In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:

Größe: px
Ab Seite anzeigen:

Download "In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:"

Transkript

1 Hans Walser, [06045] Pythagoras-Schmetterling Das Phänomen Wir beginnen mit einem beliebigen rechtwinkligen Dreieck und zeichnen die übliche Pythagoras-Figur. Dann fügen wir zwei weitere Quadrate an (rot in Abbildung ). Abb. : Noch zwei Quadrate In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates: blau = schwarz () Beim Spielen mit einer dynamischen Geometrie-Software stellen wir fest, dass die Flächensumme der beiden roten Quadrate das Fünffache der Fläche des schwarzen Quadrates ist, und das unabhängig von der Form des rechtwinkligen Dreieckes: rot = fünf mal schwarz () Da ist kein Halten mehr. In der Abbildung sind zwei weitere Schritte eingezeichnet.

2 Hans Walser: Pythagoras-Schmetterling / 6 Abb. : Pythagoras-Schmetterling Wir stellen fest: hellblau = zehn mal schwarz (3) und: gold = 9 mal schwarz (4) Die Bezeichnung Schmetterling bezieht sich auf die Struktur der Figur, welche links und rechts die gleiche ist. Ein realer Schmetterling ist auch größenmäßig links und rechts einigermaßen gleich (Abb. 3, vgl. (Walser 04)). Abb. 3: Distelfalter

3 Hans Walser: Pythagoras-Schmetterling 3 / 6 Als Mathematiker frägt man nach dem Beweis. Alormaler Mensch möchte man wissen, wie es weiter geht. Beides lässt sich mithilfe des Max-und-Moritz-Theorems (Busch 865) angehen. Das Max-und-Moritz-Theorem Wir beginnen mit zwei Quadraten (blau in Abb. 4), die an einer Ecke gelenkig verbunden sind. Dann fügen wir zwei weitere Quadrate an (rot in Abb. 4). In dieser Situation gilt das Max-und-Moritz-Theorem: rot = zwei mal blau (5) Abb. 4: rot = zwei mal blau Für den Beweis arbeiten wir mit den Bezeichnungen der Abbildung 5.

4 Hans Walser: Pythagoras-Schmetterling 4 / 6 c a γ b δ b a d Abb. 5: Bezeichnungen Die Winkel γ und δ ergänzen sich auf 80. Daher ist: cos( δ ) = cos( γ ) (6) Aus dem Kosinus-Satz ergibt sich: c = a + b abcos( γ ) d = a + b abcos( δ ) (7) Wegen (6) ergibt sich durch Addition der beiden Zeilen von (7): c + d = ( a + b ) (8) Damit ist das Max-und-Moritz-Theorem bewiesen. Nun zurück zum Pythagoras-Schmetterling.

5 Hans Walser: Pythagoras-Schmetterling 5 / 6 3 Beweis der Phänomene Wir arbeiten mit den Bezeichnungen der Abbildung 6. b 3 b 4 b a a 3 b c a a4 Abb. 6: Beweisfigur Zunächst ist: a + b = c (9) In der Abbildung 6 sind das schwarze und dass kleine blaue Quadrat in der Position der beiden blauen Quadrate der Abbildung 5, das große blaue und das kleine rote Quadrat in der Position der beiden roten Quadrate. Nach dem Max-und-Moritz-Theorem gilt: a + b = c + a (0) Und analog: b + a = c + b () Addition der beiden Zeilen (0) und () ergibt wegen (9): a + ( b ) + a + ( b )!# " $# = 4c + a + ( b )!# " $# a + b = 5c c c ()

6 Hans Walser: Pythagoras-Schmetterling 6 / 6 Das ist die Aussage (). Weiter ist rechts: a 3 + c = a + a (3) Analog links: b 3 + c = b + b (4) Addition der Zeilen (3) und (4) ergibt wegen (9) und (): a 3 + ( b3 ) + c = a + ( b )!# " $# + a ( + b )!# " $# a 3 + b 3 = 0c 5c c (5) Das ist die Aussage (3). Weiter gilt rechts: a 4 + a = a3 + a (6) Analog gilt auf der linken Seite: b 4 + b = b3 + b (7) Addition der Zeilen (3) und (4) ergibt wegen (9), () und (5): a 4 + ( b4 ) + a + ( b )!# " $# = a 3 ( + b 3 )!# " $# + a ( + b )!# " $# a 4 + b 4 = 9c c 0c 5c (8) Das ist die Aussage (4).

7 Hans Walser: Pythagoras-Schmetterling 7 / 6 4 Wie geht es weiter? Der nächste Schritt sieht so aus: a 5 + a = a4 + a3 und b 5 + b = b4 + b3 (9) Addition: a 5 + ( b5 ) + a + ( b )!# " $# = a 4 ( + b 4 )!# " $# + a 3 ( + b 3 )!# " $# a 5 + b 5 = 73c 5c 9c 0c (0) Und aus Spaß an der Freude noch ein Schritt: a 6 + a3 = a5 + a4 und b 6 + b3 = b5 + b4 () Addition: a 6 + ( b6 ) + a 3 + ( b3 )!# " $# = a 5 ( + b 5 )!# " $# + a 4 ( + b 4 )!# " $# a 6 + b 6 = 94c 0c 73c 9c () 5 Die Schmetterlings-Folge Die Flächensummen sind Vielfache der Fläche des schwarzen Quadrates. Wir schreiben: a n + bn = sn c (3) Gesucht ist die Schmetterlings-Folge. Wir wissen bereits: n Tab. : Schmetterlings-Folge

8 Hans Walser: Pythagoras-Schmetterling 8 / 6 Allgemein ist (für n 4, für kleinere n müssen die Bezeichnungen geändert werden): a n+ + a n = a n + an und b n+ + b n = b n + bn (4) Addition unter Verwendung der Schreibweise (3): a ( n+ + b n+ )! #" ## $ + a n + b n!## "## $ = a n + b n!# " $# + a n + b n! #" ## $ + c ( ) c ( ) c ( ) c (5) Daraus ergibt sich die Rekursion: + = + (6) Mit den Startwerten aus der Tabelle ergeben sich die Werte der Tabelle (vgl. []). Für die Quotientenfolge zweier aufeinanderfolgender Folgenglieder zeichnet sich ein bekannter Grenzwert ab (Quadrat des Goldenen Schnittes, vgl. (Walser 03)). n + n Tab. : Schmetterlings-Folge

9 Hans Walser: Pythagoras-Schmetterling 9 / 6 Bemerkung: Die Rekursionsformel (6) ist symmetrisch. Wenn wir rückwärts rechnen, erhalten wir: = + + (7) Die Tabelle 3 zeigt die Werte für negative n. Die Schmetterlings-Folge ist symmetrisch. Der Symmetriepunkt ist bei n = 0. Man kann sich überlegen, was dieser Symmetriepunkt geometrisch bedeutet. n n Tab. 3: Negative Indizes 6 Grenzfall. Fibonacci Wir lassen nun die eine Kathete des Ausgangsdreieckes gegen null gehen: a 0. Aus der Abbildung 6 sehen wir, dass dann die Figur die Grenzlage der Abbildung 7 einnimmt.

10 Hans Walser: Pythagoras-Schmetterling 0 / 6 b 4 b 3 b b a 3 a c 4 a Abb. 7: Grenzlage Wir erkennen in dieser Grenzlage zweimal die Fibonacci-Packung der Quadrate mit den Seitenlängen der Fibonacci-Folge. Die Abbildung 8 zeigt dasselbe etwas ausführlicher. Abb. 8: Fibonacci-Packungen Zur Erinnerung die Fibonacci-Folge (Walser 0, S. 9, Walser 03, S. 05): n F n

11 Hans Walser: Pythagoras-Schmetterling / 6 Für die Seitenlängen der Quadrate gilt in unserem Grenzfall: c = F c a = F 0 c a = F c a 3 = F c a 4 = F 3 c a 5 = F 4 c a 6 = F 5 c b = F c b = F 3 c b 3 = F 4 c b 4 = F 5 c b 5 = F 6 c b 6 = F 7 c Somit ist in unserem Grenzfall: a n + bn = ( Fn + F n+ )c (8) Wegen der Invarianz der Flächensumme der Quadrate mit gleichem Index gilt das aber nicht nur im Grenzfall, sondern allgemein. Vergleich mit (3) ergibt: = F n + F n+ (9) Die Abbildung 9 ist eine schematische Darstellung von (9). n F n F n Abb. 9: Schematische Darstellung

12 Hans Walser: Pythagoras-Schmetterling / 6 7 Explizite Formel Für die Fibonacci-Zahlen gibt es die explizite Formel von Binet (Walser 0, S. 3., Walser 03, S. 06). Diese Formel enthält den Goldenen Schnitt: Φ = (30) Damit lautet die Formel von Binet: ( ) n F n = 5 Φn Φ (3) Wir setzen (3) in (9) und erhalten: ( ) n = 5 3 Φn + 4 ( 3 )n + Φ (3) Die Folge ist eine Linearkombination dreier geometrischer Folgen. Wegen Φ > ist die Folge im Wesentlichen exponentiell wachsend. Für die Quotientenfolge gilt: s lim n+ = Φ = Φ +.68 (33) n 8 Heuristisches Vorgehen Die explizite Formel können wir direkt aus der Rekursion (6) ohne den Umweg über die Fibonacci-Zahlen gewinnen. Das geht wie folgt. Wir nehmen einmal heuristisch an, die Quotientenfolge habe einen Grenzwert σ : s σ = lim n+ (34) n Aus der Rekursion (6) erhalten wir: + = + (35) Daraus ergibt sich durch Grenzübergang n :

13 Hans Walser: Pythagoras-Schmetterling 3 / 6 σ = + σ σ oder σ 3 = σ + σ (36) Diese kubische Gleichung hat offensichtlich eine erste Lösung σ =. Wir dividieren durch den entsprechenden Linearfaktor: ( σ 3 σ σ +) :( σ +) = σ 3σ + (37) Die nun noch quadratische Gleichung σ 3σ + = 0 (38) hat die beiden Lösungen: σ = 3+ 5 = Φ und σ 3 = 3 5 = ( Φ ) (39) Der Goldene Schnitt tritt halt wieder auf. Nun machen wir für die explizite Formel den Ansatz: n = ασ + βσ n + γσ n 3 = α ( ) n + βφ n + γ ( Φ ) n (40) Einsetzen der Startwerte s, s, s 3 aus der Tabelle liefert ein Gleichungssystem für α, β, γ. = α ( ) + βφ + γ ( Φ ) 5 = α ( ) + βφ 4 + γ ( Φ ) 4 0 = α ( ) 3 + βφ 6 + γ ( Φ ) 6 (4) Dieses Gleichungssystem (4) hat die Lösung: α = 4 5, β = 3 5, γ = 3 5 (4)

14 Hans Walser: Pythagoras-Schmetterling 4 / 6 Einsetzen in den Ansatz (40) ergibt die explizite Formel (3). Diese musoch induktiv verifiziert werden: + ( + ) = 0 (43) 9 Grafen Die Abbildung 0 zeigt die Punkte ( n, ), n 5,...,5 { }. Abb. 0: Punktgraf Die Punkte sind linear verbunden. Wir sehen die Symmetrie und ahnen das exponentielle Wachstum. Der Polygonzug der Abbildung 0 zeigt allerdingicht eine Approximation des Funktionsgrafen von: ( ) = s t = 3 5 Φt f t ( )t + Φ ( ) t ; t! (44)

15 Hans Walser: Pythagoras-Schmetterling 5 / 6 Wegen der Basis ist zum Beispiel: ( ) in der Mitte hat die Funktion f ( t) komplexe Funktionswerte. So f ( ) = i i (45) 5 Die Abbildung zeigt die Kurve mit der Parameterdarstellung: ( Re( f ( t) ),Im( f ( t) )), t,+ [ ] (46) Abb. : In der Gaußschen Zahlenebene Die Abbildung zeigt den Ausschnitt für t [ 5,+5] in überhöhter Darstellung.

16 Hans Walser: Pythagoras-Schmetterling 6 / 6 Abb. : Größerer Ausschnitt Literatur Busch, Wilhelm (865): Max und Moritz eine Bubengeschichte in sieben Streichen. München: Verlag von Braun und Schneider. Walser, Hans (0): Fibonacci. Zahlen und Figuren. Leipzig, EAGLE, Edition am Gutenbergplatz. ISBN Walser, Hans (03): Der Goldene Schnitt. 6., bearbeitete und erweiterte Auflage. Mit einem Beitrag von Hans Wußing über populärwissenschaftliche Mathematikliteratur aus Leipzig. Edition am Gutenbergplatz, Leipzig. ISBN Walser, Hans (04): Symmetrie in Raum und Zeit. Leipzig: EAGLE, Edition am Gutenbergplatz. ISBN Weblinks []

n x n y n Tab.1: Zwei Beispiele

n x n y n Tab.1: Zwei Beispiele Hans Walser, [0404] Konvergente Fibonacci-Folgen Worum geht es? Die klassische Fibonacci-Folge,,,, 5, 8,,,... ist divergent. Wir untersuchen Beispiele von konvergenten Folgen mit der Rekursion: a n = pa

Mehr

Abb. 1: Konstruktionsfolge

Abb. 1: Konstruktionsfolge Hans Walser, [20180501] DIN-Format, Goldener Schnitt und gleichseitiges Dreieck 1 Worum geht es? Die klassische Konstruktion eines Rechtecks im DIN-Format (Walser 2013b) wird iteriert und führt zum gleichseitigen

Mehr

, T 4 = = 1, T 2 = , T 3 T 1 (1) 3 Determinanten Die Tabelle 1 zeigt die ersten Determinanten der Matrizen T n

, T 4 = = 1, T 2 = , T 3 T 1 (1) 3 Determinanten Die Tabelle 1 zeigt die ersten Determinanten der Matrizen T n Hans Walser, [20181104] Hinkende Parität 1 Worum geht es? Es wird ein Beispiel mit hinkender Symmetrie besprochen. Auflistung von Daten. Der Hintergrund ist eine Verallgemeinerung der Fibonacci-Folge und

Mehr

Abb. 2: Grafische Lösung

Abb. 2: Grafische Lösung Hans Walser, [20170320] Prozentuale Veränderungen Anregung: A. B., F. 1 Worum geht es? Ausgehend von einer Prozent-Aufgabe werden Probleme mit prozentualen Veränderungen besprochen. 2 Die Aufgabe Die Aufgabe

Mehr

2.1 Radienverhältnis 2 1 In diesem Fall berühren sich die grünen Kreise untereinander (Abb. 2). Der rote Radius ist 2 1, der grüne Radius 1.

2.1 Radienverhältnis 2 1 In diesem Fall berühren sich die grünen Kreise untereinander (Abb. 2). Der rote Radius ist 2 1, der grüne Radius 1. Hans Walser, [20170526] Kreispackungen Anregung: Heinz Klaus Strick, Leverkusen. Siehe auch (Strick 2017, S. 269f). 1 Ausgangslage Wir arbeiten mit zwei Kreisscharen (Abb. 1). Abb. 1: Zwei Kreisscharen

Mehr

s 1 Wir wählen den Punkt A 0 auf s 0 und ergänzen zum Parallelogramm A 0 B 2 A 1 S gemäß Abbildung 2. Abb. 1: Schwerlinien vorgegeben

s 1 Wir wählen den Punkt A 0 auf s 0 und ergänzen zum Parallelogramm A 0 B 2 A 1 S gemäß Abbildung 2. Abb. 1: Schwerlinien vorgegeben Hans Walser, [20150129] Kopunktale Geraden 1 Worum geht es? In der Schule lernt man, dass sich die drei Schwerlinien eines Dreieckes in einem Punkt schneiden, dem Schwerpunkt. Wir fragen nun umgekehrt:

Mehr

Hans Walser, [ a], [ ] Fibonacci und Pascal

Hans Walser, [ a], [ ] Fibonacci und Pascal Hans Walser, [0022a], [0303] Fibonacci und Pascal Worum geht es? Bekanntlich führen die Schrägzeilensummen im Pascal-Dreieck der Binomialkoeffizienten zu den Fibonacci-Zahlen. Es wird untersucht, was bei

Mehr

Hans Walser. Die allgemeine Fibonacci-Folge

Hans Walser. Die allgemeine Fibonacci-Folge Hans Walser Die allgemeine Fibonacci-Folge Hans Walser: Die allgemeine Fibonacci-Folge ii Inhalt Die Rekursion... Heuristischer Hintergrund... 3 Formel von Binet... 4 Übersicht... 5 Sonderfälle...3 6 Beispiele...3

Mehr

Hans Walser, [ a] Pentagramma mirificum Anregung: [Heinrich 2010]

Hans Walser, [ a] Pentagramma mirificum Anregung: [Heinrich 2010] Hans Walser, [011019a] Pentagramma mirificum Anregung: [Heinrich 010] 1 Worum es geht Ein Pentagramma mirificum ist ein sphärisches Pentagramm mit rechten Winkeln an den Spitzen. Die Abbildung zeigt ein

Mehr

( a + b) 1 = 1a +1b. ( a + b) 2 = 1a 2 + 2ab +1b 2 ( a + b) 3 = 1a 3 + 3a 2 b + 3ab 2 +1b 3 ( a + b) 4 = 1a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 +1b 4 (1)

( a + b) 1 = 1a +1b. ( a + b) 2 = 1a 2 + 2ab +1b 2 ( a + b) 3 = 1a 3 + 3a 2 b + 3ab 2 +1b 3 ( a + b) 4 = 1a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 +1b 4 (1) Hans Walser, [218927] Binomialkoeffizienten 1 Worum geht es? Die Binomialkoeffizienten werden ins Negative fortgesetzt. 2 Was man in der Schule lernt Wir expandieren die Potenzen des Binoms (a + b): (

Mehr

a) b) Abb. 1: Rechtwinklig gleichschenkliges Dreieck und Wurzel-2-Dreieck

a) b) Abb. 1: Rechtwinklig gleichschenkliges Dreieck und Wurzel-2-Dreieck Hans Walser, [09030] Wurzel--Dreieck Anregung: Horst Steibl, Braunschweig Worum geht es? Das rechtwinklig gleichschenklige Dreieck (Abb. a) hat das Seitenverhältnis ::. Wir vertauschen nun die beiden Längen

Mehr

Die Trapeze sind offensichtlich gleichschenklig und haben die Basiswinkel 60. Sind sie auch ähnlich?

Die Trapeze sind offensichtlich gleichschenklig und haben die Basiswinkel 60. Sind sie auch ähnlich? Hans Walser, [20090625c] Fibonacci-Trapeze Anregung: [Deshpande 2009] 1 Hexagon mit angesetzten Quadraten 1.1 Basisfigur Wir basieren unsere Überlegungen auf folgender Figur. Einem zentralen Hexagon werden

Mehr

b a B A c Abb. 1: Trisektrix

b a B A c Abb. 1: Trisektrix Hans Walser, [2030620] Gleichschenklige Trisektrix-Dreiecke usarbeitung einer Idee von H. M.-S., V. Trisektrix von MacLaurin Die beiden Dreieckspunkte und seien fest vorgegeben. Der dritte Dreieckspunkt

Mehr

4 Die Fibonacci-Zahlen

4 Die Fibonacci-Zahlen 4 Die Fibonacci-Zahlen 4.1 Fibonacci-Zahlen und goldener Schnitt Die Fibonacci-Zahlen F n sind definiert durch die Anfangsvorgaben F 0 = 0, F 1 = 1, sowie durch die Rekursion F n+1 = F n + F n 1 für alle

Mehr

Abb. 1: Kiepert-Hyperbel

Abb. 1: Kiepert-Hyperbel Hans Walser, [20150124] Kiepert-Hyperbel 1 Die Kiepert-Hyperbel Der Kegelschnitt durch die drei Eckpunkte eines Dreieckes sowie dessen Schwerpunkt und Höhenschnittpunt ist immer eine gleichseitige Hyperbel

Mehr

a) b) Abb. 1: Abgeschrägtes Dodekaeder

a) b) Abb. 1: Abgeschrägtes Dodekaeder Han Waler, [018066] Abgechrägte Dodekaeder Idee und Anregung: Frank Heinrich, Braunchweig 1 Worum geht e? Da abgechrägte Dodekaeder (Abb. 1) it ein archimedicher Körer mit 1 regelmäßigen Fünfecken und

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Eine Visualisierung des Kosinussatzes

Eine Visualisierung des Kosinussatzes Hans Walser blau + blau + grün = rot Eine Visualisierung des Kosinussatzes SLA-Herbsttagung 2008 St. Gallen Hans Walser: Eine Visualisierung des Kosinus-Satzes 2/15 Inhalt 1 Worum es geht...3 2 Bildsprache...3

Mehr

a) b) Abb. 2: Verkleinertes Fünfeck

a) b) Abb. 2: Verkleinertes Fünfeck Hans Walser, [20170828], [20181120] Halbregulärer Pflasterstein Anregungen: Heinz Klaus Strick, Leverkusen; Boris Odehnal, Wien 1 Worum geht es? Mit dem regelmäßigen Fünfeck lässt sich die Ebene nicht

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck Hans Walser, [20040416a] Pythagoreische Rechtecke 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Wir starten mit einem beliebigen rechtwinkligen Dreieck in der üblichen Beschriftung. Startdreieck

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

Winkelteilung 1 Worum geht es? 2 Mit Zirkel und Lineal 3 Winkeldrittelung 3.1 Konstruktion einer Kurve

Winkelteilung 1 Worum geht es? 2 Mit Zirkel und Lineal 3 Winkeldrittelung 3.1 Konstruktion einer Kurve Hans Walser, [208084] Winkelteilung Anregung: Jo Niemeyer, Berlin Worum geht es? Es wird eine Methode besprochen, einen Winkel in eine ungerade Anzahl gleicher Teile zu unterteilen. 2 Mit Zirkel und Lineal

Mehr

Modul 206 Regelmäßige Vielecke!

Modul 206 Regelmäßige Vielecke! Modul 206 Regelmäßige Vielecke! Regelmäßige Vielecke In- und Umkreise Gleichseitiges Dreieck h = 3 2 s s h r r s r = 2 3 h = 3 3 s ρ = 1 3 h = 3 6 s s A = 3 4 s2 Gleichseitiges Dreieck Gleichseitiges Dreieck

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Beweise zum Ableiten weiterer Funktionen

Beweise zum Ableiten weiterer Funktionen Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die

Mehr

Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06

Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06 25. August 2006 Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P9: Man betrachte n Münzwürfe, wobei man mit Null Wappen und mit Eins Zahl codiere. Man erhält

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Spender A B AB 0 Empfänger A B AB 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 verträglich 0 unverträglich Modul 210 Koordinatensysteme. Matrizen Lernumgebung Hans

Mehr

Fibonacci-Zahlen und Goldener Schnitt

Fibonacci-Zahlen und Goldener Schnitt Fibonacci-Zahlen und Goldener Schnitt Arno Fehringer Gymnasiallehrer für Mathematik und Physik März 04 Treppensteigen Auf wie viele Arten kann man eine Treppe mit n Stufen begehen wenn man oder Stufen

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6 Musterlösung Lineare Algebra und Geometrie Herbstsemester 015, Aufgabenblatt 6 Aufgabenblatt 6 40 Punkte Aufgabe 1 (Bandornamente) Ordne die sechs Bandornamente rechts den sieben Klassen zu. Zu jeder Klasse

Mehr

Fibonacci, Kreisfunktionen und hyperbolische Funktionen Spezielle verallgemeinerte Fibonacci-Rekursionen führen auf Kreis- und Hyberbelfunktionen.

Fibonacci, Kreisfunktionen und hyperbolische Funktionen Spezielle verallgemeinerte Fibonacci-Rekursionen führen auf Kreis- und Hyberbelfunktionen. Hans Walser, [0090411a] Fibonacci, Kreisfunktionen und hyperbolische Funktionen Spezielle verallgemeinerte Fibonacci-Rekursionen führen auf Kreis- und Hyberbelfunktionen. 1 Fibonacci und Kreisfunktionen

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

Prüfungsklausur Mathematik I für Bauingenieure am

Prüfungsklausur Mathematik I für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Bauingenieure am 8.02.206 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 6 7 8 9 0 gesamt erreichbare P. 4 7

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!

Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden! Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 2006 Prof. Dr. H.-R.

FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 2006 Prof. Dr. H.-R. FH Gießen-Friedberg, FB 06 (MNI) Lösungen zu Übungsblatt 8 Einführung in die höhere Mathematik 6. Dezember 006 Prof. Dr. H.-R. Metz Aufgabe 1 Skizzieren Sie die Funktionen e x, ln(x) = log e (x) und e

Mehr

Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM September 2016 Saarbrücken

Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM September 2016 Saarbrücken Hans Walser Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM 9. - 11. September 2016 Saarbrücken Zusammenfassung: Analog zum Reuleaux-Dreieck, das sich in verschiedenen Positionen ins immer gleiche Quadrat

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr

1 Goldener Schnitt. und a = m + M. 1, und wird im Allgemeinen mit τ (griechisch: tau) bezeichnet. Das Verhältnis M m hat den Wert 1+ 5

1 Goldener Schnitt. und a = m + M. 1, und wird im Allgemeinen mit τ (griechisch: tau) bezeichnet. Das Verhältnis M m hat den Wert 1+ 5 1 Goldener Schnitt Definition und Satz 1.1 (Goldener Schnitt) Sei AB die Strecke zwischen den Punkten A und B. Ein Punkt S von AB teilt AB im Goldenen Schnitt, falls sich die größere Teilstrecke M (Major)

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 1 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie. Frage Welche der Aussagen sind richtig? Eine divergente Folge ist nicht beschränkt. Falsch. Z.B. ist {( ) n } n N beschränkt und divergent.

Mehr

a) b) Abb. 1: Schiefer Drachen

a) b) Abb. 1: Schiefer Drachen Hans Walser, [20161123] Viereck-Viertelung Anregung: Heinz Klaus Strick, Leverkusen 1 Problemstellung Welche Vierecke lassen sich von einem inneren Punkt aus mit geraden Verbindungen zu den vier Ecken

Mehr

Prüfungsklausur Mathematik I für Bauingenieure am

Prüfungsklausur Mathematik I für Bauingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Bauingenieure am 9.02.204 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 6 7 8 9 0 gesamt erreichbare P. 8 0 3

Mehr

Nun fügen wir auf beiden Seiten des gleichseitigen Dreieckes je ein gleichschenkliges Dreieck an (Abb. 2).

Nun fügen wir auf beiden Seiten des gleichseitigen Dreieckes je ein gleichschenkliges Dreieck an (Abb. 2). Hans Walser, [20160521] Gigampfi 0 Worum geht es? Es werden zwei Gigampfi-Probleme mit invarianten Winkeln vorgestellt. 1 Beispiel 1 1.1 Das Problem An der Spitze eines gleichseitigen Dreiecks bringen

Mehr

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr),

Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), Karolinen Gymnasium 9 A P4 Daniela Reinecke eigenverantwortlich 4. Std. (10.40 Uhr), 12.01.11 Thema: Der Satz des Pythagoras (Einführung) Lernziele Groblernziel Die Schülerinnen und Schüler entdecken anhand

Mehr

Mathematik 1 Übungsserie 3+4 ( )

Mathematik 1 Übungsserie 3+4 ( ) Technische Universität Ilmenau WS 2017/2018 Institut für Mathematik Thomas Böhme BT, EIT, II, MT, WSW Aufgabe 1 : Mathematik 1 Übungsserie 3+4 (23.10.2017-04.11.2017) Sei M eine Menge. Für eine Teilmenge

Mehr

Farbenmauer. Zuunterst haben wir einfarbige Steine, gegen oben werden sie immer mehr zu Trikoloren. Stimmt das mit der Trikolore?

Farbenmauer. Zuunterst haben wir einfarbige Steine, gegen oben werden sie immer mehr zu Trikoloren. Stimmt das mit der Trikolore? Hans Walser, [0007] Dritteln durch Halbieren Anregungen: B. J., B. und J. W., R. Es werden verschiedene Beispiele vorgestellt, bei denen wir durch fortgesetztes Halbieren zu Dritteln kommen. Farbenmauer

Mehr

Neun Punkte auf dem Einheitskreis ( ( )). In der

Neun Punkte auf dem Einheitskreis ( ( )). In der Hans Walser, [20100228a] Radlinien als Enveloppen Anregung: J. W., B.-M. 1 Sehnen im Kreisraster Wir wählen eine Modulzahl m! und zeichnen auf dem Einheitskreis m Punkte P n in regelmäßigen Abständen.

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 401 Kreise Lernumgebung Hans Walser: Modul 401, Kreise. Lernumgebung ii Inhalt 1 Im regelmäßigen Zwölfeck... 1 Siebeneck... 3 Faltbild... 3 4 Peripheriewinkel...

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite / 50 Kapitel 5 Mathematischer Vorkurs TU Dortmund Seite 54 / 50 Scheitel S Schenkel α Winkelbereich Winkel werden in Grad

Mehr

Einige Gedanken zur Fibonacci Folge

Einige Gedanken zur Fibonacci Folge Einige Gedanken zur Fibonacci Folge Im Folgenden gehe ich auf einige Aspekte von Aufgabe 4 auf Übungsblatt, d.h. auf Aufgabe 4 auf Seiten und 3 des Buches Hahn-Dzewas: Mathematik, ein. Die Aufgabe hat

Mehr

1 Worum es geht Jacob Bernoulli stellte die Frage um den Grenzwert von [Downey / Ong / Sellers]: +! = 1

1 Worum es geht Jacob Bernoulli stellte die Frage um den Grenzwert von [Downey / Ong / Sellers]: +! = 1 Hans Walser, [0087a] Das Basler Problem Anregung: P. B., L. und M. G., S. G. Worum es geht Jacob Bernoulli stellte die Frage um den Grenzwert von [Downey / Ong / Sellers]: S = + + + +! = 4 k Bernoulli

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14

Lineare Algebra. Inhalt. Hauptbestandteil der Vorlesung Mathematik 2 Literatur: Teschl/Teschl, Band 1, Kap. 9-14 Lineare Algebra Hauptbestandteil der Vorlesung Mathematik Literatur: Teschl/Teschl, Band, Kap. 9-4 Inhalt Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare

Mehr

Parameter: Die beiden Diagonalenlängen Modell: Heidelberger Kreuz 2.2 Seiteneigenschaft Viereck mit vier gleich langen Seiten (Abb. 2).

Parameter: Die beiden Diagonalenlängen Modell: Heidelberger Kreuz 2.2 Seiteneigenschaft Viereck mit vier gleich langen Seiten (Abb. 2). Hans Walser, [20170723a] Rhomben im Raster 1 Worum geht es Wir zeichnen Rhomben im Quadratraster und im Dreiecksraster. Dabei treffen wir auch auf einen grafischen Zugang zu den Formeln der pythagoreischen

Mehr

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3

2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3 2 Komplexe Zahlen 2.1 Grundlagen Aufgabe 2.1.1 Sei z 1 = 2 + und =. Stellen Sie a) z 1 +, b) z 1, c) z 1. zeichnerisch dar und berechnen Sie die Werte. Aufgabe 2.1.2 Berechnen Sie die folgenden Werte,

Mehr

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 10 Stand 2008 Lehrbuch: Mathematik heute 10

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 10 Stand 2008 Lehrbuch: Mathematik heute 10 Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 0 Stand 008 Lehrbuch: Mathematik heute 0 Inhalte Seiten Kompetenzen gemäß Kerncurriculum Eigene Bemerkungen Quadratische Gleichungen Quadratischen

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

Was haben die folgenden Dinge gemeinsam?

Was haben die folgenden Dinge gemeinsam? Was haben die folgenden Dinge gemeinsam? Parthenon zu Athen Mona Lisa von Leonardo da Vinci Nautilus Berliner Fernsehturm CN Tower Obelix Brüder Grimm Ananas Rose Biene Apple Das goldene Zeitalter Der

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul Der Gaußsche Algorithmus Lernumgebung Hans Walser: Modul, Der Gaußsche Algorithmus. Lernumgebung ii Inhalt Algorithmen im Alltag... Gaußscher Algorithmus...

Mehr

und a 2 = 1 1 deren Spitzen auf einer logarithmischen Spirale liegen: Logarithmische Spirale a 1 a 2 a 1

und a 2 = 1 1 deren Spitzen auf einer logarithmischen Spirale liegen: Logarithmische Spirale a 1 a 2 a 1 Hans Walser, [0090b] Schnecke von Fibonacci Worum es geht Die Fibonacci-Rekursion wird verallgemeinert und auf Vektoren in der Ebene angewandt. Es entstehen Kreise und logarithmische Spiralen. Da die Fibonacci-Rekursion

Mehr

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2.

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2. Aufgabe (8 Punkte (a der Realteil von z +i 4 i zu bestimmen. z + i ( + i(4 + i + i 4 i + i.,5 Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält Re (z Im (z.,5 (b (b

Mehr

Auswertung Probeklausur

Auswertung Probeklausur 0. Intensivkurse ab Januar 07! Auswertung Probeklausur Fakultät Elektrotechnik und Informationstechnik Christoph Laabs christoph.laabs@tu-dresden.de www.k-quadrat.biz/pk-et/ 0. Profil Intensivkurse ab

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 02 Funktionen, Folgen, Grenzwerte Lernumgebung Teil 2 Hans Walser: Modul 02, Funktionen, Folgen, Grenzwerte. Lernumgebung, Teil 2 ii Modul 02 für die

Mehr

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10

1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige

Mehr

4.16 Buch II der Elemente

4.16 Buch II der Elemente 4.16 Buch II der Elemente Der Großteil des II. Buchs der Elemente beschreibt Relationen zwischen Flächeninhalten, die wir lieber algebraisch formulieren, d.h. die sogenannte geometrische Algebra. Es beginnt

Mehr

1 Ansetzen oder abschneiden Einem DIN-Rechteck setzen wir an der Schmalseite ein Quadrat an oder schneiden ein Quadrat ab. Ansetzen oder abschneiden

1 Ansetzen oder abschneiden Einem DIN-Rechteck setzen wir an der Schmalseite ein Quadrat an oder schneiden ein Quadrat ab. Ansetzen oder abschneiden Hans Walser, [010706] Das FIN-Rechteck 1 Ansetzen oder abschneiden Einem DIN-Rechteck setzen wir an der Schmalseite ein Quadrat an oder schneiden ein Quadrat ab. Ansetzen oder abschneiden ( ) :1, im (

Mehr

Klausur zum Fach Mathematik 1 Teil 1

Klausur zum Fach Mathematik 1 Teil 1 (Name) (Vorname) (Matrikelnummer) Fachbereich Elektrotechnik und Informationstechnik Prof. Georg Hoever 25.09.208 Klausur zum Fach Mathematik Teil Bearbeitungszeit: 90 Minuten Hilfsmittel: ein (beidseitig)

Mehr

2. Natürliche Zahlen und vollständige Induktion. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 2. N und Induktion / 1

2. Natürliche Zahlen und vollständige Induktion. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 2. N und Induktion / 1 2. Natürliche Zahlen und vollständige Induktion Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 2. N und Induktion / 1 Natürliche Zahlen Definition Mit N bezeichnen wir die Menge der natürlichen

Mehr

Abb. 1: a = 3, b =1. Abb.2: a = 4, b = 2

Abb. 1: a = 3, b =1. Abb.2: a = 4, b = 2 Hans Walser, [20190120] Raster-Rechtecke Anregung: B. W., K. 1 Worum geht es Im Quadratraster werden ein rotes und ein blaues a b-raster-rechteck so ausgelegt dass sie mindestens ein Rasterquadrat gemeinsam

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

1. Schularbeit - Gruppe A M 0 1(1) 6C A

1. Schularbeit - Gruppe A M 0 1(1) 6C A . Schularbeit - Gruppe A M 0 () 6C 3 0 97 A. Ergänze folgende Tabelle: Potenz Bruch / Wurzel numerischer Wert 3-5 n -5 8 0,00 3 5 4 x 3 8 7. Berechne: a) ( x y) ( x + y) 0 = b) 9x 6ax : = 5 4a 3 3. Rechne

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am. September 5 (mit Lösungen) Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 5 7 Summe Note Punkte Die Klausur

Mehr

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Prof. Dr. Thomas Risse www.weblearn.hs-bremen.de/risse/mai www.weblearn.hs-bremen.de/risse/mai/docs Fakultät Elektrotechnik & Informatik

Mehr

Der Satz von Pythagoras

Der Satz von Pythagoras Der Satz von Pythagoras Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 Einleitung

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

( Mathematik verstehen 6, Kapitel 7,S.116 ff) Eine Folge ( ) kann man auch als eine f: auffassen, die jeder von 0

( Mathematik verstehen 6, Kapitel 7,S.116 ff) Eine Folge ( ) kann man auch als eine f: auffassen, die jeder von 0 Factsheet 1 Folgen und Reihen Folgen ( Mathematik verstehen 6, Kapitel 7,S.116 ff) Wichtige Begriffe und Defintionen: (Zahlen)Folge.. (a n *) mit (a 1, a 2,.), oder ( a o, a 1, a 2, ), a n n-tes Folgenglied

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Abbildung 14: Winkel im Bogenmaß

Abbildung 14: Winkel im Bogenmaß Mathematik für Naturwissenschaftler I. (7) Trigonometrische Funktionen (in R): Trigonometrische Funktionen wie sin x und cos x stehen üblicherweise in Zusammenhang mit Winkeln. Während im Alltag Winkel

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

a) b) Abb. 1: Die klassische Aufgabe a) b) Abb. 2: Umkehrung

a) b) Abb. 1: Die klassische Aufgabe a) b) Abb. 2: Umkehrung Hans Walser, [20180528] Sehwinkel bei Kegelschnitten Anregung: N. Th.-Sch., V. 1 Wie das Problem entstand Eine klassische Aufgabe im Abiturtraining geht so: Gegeben sind eine Punkt und eine Parabel (Abb.

Mehr

Erste Schularbeit Mathematik Klasse 7A G am

Erste Schularbeit Mathematik Klasse 7A G am Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 Korrekturversion Aufgabe 1. (2P) Zahlenmengen. Es folgen Aussage über Zahlenmengen. Kreuzen Sie die beiden zutreffenden Aussagen an! 2 10 3 ist eine

Mehr

Hans Walser, [ a] Grafische Lösung einer quadratischen Gleichung Anregung: D. M. und M. P.

Hans Walser, [ a] Grafische Lösung einer quadratischen Gleichung Anregung: D. M. und M. P. Hans Walser, [007067a] Grafische Lösung einer quadratischen Gleichung Anregung: D. M. und M. P. Problemstellung Wir lösen die Gleichung: x px + q = 0 Die Gleichung ist in einer in den Schulen unüblichen

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

MATHEMATIK I für Bauingenieure (Fernstudium)

MATHEMATIK I für Bauingenieure (Fernstudium) TU DRESDEN Dresden, 2. Februar 2004 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK I für Bauingenieure (Fernstudium) Name: Vorname: Matrikel-Nr.:

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr