approximation 5 Die Poion-Approximation Im vierten Kapitel hatten wir mit der Normalverteilung die icherlich wichtigte und meittudierte Verteilung der W.-Theorie kennengelernt und geehen, daß man diee al Lime eine geeignet

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am 11.12.212 Löung Blatt 8 Übungen zur Vorleung PN1 Löung zum Übungblatt 8 Beprochen am 11.12.212 Aufgabe 1: Moleküle al tarre rotierende Körper Durch Mikrowellen laen ich Rotationen von Molekülen mit einem

Mehr

Mathematikaufgaben > Vektorrechnung > Geraden

Mathematikaufgaben > Vektorrechnung > Geraden Michael Buhlmann Mathematikaufgaben > Vektoechnung > Geaden Aufgabe: Eläutee, wie lineae Gleichungyteme ekennen laen, welche jeweilige Lagebeziehung zwichen zwei Geaden (Identität, Paallelität, Schneiden,

Mehr

VIII.2 Bestimmung des Potentials aus der Poisson-Gleichung

VIII.2 Bestimmung des Potentials aus der Poisson-Gleichung 13 Elektrostatik III.2 Bestimmung des Potentials aus der Poisson-Gleichung Im III.1.3 wurde das elektrostatische Potential erzeugt durch eine Ladungsverteilung (III.12a mithilfe des Gauß schen Gesetzes

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sytemtheorie Teil A - Zeitkontinuierliche Signale und Syteme - Muterlöungen Manfred Strohrmann rban Brunner Inhalt 5 Muterlöungen Syteme im Laplace-Bereich 3 5. Löen einer homogenen linearen Differentialgleichung...

Mehr

Räumliche Bereichsintegrale mit Koordinatentransformation

Räumliche Bereichsintegrale mit Koordinatentransformation Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Techniche Univerität München Fakultät für Informatik Forchung- und Lehreinheit Informatik IX Thema: Morphologiche Operationen Proeminar: Grundlagen Bildvertehen/Bildgetaltung Johanne Michael Kohl Betreuer:

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anali III W / Löungvorchläge zum 9. Übungblatt. Wir zeigen zunächt, da die u.u. au Vorleung/Übung noch nicht bekannt it: It A BR p und B BR q, o it A B BR p+q. Die läßt ich z.b. wie in Aufgabe

Mehr

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner

Übung 11: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner Technische Universität München SS 4 Zentrum Mathematik 5.7.4 Prof. Dr. K. Buchner Dr. W. Aschbacher Analysis II Übung : Lösungen Aufgabe T 3 (Mehrdimensionale Integrale, (a Wir benutzen die verallgemeinerten

Mehr

TECHNIKEN ZUR BERECHNUNG DER DIMENSION

TECHNIKEN ZUR BERECHNUNG DER DIMENSION TECHNIKEN ZUR BERECHNUNG DER DIMENSION KATHARINA KIESEL Zuammenfaung Im Folgenden werden Tehniken zur Berehnung der Dimenion von Fraktalen aufgezeigt E wird unter anderem definiert wa eine Mae-Verteilung

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Grundlagen der Technischen Chemie - Praktikum WS2015/ Februar Protokoll. Nitritreduktion

Grundlagen der Technischen Chemie - Praktikum WS2015/ Februar Protokoll. Nitritreduktion 2. Faung Protokoll Nitritreduktion Gruppe 29 Guido Petri, Matrikelnummer 364477 Rami Michael Saoudi, Matrikelnummer 356563 1 Aufheizgechwindigkeit Gruppe 29 Inhaltverzeichni Aufgabentellung...2 1. Theorie...2

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10 Mthemtik I für E-Techniker C. Erdmnn WS /, Univerität Rotock,. Vorleungwoche Zutzmteril zur Mthemtik I für E-Techniker Übung Uneigentliche Integrle Die Funktion f ei für x definiert und in jedem Intervll

Mehr

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu KAPITEL II Elektrostatik Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu E( r) = ρ el.( r) E( r) = 0. (II.1a) (II.1b) Dabei hängt die Rotation der jetzt zeitunabhängigen

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Musterlösung Elektrostatik

Musterlösung Elektrostatik Ferienkurs Elektrodynamik Musterlösung Elektrostatik Multiple Choice 5.. Frage X Wie das einer Punktladung Q. Ziemlich kompliziert... Wie das einer geladenen Schale, die wie die Höhle geformt ist. Warum?

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Wasserstoffatom Vorlesung: Mo 1h-12h, Do9h-1h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Aufgabe 1. Aufgabe 2. Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr

Aufgabe 1. Aufgabe 2. Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 2 1 Aufgabe 1 Auf der Kugeloberfläche vom Radius R ist das elektrostatische Potenzial V an jeder Stelle auf der Oberfläche bekannt. Wie lautet

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Physik 12 Technik - Aufgabe I - Lösung

Abschlussprüfung Berufliche Oberschule 2015 Physik 12 Technik - Aufgabe I - Lösung mathphy-online Abchluprüfung Berufliche Oberchule 2015 Phyik 12 Technik - Aufgabe I - Löung Teilaufgabe 10 In einem Biathlonverein werden die Kleinkalibergewehre routinemäßig überprüft Da betrachtete Gewehr

Mehr

5 Harmonische Funktionen

5 Harmonische Funktionen 5 Harmonische Funktionen Generell kann man die allgemeine Lösung des elektrostatischen andwertproblems auch als Summe einer speziellen Lösung der Poisson-Gleichung und einer Lösung der Laplace-Gleichung

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Musterlösungen Serie 3

Musterlösungen Serie 3 -MAVT -MATL Analysis II FS 1 Prof. r. P. Biran Musterlösungen Serie 1. Frage 1 Berechnen Sie wobei [, 1] [, 1]. xe x+y df, e 1 1 e + 1 xe x+y df Mit einer partiellen Integration erhalten wir xe x+y dydx

Mehr

Versuch 9. Volumenkontraktion

Versuch 9. Volumenkontraktion Univerität Kael, Grundpraktikum Phyikaliche Chemie Veruch 9 Volumenkontraktion Aufgabentellung E ind die partiellen molaren Volumina der Komponenten einer Waer-Ethanol- Michung bei unterchiedlichen Zuammenetzungen

Mehr

Ferienkurs Analysis 3

Ferienkurs Analysis 3 Ferienkurs Analysis 3 Vektoranalysis Zensen Carla, Heger aniel, Kössel Fabian, Ried Tobias 21. ärz 21 Inhaltsverzeichnis 1 Untermannigfaltigkeiten des R n 3 1.1 Charakterisierung von Untermannigfaltigkeiten...............

Mehr

2.4 Eigenschaften des Gradienten

2.4 Eigenschaften des Gradienten 2.4 Eigenschaften des Gradienten Niveauflächen: Die Niveauflächen (D = 2 Höhenlinien) einer Funktion f sind die durch die Gleichung f(x, y, z) = c = const bestimmten Flächen(scharen); für jeden Wert von

Mehr

Wo trifft die Kugel die Zielscheibe, wenn der Schütze das Zentrum der Zielscheibe anvisiert

Wo trifft die Kugel die Zielscheibe, wenn der Schütze das Zentrum der Zielscheibe anvisiert Waagrechter Wurf ================================================================= 1. Au einem Schlauch fließt Waer der Gechwindigkeit 10 m. Ein Hobbygärtner hält ihn in 1,5m Höhe o, da der Strahl waagrecht

Mehr

Mathematisches Werkzeug für Theoretische Physik

Mathematisches Werkzeug für Theoretische Physik Mathematisches Werkzeug für Theoretische Physik Thomas Glomann thomas@glomann.de. November 2004 basierend auf der orlesung von Prof. Wettig kript bitte auf Fehler überprüfen und diese umgehend an mich

Mehr

Übungsblatt 12 Physik für Ingenieure 1

Übungsblatt 12 Physik für Ingenieure 1 Übungblatt 12 Phyi für Ingenieure 1 Othmar Marti, (othmar.marti@phyi.uni-ulm.de) 15. 1. 2002 1 Aufgaben für die Übungtunden Spezielle Relativitättheorie 1 Spezielle Relativitättheorie 2 Schwingungen 3

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datentrukturen Prof. Dr. Hanjo Täubig Lehrtuhl für Effiziente Algorithmen (Prof. Dr. Ernt W. Mayr) Intitut für Informatik Techniche Univerität München Sommeremeter H. Täubig

Mehr

Antriebssystemtechnik für Fahrzeuge. Übung WS09/10

Antriebssystemtechnik für Fahrzeuge. Übung WS09/10 Antriebytemtechnik für Fahrzeuge Übung WS09/10 Inhalt 2 Vorabverion Bezüglich Fehlerkorrektur oder Verbeerungvorchläge bitte eine E-Mail an: ziegler@fzg.mw.tum.de Dieer Umdruck wurde mit Hilfe von Studenten

Mehr

Geschwindigkeit v = kurz:

Geschwindigkeit v = kurz: Mechanik 1 Gechwindigkeit Die Gechwindigkeit v gibt an, wie chnell ich ein Körper bewegt. Sie it fetgelegt durch: Gechwindigkeit v = zurückgelegter Weg dafür benötigte Zeit t übliche Einheiten: m km 1

Mehr

WIPF SCHE FORMELSAMMLUNG

WIPF SCHE FORMELSAMMLUNG WIPF SCHE FORELSALG Verfer: Wipf rio Fchbereich: chinen-ingenieurween Fch: Antriebtechnik mfng: Hupttudium Fung vom: 4..3 Antriebtechnik Antriebtechnik Grundlgen Formelmmlung:.Wipf Drehmomentberechnung

Mehr

Grundwissen 9. Jahrgangsstufe Mathematik. Wissen / Können Beispiele. 1. Reelle Zahlen, Wurzeln und Potenzen

Grundwissen 9. Jahrgangsstufe Mathematik. Wissen / Können Beispiele. 1. Reelle Zahlen, Wurzeln und Potenzen Grundwien 9. Jahrgangtufe Mathematik Wien / Können Beiiele. Reelle Zahlen, Wureln und Potenen Die Menge der reellen Zahlen beteht au der Menge der rationalen Zahlen und der Menge der irrationalen Zahlen.

Mehr

( ) = ( ) ( ) ( ) ( )

( ) = ( ) ( ) ( ) ( ) R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Löungen Grundaufgaben für lineare und quadratiche Funktionen I e: E e f( x) = x+ Py 0 f( x) = x+ Px 0 E E E E E6 E7 E8 E9 E0 f x = mx + b mit m = und P(

Mehr

essen Mache es nun umgekehrt. Schreibe immer einen Buchstaben weniger, bis das Wort ganz verschwunden ist. Sprich wieder (leise) dazu.

essen Mache es nun umgekehrt. Schreibe immer einen Buchstaben weniger, bis das Wort ganz verschwunden ist. Sprich wieder (leise) dazu. een Füge Buchtabe an Buchtabe bi du da ganze Wort vor dir ieht. Sprich dazu! Beachte: Da e wird kurz geprochen. Daher kommt danach ein Doppel! Mache e nun umgekehrt. Schreibe immer einen Buchtaben weniger,

Mehr