Differentialgleichungen

Größe: px
Ab Seite anzeigen:

Download "Differentialgleichungen"

Transkript

1 Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule) Mathia Neumann Andrea-Oberchule) Gruenleiter: Jürgen Leiterer Humboldt-Univerität) Der Exitenz- und Eindeutigkeitatz von Picard-Lindelöf wurde im Fall linearer Gleichungen mit tetigen Koeffizienten bewieen volltändig und mit elementaren Mitteln) und auf Fragen der Zinezinrechnung angewendet: Vergleich von tufenweier Verzinung und tetiger Verzinung, Berechnung einer Finanzierung bei tetiger Verzinung und tetiger Abzahlung. 1 Exitenz- und Eindeutigkeitatz von Picard- Lindelöf im linearen Fall Sei I ein Intervall der reellen Ache bechränkt oder unbechränkt, abgechloen, halbabgechloen oder offen). Weiter eien zwei tetige Funktionen a, b : I R und ein Punkt I gegeben. Dann gilt der folgende Satz, der einen Sezialfall de ehr viel allgemeineren Exitenz- und Eindeutigkeitatze von Picard-Lindelöf für gewöhnliche Differentialgleichungen dartellt: Satz 1.1 Für jede γ 0 R gibt e genau eine tetig differenzierbare Funktion f : I R mit f t) = at)ft) + bt) 1.1) und f ) = γ ) 1

2 Bewei. Wir etzen ht) := ex aτ) dτ, t I. 1.3) Offenbar wird damit eine tetig differenzierbare Funktion h : I R definiert, welche die dazugehörige homogene Gleichung löt, d.h. für welche gilt: h t) = at)ht) für alle t I. 1.4) Wir zeigen zuert die Eindeutigkeitauage. Dazu nehmen wir an, f : I R ei eine tetig differenzierbare Funktion mit 1.1) und 1.2). Da die Funktion h offenbar keine Nulltellen hat denn e gilt tet e x 0), it dann γ := f/h eine wohldefinierte tetig differenzierbare Funktion auf I mit Darau folgt mit 1.4) f = γh. 1.5) f = γ h + γh = γ h + γah. 1.6) Mit 1.1) ergibt ich: d.h. γ h + γah = aγh + b, γ h = b bzw. γ = b h. Da γ ) = f )/h ) = f ) = γ 0 gilt, ergibt da γt) = γ 0 + bτ) hτ) dτ. Mit 1.5) erhält man darau chließlich ft) = γ 0 + bτ) hτ) dτ ht) oder, wenn man noch die Definition von h einetzt, ft) = γ 0 + bτ) τ dτ ex ex aη) dη aτ) dτ, t I. 1.7) 2

3 Damit it gezeigt, da e höchten eine Löung von 1.1) und 1.2) gibt. Zugleich folgt darau aber auch die Exitenz einer Löung. Man mu nur die durch 1.7) definierte Funktion f differenzieren. Wir bemerken noch, da die Formel 1.7) im Fall kontanter Koeffizienten a und b die folgende einfachere Form annimmt: ft) = b a + γ 0 + b ) e at t0), t I. a 2 Ein zweiter Bewei der Eindeutigkeit Hier geben wir noch einen zweiten Bewei für die Eindeutigkeitauage in Satz 1.1 an. Dieer zweite Bewei it dewegen intereant, weil er auch auf ehr viel allgemeinere Differentialgleichungen angewendet werden kann, während der oben angegebene Bewei nur im linearen Fall funktioniert. E eien alo zwei Löungen f und g von 1.1) und 1.2) gegeben, d.h. f, g : I R eien zwei tetig differenzierbare Funktionen mit owie f t) = at)ft) + bt) und g t) = at)gt) + bt) 2.1) f ) = g ) = γ ) Wir müen zeigen, da dann ft) = gt) gilt für alle t I. Dabei kann man natürlich o.b.d.a. annehmen, da I bechränkt und abgechloen it, o da a al tetige Funktion) auf I ein Maximum annimmt. Weiter kann man o.b.d.a. annehmen, da a nicht identich verchwindet denn für a 0 bedeutet die zu beweiende Eindeutigkeitauage, da Stammfunktionen bi auf eine Kontante eindeutig betimmt ind). Wir etzen ε := 1 2 max at). t I E genügt nun da folgende Lemma zu beweien: Lemma 2.1 Für jede I gilt: It f) = g), o gilt auch { } ft) = gt) für alle t I ε ) := t I t ε. In der Tat kann man dann diee Lemma wegen 2.2) zuert auf den Fall = anwenden und erhält ft) = gt) für alle t I ε ). Im zweiten Schritt wendet man da Lemma auf die Punkte = ε und = + ε an oweit diee beiden Punkte noch in I liegen), und erhält ft) = gt) für alle t I 2 ε ) := { t I 3 t 2 ε }.

4 Man fährt o fort, bi nach einem gewien n-ten Schritt n Länge de Intervall I/ε genügt) { } I n ε ) := t I t n ε I gilt. Bewei von Lemma 2.1. Sei M := max ft) gt). t I ε) Wir müen zeigen, da M = 0 it. Dazu ei ein t I ε ) gegeben. Dann gilt: Wegen f) = g) it ft) gt) = ft) f ) gt) g )). Mit dem Hautatz der Differential- und Integralrechnung und 2.1) folgt darau ft) gt) = f τ) g τ)) dτ = aτ)fτ) + bτ) aτ)gτ) bτ))dτ = aτ)fτ) gτ)) dτ. Da der Betrag eine Integral höchten größer wird, wenn man den Integranden mit Betragtrichen verieht, kann man den Audruck wie folgt abchätzen: ft) gt) aτ) fτ) gτ) dτ max aη) max fη) gη) dτ ε) = max aη) max fη) gη) ε ) dτ max aη) max ε) max aη) M ε. fη) gη) t 4

5 Nach Definition von ε folgt darau, da ft) gt) M 2 für alle t I ε ), d.h. M M/2, alo M = 0. 3 Berechnung eine Sarguthaben Hier unteruchen wir die folgende Situation: Zum Zeitunkt t = 0 vertrauen wir einen gewien Betrag g 0 in Euro) einer Bank an. Diee zahlt un dafür Zinen mit einem auf da Jahr bezogenen Zinatz d.h. dafür, da wir 100 Euro ein Jahr lang bei der Bank laen, erhalten wir 100 Euro an Zinen gutgechrieben). Für t 0 bezeichnen wir mit gt) da Guthaben, da wir zum Zeitunkt t auf der Bank haben. Al Zeiteinheit wählen wir ein Jahr. Im Fall tufenweier Verzinung mit Stufengröße ein Jahr kann man gn) da aufgelaufene Guthaben nach n Jahren), n N, nach der au der Schule bekannten Formel gn) = g ) n berechnen. Wählt man al Stufengröße den k-ten Teil eine Jahre, k N, o gilt gn) = g ) kn = g0 1 + n ) kn. 3.1) k kn Wegen de au der Analyi bekannten Grenzwerte 1 + m) x m = e x, x R, lim m konvergiert die rechte Seite von 3.1) für k und fet gehaltenem n) gegen g 0 e n, d.h. bei ehr kleiner Wahl der Stufengröße it gn) g 0 e n. 3.2) Durch den Übergang zu einer unendlich kleinen Stufengröße erhält man die tetige Verzinung. Hierbei wird zu dem Guthaben gt) zu jedem Zeitunkt t der unendlich kleine Betrag gt) dt hinzugefügt, d.h. für dgt) die unendlich kleine Änderung in der Zeit dt) gilt dgt) = gt) dt, bzw. genauer geagt, tetige Verzinung bedeutet nach Definition), da die Funktion gt) tetig differenzierbar it und die Differentialgleichung g t) = gt), 0 t < 5

6 erfüllt. Nach Satz 1.1 gibt e genau eine olche Funktion g, die außerdem noch der Anfangbedingung g0) = g 0, genügt, und zwar, nach Formel 1.8), gt) = g 0 e t. 3.3) Vergleicht man tufenweie und tetige Verzinung, o erhält man zum Beiiel: Sei g 0 = , t = n = 20 Jahre) und = 0, 05. Dann erhält man am Ende ein Guthaben von: ,77 Euro bei jährlicher Verzinung Stufenmodell) ,56 Euro bei täglicher Verzinung Stufenmodell) ,18 Euro bei tetiger Verzinung. 4 Berechnung eine Kredit mit tetiger Verzinung und Abzahlung Hier betrachten wir die folgende Situation: Zum Zeitunkt t = 0 nehmen wir einen Kredit in Höhe von k 0 Euro auf. Der effektive Jahrezinatz ei d.h. für 100 Euro werden ro Jahr 100 Euro Zinen fällig), die monatliche Abzahlungrate ei m, und T ei die Laufzeit de Kredit. Mit kt) bezeichnen wir die Höhe der Schuld zum Zeitunkt t, wobei wir al Zeiteinheit wieder ein Jahr wählen. Unabhängig davon, wa die Banken genau tun, wollen wir un hier vortellen, da owohl die Verzinung al auch die Abzahlung tetig verlaufen, d.h. zu jedem Zeitunkt t vermehrt ich die Schuld um den Betrag kt) dt und verringert ich zugleich um den Betrag 12m dt, d.h. dkt) = kt) dt 12m dt, bzw. genauer geagt, wir tellen un vor, da die Funktion kt) tetig differenzierbar it und die Differentialgleichung k t) = kt) 12m, 0 t < erfüllt. Nach Satz 1.1 gibt e genau eine olche Funktion k, die außerdem noch der Anfangbedingung k0) = k 0, genügt, und zwar, nach Formel 1.8), kt) = 12m + k 0 12m ) e t. 4.1) 6

7 An dieer Formel ieht man zunächt, da k 0 < 12m ein mu, wenn der Kredit irgendwann abgezahlt ein oll, d.h. wenn t < ein oll. In dieem Fall gilt kt ) = 0, d.h. nach 4.1), 0 = 12m + k 0 12m ) e T. 4.2) Auflöung nach T ergibt T = 1 ln 12m 12m k 0 ). 4.3) Man kann alo die Laufzeit T au der Kredithöhe k 0, dem effektiven Jahrezin und der Höhe der Monatrate m berechnen. Setzt man zum Beiiel m = 200, = 0, 1 und k 0 = , o erhält man eine Laufzeit von 1 0, 1 ) , = 17, 9 Jahren. Ebenfall exlizit kann man nach k 0 oder m auflöen. Schwieriger it die Auflöung nach dem Zinatz. Hierfür mu man wahrcheinlich numerich vorgehen. 7

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

10. Äquivalenzen zur Riemannschen Vermutung

10. Äquivalenzen zur Riemannschen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung 0. Äquivalenzen zur Riemannchen Vermutung Satz. Sei θ 0, (ii θ( = + O( θ+ε für alle ε > 0,

Mehr

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

Mechanik 2. Addition von Geschwindigkeiten 1

Mechanik 2. Addition von Geschwindigkeiten 1 Mechanik. Addition on Gechwindigkeiten 1. Addition on Gechwindigkeiten Wa beeinflut die Gechwindigkeit de Boote? a. Wind b. Waergechwindigkeit Haben beide die gleiche Richtung, o addieren ie ich. Haben

Mehr

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte 6. Klae 1. Schularbeit 1999-10-0 Gruppe A 1) Betrachte da Wettrennen zwichen Achille und der Schildkröte für folgende Angaben: Gechwindigkeit von Achille 10 m, Gechwindigkeit der Schildkröte m Vorprung

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dipl.-Math. Rolf Wendt DOOR Aufgabe 5 Versicherungstechnik Übungsblatt 2 Abgabe bis zum Dienstag, dem 27.0.205 um 0 Uhr im Kasten 9 Die

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Drehzahlregelung eines Gleichstrommotors 1

Drehzahlregelung eines Gleichstrommotors 1 Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Digitale Signalverabeitung Praktikum Regelungtechnik 1 (Zeitdikrete

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

7. Reglerentwurf im Frequenzbereich

7. Reglerentwurf im Frequenzbereich H A K O 7 Reglerentwurf im Frequenzbereich In dieem Kapitel werden zwei unterchiedliche Reglerentwurfverfahren im Frequenzbereich dikutiert Da o genannte Frequenzkennlinienverfahren it auf Regelkreie mit

Mehr

Aufnahmeprüfung FHNW 2013: Physik

Aufnahmeprüfung FHNW 2013: Physik Muterlöungen Phyik Aufnahmeprüfung FHW 03 Aufnahmeprüfung FHW 03: Phyik Aufgabe Da nebentehende Diagramm zeigt den Gechwindigkeit-Zeit-Verlauf für ein Schienenfahrzeug. a ) Skizzieren Sie qualitativ richtig

Mehr

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von:

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von: Protokoll zur Laborübung Verahrentechnik Übung: Filtration Betreuer: Dr. Gerd Mauchitz Durchgeührt von: Marion Pucher Mtk.Nr.:015440 Kennzahl: S6 Mtk.Nr.:015435 Kennzahl: S9 Datum der Übung:.06.004 1/11

Mehr

Geometrie-Dossier Der Satz des Pythagoras

Geometrie-Dossier Der Satz des Pythagoras Geometrie-Doier Der Satz de Pythagora Name: Inhalt: Wer war Pythagora? Der Satz de Pythagora mit Beweien Anwendung de Satz von Pythagora in der Ebene Anwendung de Satz von Pythagora im Raum Kontruktion

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100 Studienarbeit Thema: Betimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Megerät VSM00 angefertigt von: Robert Uath Matrikelnummer: 99047 Betreuer: Prof. Dr.-Ing. B. K. Glück

Mehr

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können Energiefreietzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfuion freigeetzt. Waertoffkerne(Protonen) können bei güntigen Bedingungen zu Heliumkernen verchmelzen, dabei

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

Zinssätze. Georg Wehowar. 4. Dezember 2007

Zinssätze. Georg Wehowar. 4. Dezember 2007 4. Dezember 2007 Grundlagen der Zinsrechnung Verschiedene Anleihen Forward Rate Agreement Forward Zinsen Allgemeines Allgemeine Grundlagen K 0... Anfangskapital K t... Kapital nach einer Zeitspanne t Z

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Test für medizinische Studiengänge II Originalversion II des TMS. 5. aktualisierte Auflage 2008 Hogrefe Verlag ISBN: 978-3-8017-2169-5

Test für medizinische Studiengänge II Originalversion II des TMS. 5. aktualisierte Auflage 2008 Hogrefe Verlag ISBN: 978-3-8017-2169-5 Löunwee und Erklärunen für die Aufaben 7-96 ( Quantitative und formale Probleme ) Seite - 55 de Übunbuche Tet für mediziniche Studienäne II Oriinalverion II de TMS 5. aktualiierte Auflae 008 Horefe Verla

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Techniche Univerität München Fakultät für Informatik Forchung- und Lehreinheit Informatik IX Thema: Morphologiche Operationen Proeminar: Grundlagen Bildvertehen/Bildgetaltung Johanne Michael Kohl Betreuer:

Mehr

Bestimmung der Messunsicherheit

Bestimmung der Messunsicherheit Betimmung der Meunicherheit 1 Arten der Meabweichungen 1.1 Grobe Abweichungen Urachen Verehen de Beobachter bei Bedienung/Ableung der Meintrumente Irrtum de Beobachter bei Protokollierung/Auwertung der

Mehr

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013 Dynamiche Unternehmenmodellierung und -imulation (ehemal: Buine Dynamic - Dynamiche Modellierung und Simulation komplexer Gechäftyteme, Arbeitwienchaft V) Lehreinheit 09 Prozeimulation : Prozeimulation

Mehr

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor Hochchule Augburg Veruch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikchaltungen mit dem Bipolartranitor Phyikaliche Praktikum Die Funktionweie von Bipolartranitoren ollte vor Veruch 9 im Theorieteil

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Stochastische Überraschungen beim Spiel BINGO

Stochastische Überraschungen beim Spiel BINGO Stochatiche Überrachungen beim Spiel BINGO NORBERT HENZE, KARLSRUHE, UND HANS HUMENBERGER, WIEN Zuammenfaung: In dieem Beitrag wird da bekannte Spiel BINGO erläutert und näher analyiert. Augehend vom konkreten

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

banking n So funktioniert es am iphone & ipad best banking: Welche Infrastruktur stellt Smart Engine zur Verfügung?

banking n So funktioniert es am iphone & ipad best banking: Welche Infrastruktur stellt Smart Engine zur Verfügung? banking KundenbindungOnline-Vergleich- und Einkaufmöglichkeiten verändern da längt und ucht nach effizienten Kundenzugängen. Smart Managing Partner von Smart Engine, die zahlreichen Vorteile bet banking:

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Inhalt. Vision ME Benutzerhandbuch s

Inhalt. Vision ME Benutzerhandbuch s Benutzerhandbuch Inhalt 1. Einleitung...2 1.1. Automatiche Anmeldung bei Viion ME...2 2. Schüler dazu einladen, einer Klae beizutreten...3 2.1. Schüler in der Klae anzeigen...6 2.2. Die App au Schülericht...7

Mehr

Wig. Die Platzierung des Buchstabenbildes. Zurichtung des Buchstabens. Die Grundlage bildet das Geviert. Es ist, je nach Anwenderprogramm,

Wig. Die Platzierung des Buchstabenbildes. Zurichtung des Buchstabens. Die Grundlage bildet das Geviert. Es ist, je nach Anwenderprogramm, 2 ZEICHENABSTAND WORTABSTAND ZEILENABSTAND SCHRIFTFAMILIE SCHRIFTKORREKTUR SATZART AUSZEICHNUNGEN SCHRIFTMISCHEN GLOSSAR ZEICHENABSTAND ZEICHENABSTAND M Vorbreite Nachbreite Dicktenaufbau In QuarkXPre

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

Beispiel 1 Modellbildung und Identifikation

Beispiel 1 Modellbildung und Identifikation Beipiel Moellbilung un Ientifikation Für eine GaFlutrecke oll ein mathematiche Moell ermittelt weren. Einganggröße er trecke it eine tellpannung u t. Auganggröße er trecke it er momentane GaFlu q. u t

Mehr

Physik-Übung * Jahrgangsstufe 8 * Herleitung einer Formel für die Spannenergie

Physik-Übung * Jahrgangsstufe 8 * Herleitung einer Formel für die Spannenergie Phyik-Übung * Jahrgangtufe 8 * Herleitung einer Formel für die Spannenergie A. Hookeche Geetz ie ehnung einer Feder hängt ab von der Kraft F, mit der an der Feder gezogen wird. Unteruche den Zuammenhang

Mehr

Beobachten und Messen mit dem Mikroskop

Beobachten und Messen mit dem Mikroskop Phyikaliche Grundpraktikum Veruch 006 Veruchprotokolle Beobachten und een mit dem ikrokop Aufgaben 1. Betimmen de ildungmaßtabe der vorhandenen ektive mit Hilfe eine echraubenokular. Vergleich mit den

Mehr

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8 Der einface Dapfproze Clauiu Rankine Proze Seite von 8 darin ind e die Exergie, b die Anergie und U die Ugebungteperatur Wie vergleicen zunäct den Carnot cen η C Prozewirkunggrad it de Clauiu-Rankine Prozewirkunggrad

Mehr

Fachhochschulreifeprüfung an Fachoberschulen und Berufsoberschulen 2003 (Bayern) Physik: Aufgabe III

Fachhochschulreifeprüfung an Fachoberschulen und Berufsoberschulen 2003 (Bayern) Physik: Aufgabe III Fachhochchulreifeprüfung an Fachoberchulen und Berufoberchulen 3 (Bayern) Phyik: Aufgabe III. Für alle Körper, die ich antrieblo auf einer Kreibahn it de Radiu R und der Ulaufdauer T u ein Zentralgetirn

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer.

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer. Wertteigerung Frei Hau. Der Kotenloe Glafaeranchlu für Haueigentümer. Darüber freuen ich nicht nur Ihre Mieter. 40 Millimeter, 1.000 Vorteile. Im Bereich der Kommunikation it Glafaer die Zukunft. 12.000

Mehr

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011

Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Mathematik-Klausur vom 02.02.2011 und Finanzmathematik-Klausur vom 31.01.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Anleitung. zur. Konfiguration. des. WLAN Repeaters

Anleitung. zur. Konfiguration. des. WLAN Repeaters Anleitung zur Konfiguration de WLAN Repeater (Art. Nr. SD-REP-2 ) Stand: 06.06.07 Inhaltverzeichni. Eintellungen WLAN Router. Einloggen WLAN Router.2 IP-Eintellungen WLAN-Router.3 Kanal WLAN-Router.4 WLAN

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Nach der Bearbeitung dieses Kapitels soll der Leser in der Lage sein,

Nach der Bearbeitung dieses Kapitels soll der Leser in der Lage sein, 3 1 Einführung Nach der Bearbeitung diee Kapitel oll der Leer in der Lage ein, die Funktionen Invetition und Finanzierung in die Geamtheit der Betriebwirtchaftlehre einzuordnen, ihre Bedeutung für die

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Physikalisches Praktikum II. Mikroskop (MIK)

Physikalisches Praktikum II. Mikroskop (MIK) Phyikaliche Praktikum II Mikrokop (MIK) Stichworte: Brechung- und Reflexiongeetz, Abbildunggeetze, Abbildungfehler, optiche Geräte, Lupe, Strahlenbegrenzung (Pupillen und Blenden), Beugung am Spalt und

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel?

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel? Schwerdruck, Auftrieb. In allen 5 Gefäßen teht die Flüikeit leich hoch. Verleiche folende Drücke a Boden der Gefäße iteinander: a) p, p, p b) p, p c) p, p 5. Ein U-Boot hat eine Autieöffnun it eine Durcheer

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

PHYSIK Gekoppelte Bewegungen 1

PHYSIK Gekoppelte Bewegungen 1 www.phyikabitur.info PHYSIK Gekoppelte Bewegungen 1 Gekoppelte Bewegungen auf horizontaler Ebene Noch keine Korrektur geleen (3.11.0) Die kopletten Löungen owie die Möglichkeit de Audrucken gibt e auf

Mehr

Tipps aus der Praxis: Lambdasonden prüfen und wechseln

Tipps aus der Praxis: Lambdasonden prüfen und wechseln Unere Kompetenz: Ihr Vorteil Al Erfinder der Lambdaonde und größter Herteller bietet Boch bei Qualität und Programmbreite ein klare Plu für Handel, Werktatt und Autofahrer. Mit 0 hren Erfahrung und über

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Winteremeter 2010/2011 Wolfgang Heene, Patrik Schmittat 8. Aufgabenblatt mit Löungvorchlag 10.01.2011 Hinwei: Der Schnelltet und die Aufgaben ollen in den Übunggruppen bearbeitet

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Geometrie-Dossier Symmetrie in der Ebene

Geometrie-Dossier Symmetrie in der Ebene Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier

Mehr

Mobile Internet-Nutzung 2013 4. Befragungswelle zum Nutzungsverhalten von Mobile-Internet-Usern in Deutschland

Mobile Internet-Nutzung 2013 4. Befragungswelle zum Nutzungsverhalten von Mobile-Internet-Usern in Deutschland Auzug: Preechart Mobile Internet-Nutzung 2013 4. Befragungwelle zum Nutzungverhalten von Mobile-Internet-Uern in Deutchland NORDLIGHT reearch GmbH Elb 21 40721 Hilden Deutchland T+49 2103 25819-0 F+49

Mehr

ENERGIETECHNISCHES PRAKTIKUM I

ENERGIETECHNISCHES PRAKTIKUM I ENERGIETECHNISCHES PRAKTIKUM I Veruch 9: Wechelrichter mit Puldauermodulation 1 EINLEITUNG...2 2 PULSDAUERMODULATION BEI SPANNUNGSSTEUERUNG...5 3 LITERATUR...9 4 VERSUCHSDURCHFÜHRUNG...10 4.1 Zeitunabhängige

Mehr

Sparkassen. Gut für Deutschland. s WEITERLESEN

Sparkassen. Gut für Deutschland. s WEITERLESEN Sparkaen. Gut für Deutchland. WEITERLESEN Leitfaden Mitarbeiterdialog b Vorwort 2 Vorwort Georg Fahrenchon Liebe Mitarbeiterinnen und Mitarbeiter der Sparkaen-Finanzgruppe, e it o weit: Endlich tartet

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Notizen zur Vorlesung Gewöhnliche Differentialgleichungen G Sweers Wintersemester 08/09 ii Inhaltsverzeichnis Einführung Modelle 2 Explizite Lösungen 4 2 Trennbar 5 22 Linear erster Ordnung 6 23 Homogen

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil):

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil): Lösungen zur Mathematikklausur WS 2004/2005 (Versuch 1) 1.1. Hier ist die Rentenformel für gemischte Verzinsung (nachschüssig) zu verwenden: K n = r(12 + 5, 5i p ) qn 1 q 1 = 100(12 + 5, 5 0, 03)1, 0325

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren Nuzung der inhärenen enorichen Eigenchafen von piezoelekrichen Akoren K. Kuhnen; H. Janocha Lehruhl für Prozeßauomaiierung (LPA), Univeriä de Saarlande Im Sadwald, Gebäude 13, 6641 Saarbrücken Tel: 681

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Dynamisches Verhalten von OPVs

Dynamisches Verhalten von OPVs TECHNISCHE UNIVERSITÄT ILMENAU Fakultät ür Elektrotechnik und Inormationtechnik Fachgebiet Elektroniche Schaltungen und Syteme Dynamiche Verhalten von OPV Veruch 6 im Inormationelektronichen Praktikum

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004 Pro. Dr. F. Koch Dr. H. E. Porteanu koch@ph.tum.de porteanu@ph.tum.de WS 004-005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 1-19.11.004 OPTIK geometriche und phyikaliche Optik C. Polariation Al tranverale

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe

Mehr