Beispiellösungen zu Blatt 84

Größe: px
Ab Seite anzeigen:

Download "Beispiellösungen zu Blatt 84"

Transkript

1 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? , Löung: E gilt 2009 < 2010 und folglich auch ) < ) Addieren wir noch und chieben die negativen Tere auf die jeweil andere Seite, ergibt ich oder zuaengefat < ) ) < ) ) Ziehen wir die Wurzel, ultiplizieren it 2 und addieren auf beiden Seiten noch , erhalten wir ) ) < ) ) bzw quadratich zuaengefat ) < ) Da die quadrierten Tere beide poitiv ind, ändert ich bei Wurzelziehen wiederu nicht a Relationzeichen Soit ergibt ich, da die größere der beiden Zahlen it

2 Aufgabe 2 Stefan Schneetiefel it auf großer Winterwanderung und öchte die nächte Wanderhütte öglicht chnell erreichen Der noch verbleibende Weg dorthin hat eine L-For, noch 500 geradeau, danach knickt der Weg u 90 ab und hat noch einal 100 Stefan überlegt, ob e ich lohnt, über da chneebedeckte Feld abzukürzen, bzw ab welcher Stelle e ich lohnt Er u dabei einkalkulieren, da eine Querfeldein-Gechwindigkeit nur 4 k/h beträgt, während die norale Wandergechwindigkeit 5 k/h beträgt Wa rätt du ih? Löung: Auflöen der hoffentlich bekannten Forel Gechwindigkeit = Weg durch Zeit v = /t) nach t ergibt t = /v I Folgenden rechnen wir in den Einheiten k und k/h, laen diee aber bei Schreiben teilweie weg Wenn Stefan auf die Abkürzung verzichtet und den befetigten Weg läuft, beträgt die zu abolvierende Strecke 0,5 k + 0,1 k = 0,6 k und die dafür benötigte Zeit t 1 = 0,6 k 5 k/h = 0,12 h 0,1 0,5x Wir nehen nun an, da Stefan den Anteil x der 0,5 Kiloeter langen Strecke abkürzt, inde er von dieer Stelle au querfeldein läuft Wir betien die Geatzeit für einen olchen Weg in Abhängigkeit von x und anchließend diejenigen Werte für x, für die die Zeit ebenfall 0,12 Stunden beträgt: Die Wegtrecke, die Stefan über da Feld läuft, it die Hypotenue eine rechtwinkligen Dreieck it den Kathetenlängen 0,1 und 0,5 x, hat alo die Länge 0, ,5 x) 2 Da Stück, da Stefan auf de befetigten Weg geht, hat die Länge 0,51 x) Die Geatzeit für diee Wanderwegvariante beträgt alo 0,5 t 2 x) = 0,51 x) 5 0,12 + 0,5 x) Löen der Gleichung t 1 = t 2 x) liefert nun die geuchten Werte für x: t 1 = 0,51 x) 5 + 0,12 + 0,5 x) t 1 = 8 0,11 x) + 4 0, ,5 x) 2 0,96 0,81 x) = 0,04 + x 2 0,16 + 0,8 x) 2 = 0,04 + x 2

3 Löungen zu Blatt 84 3 Die Äquivalenz folgt darau, da e nur poitive Löungen x geben kann) 0 = 0,36x 2 0,256 x + 0, = x x + 0,04 = x 1/2 = ± = ± = x 1 0,65, x 2 0,062 Da der Koeffizient von x 2 in der Funktion t 2 x) poitiv it, it die zugehörige Parabel nach oben geöffnet, d h zwichen den beiden gefundenen Löungen nit die Funktion Werte kleiner al t 1 = 0,12 h an Alo lohnt e ich, jeden beliebigen Anteil zwichen 6,2% und 65% der 500 langen Strecke abzukürzen Beerkung: Da nicht explizit nach de zeitoptialen Weg gefragt war, genügte e, da obige Intervall zu betien Natürlich kann an unter Verwendung von etwa Analyi Betien der Nulltelle der Ableitung von t 2 x)) auch die Stelle finden, an der Stefan optialerweie auf da Feld abbiegen ollte; ie it bei x = 4 15 Aufgabe 3 Jotje und Sverre pielen: An einer Tafel teht die Zahl 2010 Abwechelnd nehen ie die an der Tafel tehende Zahl n, ziehen einen ihrer Teiler ungleich n ab, chreiben da Ergebni der Subtraktion al neue Zahl an die Tafel und treichen die alte Zahl durch Wer die 1 anchreiben kann, gewinnt Jotje fängt an Kann einer der beiden den Gewinn erzwingen? Löung: Jotje al beginnende Spielerin kann den Gewinn erzwingen Jotje Strategie beteht darin, einen olchen Teiler auzuwählen, da ie Sverre jede Mal eine ungerade Zahl hinterlät Hat Sverre nälich eine ungerade Zahl x an der Tafel tehen, o ind auch alle Teiler dieer Zahl ungerade Zieht er einen davon von x ab, o it die Differenz in jede Fall eine gerade Zahl Inbeondere kann er nicht die 1 an die Tafel chreiben Hat hingegen Jotje o wie a Anfang eine gerade Zahl y an der Tafel tehen, o hat diee indeten einen ungeraden Teiler, nälich die 1 Zieht ie die 1 oder irgendeinen anderen ungeraden Teiler von y ab, o it die Differenz ebenfall eine ungerade Zahl Jotje kann alo in ihre erten Zug, o wie auch in jede ihrer folgenden Züge, Sverre eine ungerade Zahl hinterlaen Sverre hingegen u jede Mal eine gerade Zahl für Jotje an die Tafel chreiben Da die angechriebene Zahl jede Mal echt kleiner al die vorhergende it, wird Jotje nach endlich vielen Schritten die 1 an die Tafel chreiben können und gewinnt

4 Löungen zu Blatt 84 4 Aufgabe 4 Für eine poitive ganze Zahl > 1 ei k) die kleinte poitive ganze Zahl größer al 1, die ein Teiler von it; und wenn = 1 it, ei k) = 1 Zu einer rationalen Zahl z betien wir eine Nachfolgerzahl fz) Dazu tellen wir z gekürzt al z = p dar, chreiben allerding ander al ont q üblich ein eventuelle Minu in den Nenner E gilt dann alo ggtp, q) = 1 und p 0 Dait definieren wir fz) := kp) p k p p kp) ) ) p + 1 kp) Sei chließlich eine poitive ganze Startzahl a 0 gegeben Wir betrachten die Folge, die ich au a n+1 := fa n ) für n 0 ergibt Zeige, da die Folge irgendwann kontant wird Welchen Wert nit ie dann an, nach wie vielen Schritten it da der Fall und wie oft wird zwichendurch ein negativer Wert angenoen? Löung: Sei = p i 1 eine poitive ganze Zahl ungleich 1 it ihrer Prifaktorzerlegung, < p 2 < < p ind alo die Priteiler, und die i j eien natürlich größer al null Diee Bedingungen ollen i Folgenden bei jeder Prifaktorzerlegung gelten) Wenn k) die kleinte poitive ganze Zahl größer al 1 it, die ein Teiler von it, dann it offenichtlich k) die kleinte Prizahl, die teilt, alo k) = Wenn i 1 > 1 it, it auch k alo k) k k) k) ) ) = = k) In diee Fall it k) = k) k) =, ) ) k k) k) + 1 = k) 1 = Da bedeutet: Wenn in der gekürzten Bruchdartellung von z = pi 1 q der kleinte Priteiler de Zähler von z in ehr al nur einfacher Potenz vorkot, alo i 1 > 1 it, dann it fz) = pi 1 1 = pi Ander geagt: In diee Fall ergibt ich die Nachfolgezahl von z einfach au de Zähler von z durch Teilen durch deen kleinten Priteiler Wir gehen wieder einen Schritt zurück und betrachten k) für den Fall, da = p i 1 it i 1 = 1 und it 2 it Hier it = k) = p i 2 2 p i 3 3 p i Daher it k ) = p k) 2 und alo ) ) k k) k) + 1

5 Löungen zu Blatt 84 5 da p 2 3 gilt = p 2 ) + 1 = p 2 ) < 0, Darau folgt: Wenn für z = = pi 1 q q dann it fz) = ) = p 2 ) + 1 gilt, da i 1 = 1 und 2 it, p 2 ) + 1 Wohlgeerkt it natürlich = p i 2 eine poitive ganze Zahl Der Nenner von fz) it ein Vielfache de Zähler plu 1 und dait teilerfred zu Zähler Alo it die obige Dartellung ein gekürzter Bruch, und hier it der Nenner negativ, alo die Zahl fz) ingeat Wie an der Forel für fz) zu erkennen it, it der Nenner für den weiteren Fortgang einer Rekurion unintereant; er orgt hier aber dafür, da da Ergebni negativ wird Bleibt al letzter intereanter Fall zu unteruchen, welchen Wert fz) und gegebenenfall eine Nachfolger) annehen, wenn z = p, der Zähler von z q alo eine Prizahl it E it kp ) = p und k p kp ) ) = k1) = 1 Dait it fp ) = p p p ) = 1 p Der Nachfolger dieer Zahl it dann genau wie der Nachfolger von 1 da der Nenner für die Nachfolgerberechnung ja unintereant it) f1) = k1) 1 + 1) = 1 Zuaengenoen ergibt ich: Für da Berechnen der nächten Zahl in einer Rekurion it nur der Zähler der Startzahl wichtig In jede Schritt der Rekurion verliert der Zähler einen kleinten Prifaktor Wenn der letzte Prifaktor verchwindet, it allerding der Nenner ungleich 1, o da ein weiterer Rekurionchritt nötig it, u den Wert 1 zu erreichen Ab diee Zeitpunkt it die Folge kontant Genau dann, wenn der kleinte Prifaktor de Zähler in nur einfacher Potenz vorhanden it, ergibt ich ein negativer Nenner, alo ein negativer Wert in der Folge it der Aunahe bei Übergang von p zu 1 p

6 Löungen zu Blatt 84 6 Für eine Startzahl a 0 = pi 1 braucht die Rekurion daher genau i q 1 + i i + 1 Schritte, u den kontant bleibenden Wert 1 zu erreichen; und 1)-al wird dabei ein negativer Wert angenoen Stand: 20 Februar 2010

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

Fachhochschulreifeprüfung an Fachoberschulen und Berufsoberschulen 2003 (Bayern) Physik: Aufgabe III

Fachhochschulreifeprüfung an Fachoberschulen und Berufsoberschulen 2003 (Bayern) Physik: Aufgabe III Fachhochchulreifeprüfung an Fachoberchulen und Berufoberchulen 3 (Bayern) Phyik: Aufgabe III. Für alle Körper, die ich antrieblo auf einer Kreibahn it de Radiu R und der Ulaufdauer T u ein Zentralgetirn

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

PHYSIK Gekoppelte Bewegungen 2

PHYSIK Gekoppelte Bewegungen 2 PHYSIK Gekoppelte Bewegungen Gekoppelte Bewegungen auf chiefer Ebene Datei Nr. 93 Friedrich W. Buckel ktober 00 Internatgynaiu Schloß Torgelow Inhalt Grundwien Bewegung ohne äußeren Antrieb (Beipiel )

Mehr

PHYSIK Gekoppelte Bewegungen 1

PHYSIK Gekoppelte Bewegungen 1 www.phyikabitur.info PHYSIK Gekoppelte Bewegungen 1 Gekoppelte Bewegungen auf horizontaler Ebene Noch keine Korrektur geleen (3.11.0) Die kopletten Löungen owie die Möglichkeit de Audrucken gibt e auf

Mehr

Definition. Wichtige Beziehungen. Geometrische Konstruktion

Definition. Wichtige Beziehungen. Geometrische Konstruktion Mathematik/Informatik Gierhardt Goldener Schnitt und Kreiteilung Definition Eine Strecke mit der Länge r oll nach dem Verfahren de Goldenen Schnitt geteilt werden. Dann verhält ich die Geamttreckenlänge

Mehr

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können Energiefreietzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfuion freigeetzt. Waertoffkerne(Protonen) können bei güntigen Bedingungen zu Heliumkernen verchmelzen, dabei

Mehr

FOS: Lösungen Vermischte Aufgaben zur Mechanik

FOS: Lösungen Vermischte Aufgaben zur Mechanik R. Brinkann http://brinkann-du.de Seite 1 5.11.01 FOS: Löungen Verichte Aufgaben zur Mechanik 1. ie Skala eine Krafteer it unkenntlich geworden. Nur die Marken für 0 N und 5 N ind erhalten geblieben. Wie

Mehr

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen

Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analytische Geometrie / Stochastik Aufgabe B 1 - Lösungen 1 Abiturprüfung Mathematik 214 Baden-Württemberg Allgemeinbildende Gymnaien Wahlteil Analytiche Geometrie / Stochatik Aufgabe B 1 - Löungen klau_mener@eb.de.elearning-freiburg.de Wahlteil 214 Aufgabe B

Mehr

Bestimmung der Messunsicherheit

Bestimmung der Messunsicherheit Betimmung der Meunicherheit 1 Arten der Meabweichungen 1.1 Grobe Abweichungen Urachen Verehen de Beobachter bei Bedienung/Ableung der Meintrumente Irrtum de Beobachter bei Protokollierung/Auwertung der

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

s Hinter lichtundurchlässigen Hindernissen bildet sich bei Beleuchtung Schatten.

s Hinter lichtundurchlässigen Hindernissen bildet sich bei Beleuchtung Schatten. Grundwien NuT Phyik 7. Jahrgangtufe I. Optik 1. Licht und Sehen, Schatten Wir ehen einen Gegentand nur, wenn Licht von ih auf unere Augen fällt. Wir untercheiden bei Körpern, die Licht auenden: - Lichtquellen,

Mehr

Mechanik 2. Addition von Geschwindigkeiten 1

Mechanik 2. Addition von Geschwindigkeiten 1 Mechanik. Addition on Gechwindigkeiten 1. Addition on Gechwindigkeiten Wa beeinflut die Gechwindigkeit de Boote? a. Wind b. Waergechwindigkeit Haben beide die gleiche Richtung, o addieren ie ich. Haben

Mehr

Geometrie-Dossier Der Satz des Pythagoras

Geometrie-Dossier Der Satz des Pythagoras Geometrie-Doier Der Satz de Pythagora Name: Inhalt: Wer war Pythagora? Der Satz de Pythagora mit Beweien Anwendung de Satz von Pythagora in der Ebene Anwendung de Satz von Pythagora im Raum Kontruktion

Mehr

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte 6. Klae 1. Schularbeit 1999-10-0 Gruppe A 1) Betrachte da Wettrennen zwichen Achille und der Schildkröte für folgende Angaben: Gechwindigkeit von Achille 10 m, Gechwindigkeit der Schildkröte m Vorprung

Mehr

Aufgaben zum Impuls

Aufgaben zum Impuls Aufgaben zu Ipul 593. Ein Wagen (Mae 4kg) prallt it einer Gechwindigkeit, / auf einen zweiten ( 5 kg), der ich in gleicher Richtung it der Gechwindigkeit 0,6 / bewegt. a) Wie groß ind die Gechwindigkeiten

Mehr

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs Brutkreb Genetiche Urachen, erhöhte Riiken Informationen über familiär bedingten Brut- & Eiertockkreb Brutkreb: Wie und wo er entteht Wenn bei der Zellteilung ein Fehler paiert Alle Zellen unere Körper

Mehr

Aufnahmeprüfung FHNW 2013: Physik

Aufnahmeprüfung FHNW 2013: Physik Muterlöungen Phyik Aufnahmeprüfung FHW 03 Aufnahmeprüfung FHW 03: Phyik Aufgabe Da nebentehende Diagramm zeigt den Gechwindigkeit-Zeit-Verlauf für ein Schienenfahrzeug. a ) Skizzieren Sie qualitativ richtig

Mehr

Beobachten und Messen mit dem Mikroskop

Beobachten und Messen mit dem Mikroskop Phyikaliche Grundpraktikum Veruch 006 Veruchprotokolle Beobachten und een mit dem ikrokop Aufgaben 1. Betimmen de ildungmaßtabe der vorhandenen ektive mit Hilfe eine echraubenokular. Vergleich mit den

Mehr

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad R. Brinkann http://brinkann-du.de Seite 5..03 FOS: Löungen Aufgaben zu Arbeit, Energie, Leitung und de Wirkunggrad. Welche Größen betien die Arbeit in der Phyik? Wie wird die Arbeit berechnet und in welchen

Mehr

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer.

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer. Wertteigerung Frei Hau. Der Kotenloe Glafaeranchlu für Haueigentümer. Darüber freuen ich nicht nur Ihre Mieter. 40 Millimeter, 1.000 Vorteile. Im Bereich der Kommunikation it Glafaer die Zukunft. 12.000

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Aufgabe 1 Welche Eigenschaften muss ein mechanisches System besitzen, damit es periodische Schwingungen ausführen kann?

Aufgabe 1 Welche Eigenschaften muss ein mechanisches System besitzen, damit es periodische Schwingungen ausführen kann? Aufgabe 1 Welche Eigenchaften u ein echaniche Syte beitzen, dait e periodiche Schwingungen auführen kann? Aufgabe 2 Ein Federpendel wurde u die Strecke = 15 c au der Ruhelage augelenkt und dann logelaen.

Mehr

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013 Dynamiche Unternehmenmodellierung und -imulation (ehemal: Buine Dynamic - Dynamiche Modellierung und Simulation komplexer Gechäftyteme, Arbeitwienchaft V) Lehreinheit 09 Prozeimulation : Prozeimulation

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Die nachfolgenden Aufgaben und Definitionen ind ein erter intieg in diee Thea. Hier wird unterchieden zwichen den Begriffen Arbeit und nergie. Verwendete Forelzeichen ind in der Literatur nicht ier einheitlich

Mehr

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels R. Brinkmann http://brinkmann-du.de Seite 1 25.11.213 Bechreibung von Schwingungen. FOS: Die harmoniche Schwingung Veruch: Wir beobachten die Bewegung eine Fadenpendel Lenken wir die Kugel au und laen

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Techniche Univerität München Fakultät für Informatik Forchung- und Lehreinheit Informatik IX Thema: Morphologiche Operationen Proeminar: Grundlagen Bildvertehen/Bildgetaltung Johanne Michael Kohl Betreuer:

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von:

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von: Protokoll zur Laborübung Verahrentechnik Übung: Filtration Betreuer: Dr. Gerd Mauchitz Durchgeührt von: Marion Pucher Mtk.Nr.:015440 Kennzahl: S6 Mtk.Nr.:015435 Kennzahl: S9 Datum der Übung:.06.004 1/11

Mehr

Geometrie-Dossier Symmetrie in der Ebene

Geometrie-Dossier Symmetrie in der Ebene Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor Hochchule Augburg Veruch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikchaltungen mit dem Bipolartranitor Phyikaliche Praktikum Die Funktionweie von Bipolartranitoren ollte vor Veruch 9 im Theorieteil

Mehr

Test für medizinische Studiengänge II Originalversion II des TMS. 5. aktualisierte Auflage 2008 Hogrefe Verlag ISBN: 978-3-8017-2169-5

Test für medizinische Studiengänge II Originalversion II des TMS. 5. aktualisierte Auflage 2008 Hogrefe Verlag ISBN: 978-3-8017-2169-5 Löunwee und Erklärunen für die Aufaben 7-96 ( Quantitative und formale Probleme ) Seite - 55 de Übunbuche Tet für mediziniche Studienäne II Oriinalverion II de TMS 5. aktualiierte Auflae 008 Horefe Verla

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

366. (Grundkurs 2009) 376. (LK 2010) Aufgaben zum Induktionsgesetz

366. (Grundkurs 2009) 376. (LK 2010) Aufgaben zum Induktionsgesetz Aufgaben zu Induktiongeetz 366. (Grundkur 009) In einer 30 c langen it Luft gefüllten Spule it 4500 Windungen befindet ich eine Spule it 60 Windungen und der Querchnittfläche 8 c². Die Längachen der Spulen

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

Technische Daten und Messwerte

Technische Daten und Messwerte Eco Drive Opel Inignia und Der Inignia übetrifft den Paat zwar in der Länge, nicht jedoch bei Rauangebot brauchen verboten Neue Sparverionen von Opel Inignia und bieten Mittelklae-Kofort und brauchen o

Mehr

banking Das Vorstandsduo der höchst erfolgreichen Kreissparkasse Wiedenbrück bestbanking 191 2012 Foto: bestbanking medien

banking Das Vorstandsduo der höchst erfolgreichen Kreissparkasse Wiedenbrück bestbanking 191 2012 Foto: bestbanking medien Foto: bet medien Da Vortandduo der höcht erfolgreichen Kreiparkae Wiedenbrück 24 bet 191 2012 n Deutliche Ergebniverbeerung mit einer konequenten Aurichtung Strategiche Primärziel: Kundenfoku Die Kreiparkae

Mehr

Physik-Übung * Jahrgangsstufe 8 * Herleitung einer Formel für die Spannenergie

Physik-Übung * Jahrgangsstufe 8 * Herleitung einer Formel für die Spannenergie Phyik-Übung * Jahrgangtufe 8 * Herleitung einer Formel für die Spannenergie A. Hookeche Geetz ie ehnung einer Feder hängt ab von der Kraft F, mit der an der Feder gezogen wird. Unteruche den Zuammenhang

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

Experimentalphysik II TU Dortmund SS2012 Shaukat. Khan @ TU - Dortmund. de Kapitel 1

Experimentalphysik II TU Dortmund SS2012 Shaukat. Khan @ TU - Dortmund. de Kapitel 1 xperientalphyik II T ortund SS Shaukat. Khan @ T - ortund. de Kapit Gaußche Geetz in Materie: die diektriche erchiebungdichte I inhoogenen -Fd enttehen Polariationladungen nicht nur an der Oberfläche,

Mehr

Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2

Greensche Funktion. Frank Essenberger FU Berlin. 30.September Nomenklatur 1. 2 Greensche Theoreme 1. 3 Anwendung in der Elektrostatik 2 Greenche Funktion Frank Eenberger FU Berlin 30.September 2006 Inhalterzeichni Nomenklatur 2 Greenche Theoreme 3 Anwendung in der Elektrotatik 2 4 Anpaung an Randbedingungen 3 5 Eindeutigkeit der Löung

Mehr

Stochastische Überraschungen beim Spiel BINGO

Stochastische Überraschungen beim Spiel BINGO Stochatiche Überrachungen beim Spiel BINGO NORBERT HENZE, KARLSRUHE, UND HANS HUMENBERGER, WIEN Zuammenfaung: In dieem Beitrag wird da bekannte Spiel BINGO erläutert und näher analyiert. Augehend vom konkreten

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Phyik Abzüge für Dartlung: Rundung:. Klauur in K am. 0. 03 Achte auf gute Dartlung und vergi nicht Geg., Ge., ormn herleiten, Einheiten, Rundung...! 9 Elementarladung: e,60

Mehr

BBS Technik Idar-Oberstein. Impulserhaltung, Stoßgesetze. Anfang Ende actio = reactio. (Beide Wagen haben die gleiche Endgeschwindigkeit)

BBS Technik Idar-Oberstein. Impulserhaltung, Stoßgesetze. Anfang Ende actio = reactio. (Beide Wagen haben die gleiche Endgeschwindigkeit) Nae: BBS Technik Idar-Obertein Ipulerhaltung, Stoßgeetze Datu: Zwei Wagen bewegen ich laut Skizze. Welche Bewegungzutände herrchen nach de Stoß, wenn... a eine platiche Mae und b ein Feder ich zwichen

Mehr

Oberstufe: Ergebnisse und ausführliche Lösungen zu den Aufgaben zu Arbeit, Leistung und dem Wirkungsgrad I

Oberstufe: Ergebnisse und ausführliche Lösungen zu den Aufgaben zu Arbeit, Leistung und dem Wirkungsgrad I R. Brinkann http://brinkann-du.de Seite 1 5.11.013 Obertufe: Ergebnie und auführliche Löungen zu den n zu Arbeit, Leitung und de Wirkunggrad I Ergebnie E1 E E3 E4 E5 E6 E7 Ein Wagen wird it einer kontanten

Mehr

7. Reglerentwurf im Frequenzbereich

7. Reglerentwurf im Frequenzbereich H A K O 7 Reglerentwurf im Frequenzbereich In dieem Kapitel werden zwei unterchiedliche Reglerentwurfverfahren im Frequenzbereich dikutiert Da o genannte Frequenzkennlinienverfahren it auf Regelkreie mit

Mehr

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel?

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel? Schwerdruck, Auftrieb. In allen 5 Gefäßen teht die Flüikeit leich hoch. Verleiche folende Drücke a Boden der Gefäße iteinander: a) p, p, p b) p, p c) p, p 5. Ein U-Boot hat eine Autieöffnun it eine Durcheer

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

DM280-1F Luftkissenfahrbahn

DM280-1F Luftkissenfahrbahn DM80-F Luftkienfahrbahn Die Luftkienfahrbahn DM80-F dient zur Demontration von Veruchen zur Dynamik und Kinematik geradliniger Bewegung feter Körper. Diee Anleitung oll Sie mit der Bedienung und den Demontrationmöglichkeiten

Mehr

Längenmaße. Welche Längenmaße kennst du? Wir nehmen ein Lineal und einen Zollstock sowie ein einfaches Maßband (gibt es in jedem Möbelhaus) zur Hand.

Längenmaße. Welche Längenmaße kennst du? Wir nehmen ein Lineal und einen Zollstock sowie ein einfaches Maßband (gibt es in jedem Möbelhaus) zur Hand. Längenaße Einführung: Welche Längenaße kennst du? Wir nehen ein Lineal und einen Zollstock sowie ein einfaches Maßband (gibt es in jede Möbelhaus) zur Hand. Wie lang ist ein Meter ()? Wie lang ist ein

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Musteraufgaben für die zentrale Klassenarbeit

Musteraufgaben für die zentrale Klassenarbeit Muteraufgaben für die zentrale Klaenarbeit im ach Grundlagen der Technik im Technichen Berufkolleg I (BKT) Bewertungchlüel für die Korrektur der zentralen Klaenarbeit Endpunktezahl Note 60 7,,0 7,,,,0

Mehr

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01)

1. Übung zur Vorlesung,,Diskrete Strukturen (SS 01) 1 Übung zur Vorlesung,,Disrete Struturen (SS 01 Lösung zu Aufgabe Es ist zu zeigen: Für, n N 0 gilt Algebraischer Beweis ( ( n + n + + 1 0 Es sei n N 0 beliebig Wir beweisen die Behauptung durch Indution

Mehr

Musteraufgaben Technische Physik für die Prüfung zur Fachhochschulreife im 1 BKFH und im Technischen BK II

Musteraufgaben Technische Physik für die Prüfung zur Fachhochschulreife im 1 BKFH und im Technischen BK II Muteraufgaben Techniche Phyik für die Prüfung zur Fachhochchulreife i 1 BKFH und i Technichen BK II Die vorliegenden Muteraufgaben wurden ertellt von den Mitgliedern der Koiion zur Ertellung der Prüfungaufgaben

Mehr

Nach der Bearbeitung dieses Kapitels soll der Leser in der Lage sein,

Nach der Bearbeitung dieses Kapitels soll der Leser in der Lage sein, 3 1 Einführung Nach der Bearbeitung diee Kapitel oll der Leer in der Lage ein, die Funktionen Invetition und Finanzierung in die Geamtheit der Betriebwirtchaftlehre einzuordnen, ihre Bedeutung für die

Mehr

3 Mechanik fester Körper

3 Mechanik fester Körper Mehr Infortionen z Titel 3 Mechnik feter Körper oreln 3.1 Dichte orelzeichen r = V = r V V r Me Volen Dichte 3 / 3 Körper 1 = 0,001 3 d 3 g t 1 = 1 = 1 c 3 d 3 3 Wichtige Dichten Werktoff r in /d 3 Kpfer

Mehr

Masse und Geschwindigkeit von Neutrinos

Masse und Geschwindigkeit von Neutrinos Autor: Walter Bilin 1 on 5 walter.bilin.h/blog/ 10.05.013 3:05 Mae und Gehwindigkeit on Neutrino Dientag, 9. April 013-16:03 Autor: wabi Themen: Wien, Phyik, QM Bi zur ntdekung der Neutrino-Ozillation

Mehr

Die Maxwell-Boltzmann-Verteilung

Die Maxwell-Boltzmann-Verteilung Die Maxwell-Boltzann-Verteilung Sebastian Meiss 5. Oktober 8 Mit der Maxwell-Boltzann-Verteilung kann an Aussagen über die Energie- bzw. Geschwindigkeitsverteilung von Teilchen in eine Syste beschreiben.

Mehr

Experimente zur Bestimmung von Federkonstanten

Experimente zur Bestimmung von Federkonstanten Experiente zur Betiung von ederontanten heoretiche Grundlagen: I. Herleitung zweier oreln zur Berechnung der ederontante auf unabhängigen Wegen.. über die Kraft : Einheitenbetrachtung: [ ]. über die Periodendauer

Mehr

s Sparkasse. Gut für Bottrop.

s Sparkasse. Gut für Bottrop. Preemitteilung 18.02.2015 Informationen zum Gechäftjahr 2014: Mit Erfolg in eine heraufordernde Zukunft Anpruchvolle Rahmenbedingungen haben im abgelaufenen Jahr den Gechäftverlauf der geprägt. Nie zuvor

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

Studiengang Biomedizinische Technik Wintersemester 2006/

Studiengang Biomedizinische Technik Wintersemester 2006/ Klauur Phyik I Studiengang Bioediziniche Technik Wintereeter 006/007 1..007 Für alle Berechnungen gilt: die Erdbechleunigung beträgt g 9,81 /! 1. (5 Punkte Die Bewegung eine Körper in der Ebene werde durch

Mehr

WIG-Schweißen mit Impulsen im höheren Frequenzbereich

WIG-Schweißen mit Impulsen im höheren Frequenzbereich WIG-Schweißen mit Impulen im höheren Frequenzbereich N. Knopp, Münderbach und R. Killing, Solingen Einleitung Beim WIG-Impulchweißen im khz-bereich wird der Lichtbogen eingechnürt und erhöht da Einbrandverhalten

Mehr

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt.

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt. Kraftwandler Die Energie al Eraltunggröße Ein Kraftwandler it eine mecanice Anordnung, die eine Kraft wirken lät, welce größer it al die Kraft, die aufgewendet wird (oder umgekert). Beipiel: lacenzug Aufgewendete

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Einführung in die Schaltalgebra

Einführung in die Schaltalgebra Einführung in die chltlger GUNDBEGIFFE: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 ECHENEGELN - - - - - - - - - - - - - - - - - - - - - - - -

Mehr

Physik LK 11, 2. Klausur Energie, Leistung, Impuls, Rotation Lösung Learjet 60

Physik LK 11, 2. Klausur Energie, Leistung, Impuls, Rotation Lösung Learjet 60 Phyik LK 11,. Klauur Energie, Leitung, Impul, Rotation Löung..1 Name: Die Rechnungen bitte volltändig angeben und die Einheiten mitrechnen. Antwortätze chreiben. Die Reibung it bei allen Aufgaben zu vernachläigen,

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkann http://brinkann-du.de Seite 1 5.11.013 Obertufe: Ergebnie und auführliche Löungen zu Arbeit, Leitung und de Wirkunggrad VI Ergebnie: E1 E E3 E4 E5 E6 Wa wäre da für eine Machine, die einen

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr

banking n So funktioniert es am iphone & ipad best banking: Welche Infrastruktur stellt Smart Engine zur Verfügung?

banking n So funktioniert es am iphone & ipad best banking: Welche Infrastruktur stellt Smart Engine zur Verfügung? banking KundenbindungOnline-Vergleich- und Einkaufmöglichkeiten verändern da längt und ucht nach effizienten Kundenzugängen. Smart Managing Partner von Smart Engine, die zahlreichen Vorteile bet banking:

Mehr

Physik T1 - Prüfung vom 29. November 2006 mit Lösungen

Physik T1 - Prüfung vom 29. November 2006 mit Lösungen Phyik T1 - Prüfung vo 29. Noveber 2006 it Löungen Aufgabe 1 - SI Baigröen und Baieinheiten (6 Punkte) a) Wieviele Baigröen und Baieinheiten gibt e i Internationalen Einheitenyte (SI): b) Nennen Sie diee

Mehr

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100 Studienarbeit Thema: Betimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Megerät VSM00 angefertigt von: Robert Uath Matrikelnummer: 99047 Betreuer: Prof. Dr.-Ing. B. K. Glück

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Baden-Württemberg Musterlösung zu Aufgabe 1

Baden-Württemberg Musterlösung zu Aufgabe 1 Abitur 009 Baden-Württeberg Muterlöung zu Aufgabe 1 Löung Diee Löung wurde ertellt von Tanja Reibold. Sie it keine offizielle Löung de Miniteriu für Kultu, Jugend und Sport Baden- Württeberg Aufgabenteil

Mehr

Sparkassen. Gut für Deutschland. s WEITERLESEN

Sparkassen. Gut für Deutschland. s WEITERLESEN Sparkaen. Gut für Deutchland. WEITERLESEN Leitfaden Mitarbeiterdialog b Vorwort 2 Vorwort Georg Fahrenchon Liebe Mitarbeiterinnen und Mitarbeiter der Sparkaen-Finanzgruppe, e it o weit: Endlich tartet

Mehr

Lineare Funktionen. Arbeitsschritte Tastenfolge Display. Arbeitsschritte Tastenfolge Display. y p TableStart bei x = -10 Schrittweite: 0,5

Lineare Funktionen. Arbeitsschritte Tastenfolge Display. Arbeitsschritte Tastenfolge Display. y p TableStart bei x = -10 Schrittweite: 0,5 Lineare Funktinen Beiiel: y = 2x - 1 1. Eingabe der Funktingleichung Eingabe der Funktingleichung Y 1 eingeben Á ¹À 2. Wertetabelle Eintellungen für die Wertetabelle y TableStart bei x = -10 Schrittweite:

Mehr

Grundfertigkeiten Physik Jahrgangsstufe 7

Grundfertigkeiten Physik Jahrgangsstufe 7 Robert-Koch-Gymnaium Grundfertigkeiten Phyik Jahrgangtufe 7 Fachchaft Phyik 2013 Serie A 1 Grundfertigkeiten Phyik Jahrgangtufe 7 Serie A Hilfe: Hookeche Geetz: Einfache Formelgleichungen Elektricher Widertand

Mehr

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am

Prof. Liedl Lösung Blatt 8. Übungen zur Vorlesung PN1. Lösung zum Übungsblatt 8. Besprochen am 11.12.212 Löung Blatt 8 Übungen zur Vorleung PN1 Löung zum Übungblatt 8 Beprochen am 11.12.212 Aufgabe 1: Moleküle al tarre rotierende Körper Durch Mikrowellen laen ich Rotationen von Molekülen mit einem

Mehr

Schnell und kosteneffizient. ELO E-Mail-Management. Die richtige Entscheidung für heute und morgen

Schnell und kosteneffizient. ELO E-Mail-Management. Die richtige Entscheidung für heute und morgen E-Mail-Management E-Mail-Lifecycle-Management al Bai effizienter Gechäftprozee Schnell und koteneffizient Die richtige Entcheidung für heute und morgen Die Enterprie-Content-Management-Löungen (ECM) der

Mehr

Abschlussprüfung Berufliche Oberschule 2011 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2011 Physik 12 Technik - Aufgabe II - Lösung mathphy-online Abchluprüfung Berufliche Oberchule Phyik Technik - Aufgabe II - Löung Teilaufgabe. Ein Satellit bewegt ich antrieblo auf einer Kreibahn mit dem Radiu R um die Erde. Für einen Umlauf benötigt

Mehr

Drehzahlregelung eines Gleichstrommotors 1

Drehzahlregelung eines Gleichstrommotors 1 Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Digitale Signalverabeitung Praktikum Regelungtechnik 1 (Zeitdikrete

Mehr

PARS. Kategorie C: Lösungen. Grundlagen. Aufgabe 1. s = 1 2 a t2 (t 0, umstellen nach a) s = 1 2 a t2 2 (1) 2 s = a t 2 : t 2 (2) 2 s. t 2.

PARS. Kategorie C: Lösungen. Grundlagen. Aufgabe 1. s = 1 2 a t2 (t 0, umstellen nach a) s = 1 2 a t2 2 (1) 2 s = a t 2 : t 2 (2) 2 s. t 2. Kategorie C: Lösungen PARS Grundlagen Aufgabe s = 2 a t2 (t 0, ustellen nach a) s = 2 a t2 2 () 2 s = a t 2 : t 2 (2) 2 s t 2 = a (3) a = 2 s t 2 Zu Zeile (): Es ist nicht nötig, die gesuchte Größe nach

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

ENERGIETECHNISCHES PRAKTIKUM I

ENERGIETECHNISCHES PRAKTIKUM I ENERGIETECHNISCHES PRAKTIKUM I Veruch 9: Wechelrichter mit Puldauermodulation 1 EINLEITUNG...2 2 PULSDAUERMODULATION BEI SPANNUNGSSTEUERUNG...5 3 LITERATUR...9 4 VERSUCHSDURCHFÜHRUNG...10 4.1 Zeitunabhängige

Mehr

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1.

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1. Unterrichtfach Lehrplan HAK: Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Lehrplan HLW: Mathematik und angewandte Mathematik 1. HLW (1. Jahrgang) Lehrplan HTL: Mathematik

Mehr

Satz des Pythagoras Realschule / Gymnasium Klasse 9

Satz des Pythagoras Realschule / Gymnasium Klasse 9 Satz de Pythagora Realchule / Gymnaium Klae 9 Alexander Schwarz www.mathe-aufgaben.com Dezember 014 1 Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat ich eine Leiter gekauft, die

Mehr

10. Äquivalenzen zur Riemannschen Vermutung

10. Äquivalenzen zur Riemannschen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung Satz. Sei θ 0, (ii θ( = + O( θ+ε für alle ε > 0,

Mehr

Beispiellösungen zu Blatt 39

Beispiellösungen zu Blatt 39 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 9 Zu Ehren des 9. Aufgabenblattes betrachten wir alle Vielfachen der

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Dynamisches Verhalten von OPVs

Dynamisches Verhalten von OPVs TECHNISCHE UNIVERSITÄT ILMENAU Fakultät ür Elektrotechnik und Inormationtechnik Fachgebiet Elektroniche Schaltungen und Syteme Dynamiche Verhalten von OPV Veruch 6 im Inormationelektronichen Praktikum

Mehr

CHEMWEIGHT - Experimente mit Laborwaage und Computer

CHEMWEIGHT - Experimente mit Laborwaage und Computer - CHEMWEIGHT - Experiente it Laborwaage und Coputer Herrn Prof. Dr. H. J. Seifert zu 60. Geburttag gewidet Verfaer: Dr. Lutz Stäudel, Prof Dr. Holger Wöhrann, Geathochchule Kael, Fachbereich Cheie/Biologie

Mehr

Versuch 1: Drehzahlregelung eines Gleichstrommotors

Versuch 1: Drehzahlregelung eines Gleichstrommotors Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Grundlagen der Regelungtechnik Sommeremeter 2012 Veruchbechreibung

Mehr

Lösungsvorschlag. Qq r 2 F C = 1

Lösungsvorschlag. Qq r 2 F C = 1 Löungvorchlag 1. Zunächt zwei Skizzen zur Verdeutlichung der Situation: Link it da Kügelchen mit der Ladung q zu ehen. Recht it die Kugel mit der Ladung Q 1 µc an die Stelle de Kügelchen gebracht worden.

Mehr