4 Die Fibonacci-Zahlen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4 Die Fibonacci-Zahlen"

Transkript

1 4 Die Fibonacci-Zahlen 4.1 Fibonacci-Zahlen und goldener Schnitt Die Fibonacci-Zahlen F n sind definiert durch die Anfangsvorgaben F 0 = 0, F 1 = 1, sowie durch die Rekursion F n+1 = F n + F n 1 für alle n Æ. Wir bekommen die Folge F 0, F 1,... der Fibonacci-Zahlen, indem wir die letzte Formel sukzessive für n = 1,... anwenden. Für n = 1 ergibt sich also F = F 1 + F 0 = = 1. Allgemeiner ist jede Fibonacci-Zahl die Summe ihrer beiden Vorgänger. Damit sind die Fibonacci-Zahlen für alle natürlichen Zahlen definiert und lassen sich, da nur die beiden vorherigen Fibonacci-Zahlen addiert werden müssen, leicht hinschreiben: F 0 = 0, F 1 = 1, F = 1, F 3 =, F 4 = 3, F 5 = 5, F 6 = 8, F 7 = 13, F 8 = 1, F 9 = 34. Erfunden hat die Fibonacci-Zahlen der Mathematiker Leonardo von Pisa (ca ), den man später Fibonacci nannte. Mit den Fibonacci-Zahlen soll die Kaninchenaufgabe gelöst werden, also wie viele Kaninchen im Laufe einer Zeitspanne aus einem Paar entstehen. Es wird angenommen, dass jedes Paar allmonatlich ein neues Paar in die Welt setzt, das wiederum nach zwei Monaten ein weiteres Paar produziert. Man nimmt also an, dass die neugeborenen Kaninchen nicht sofort geschlechtsreif sind. Todesfälle werden nicht berücksichtigt. Hat man im ersten Monat ein neugeborenes Paar (N), so im zweiten Monat ein geschlechtsreifes Paar (G) und im dritten Monat Paare, nämlich 1N+1G. Im 4. Monat hat man 3 Paare, nämlich 1N+G. Bezeichnet man mit F n die Anzahl der Kaninchenpaare im Monat n, so kommen im Monat n + 1 gerade F n 1 hinzu: F n+1 = F n + F n 1 Paare in n + 1 Paare in n geschlechtsreife Paare in n Wäre jedes neugeborene Paar sofort geschlechtsreif, so hätte man stattdessen die Rekursion F n+1 = F n, was eine Verdoppelung der Paare in jedem Monat bedeuten würde. Die Berücksichtigung der Geschlechtsreife führt dagegen zu einem langsameren Wachstum der Population, nämlich F 6 = 8 F 5 5 = 1, 6, F 7 = 13 F 6 8 = 1, 65, F 8 = 1 = 1, , F 7 13 F 9 = 34 F 8 1 = 1, , F 10 = 55 = 1, F 9 34 Das sieht recht geheimnisvoll aus: Die Quotienten scheinen um einen nicht offensichtlichen Wert zu oszillieren, der in der Nähe von 1, 618 liegt. Wir können die Bestimmungsgleichung der Fibonacci-Zahlen durch F n teilen, F n+1 F n = 1 + F n 1 F n. Da die Quotienten hier konvergieren, erhalten wir für den Grenzwert die Gleichung (4.6) x = x x x = 1 mit Lösung x = 1 ± 5. Der größere dieser beiden Werte ist Φ = 1+ 5 = 1, und wird goldene Zahl oder auch goldener Schnitt genannt. Eine mathematisch einwandfreie Herleitung findet der interessierte Leser in Abschnitt

2 A T B Abbildung 3: Die goldene Teilung Abbildung 4: Fibonacci-Quadrate mit Spirale Abbildung 5: Die goldene Spirale 0

3 Abbildung 6: Sonnenblume Wir wollen eine Strecke so unterteilen, dass die größere Teilstrecke sich zur kleineren so verhält wie die gesamte Strecke zur größeren Teilstrecke (siehe Abbildung 3), also Mit AB = + TB folgt hieraus TB = AB TB = + TB = 1 + TB Das Teilungsverhältnis Φ = /TB genügt gerade der Gleichung Φ = 1 + Φ 1, also (4.6). Ein Rechteck mit dem Verhältniss 1 : Φ heißt auch goldenes Rechteck. Ähnlich wie bei der oben beschriebenen goldenen Teilung einer Strecke wurde ein solches Rechteck als besonders harmonisch angesehen. Vor allem im Barock stellte man die Möbel gerne in der Form eines solchen Rechtecks her. Viele weitere Beispiele finden sich in alter und neuer Kunst, wie der Leser bei Wikipedia nachschlagen kann. Abbildung 4 zeigt, wie man die ganze Ebene mit Quadraten füllen kann, deren Seitenlängen den Fibonacci-Zahlen entspricht. Gleichzeitig liefert das Bild eine Näherung der goldenen Spirale, indem man in jedes Quadrat einen Viertelkreis hineinlegt. Der Radius dieser Spirale wächst daher 1

4 vom Quadrat n zum Quadrat n + 1 um den Faktor F n+1 /F n, also ungefähr um den Faktor Φ in jedem Viertelkreis.. Die goldene Spirale ist so definiert, dass sie von Viertelkreis zu Viertelkreis um den Faktor Φ wächst, allerdings in kontinuierlicher Form: Beispielsweise soll sie von Achtelkreis zu Achtelkreis um den Faktor Φ wachsen, so dass nach einem Viertelkreis wieder ein Wachstum um den Faktor Φ Φ = Φ erreicht wird. Wir können eine solche Kurve durch Polarkoordinaten beschreiben. r ist der Abstand eines Punktes zum Nullpunkt und θ der Winkel zwischen der positiven x-achse und dem Ortsvektor des Punktes, der im Bogenmaß angegeben wird, also 0 θ < π. Die Gleichung der goldenen Spirale ist dann (4.7) r = Φ θ/π. Für θ = 0 erhalten wir r = 1 und damit den Punkt (1, 0). Nach einem Viertelkreis gilt θ = π/ und wir haben r = Φ, also den Punkt (0, Φ), was genau die gewünschte Streckung Φ ergibt. Wir können die Definition 4.7 auf alle reellen θ ausdehnen. Da der Winkel θ π-periodisch ist, entsteht eine Spirale, die sich für negative θ um den Nullpunkt herumwickelt. In Abbildung 5 ist die goldene Spirale rot gefärbt. Grundlage ist hier die Unterteilung der Ebene mit Quadraten der Seitenlänge Φ k, wobei hier auch negative k verwendet werden. Grün ist die Näherung der goldenen Spirale durch Viertelkreise und bei gelben Teilkurven stimmen diese beiden ungefähr überein. Blütenstände bei Pflanzen sind häufig spiralförimg angeordnet, damit jeder Stand etwa gleich viel Licht abbekommt. Dabei entstehen sekundäre Spiralen, die auf den ersteren senkrecht stehen. Fast immer ist die Anzahl dieser Spiralen durch zwei aufeinanderfolgende Fibonacci-Zahlen gegeben (siehe Abbildung 6). 4. Die Padovan-Folge ist gegeben durch die Rekursion p n+1 = p n 1 + p n mit den Anfangswerten Die Folge beginnt also mit p 0 = p 1 = p = 1. 1, 1, 1,,, 3, 4, 5, 7, 9, 1, 16, 1, 8, 37, 49, 65, 86, 114,.... Sie wächst langsamer als die Fibonacci-Folge, die Quotienten aufeinanderfolgender Padovan-Zahlen konvergieren, p 6 = 4 p 5 3 = 1, , p 7 = 5 p 6 4 = 1, 5, p 8 = 7 p 7 5 = 1, 4, p 9 = 9 = 1, 85..., p 8 7 p 10 = 1 p 9 9 = 1, , p 11 = 16 p 10 1 = 1, , p 1 = 1 p = 1, 31..., p 13 = 8 = 1, , p 1 1 der gesuchte Wert liegt also in der Nähe von 1, 3. Die Padovan-Zahlen sind in der Mathematik kaum untersucht. Auch das folgende Bild, das die Überdeckung der Ebene mit gleichseitigen Dreiecken mit Kantenlängen p n zeigt, dürfte den meisten Mathematikern unbekannt sein. 4.3 Geschlossene Darstellung linearer Rekursionsgleichungen Rekursionsgleichungen, wie wir sie bei der Fibonacci- und der Padovan-Folge kennengelernt haben, haben den Nachteil, dass man zur Bestimmung eines Folgenglieds alle vorigen Folgenglieder ebenfalls ausrechnen muss. Man kann aber auch häufig eine geschlossene Darstellung der Folge angeben, was wir hier an der Rekursionsgleichung x n+1 = x n + x n 1

5 Abbildung 7: Padovan-Dreiecke mit Spirale für die Fibonacci-Zahlen zeigen wollen. Man sucht zunächst Lösungen der Rekursion der Form x n = λ n mit einer zu bestimmenden Zahl λ. Dies in die Rekursion für x n eingesetzt ergibt λ n+1 = λ n + λ n 1. Hier kann man durch λ n 1 teilen und erhält die quadratische Gleichung λ = λ + 1 mit den Lösungen Φ = 1+ 5 und Ψ = 1 5. Damit lösen sowohl x n = Φ n als auch y n = Ψ n die Rekursionsgleichung. Man setzt nun an F n = cφ n + dψ n und bestimmt die Zahlen c und d aus den Anfangsbedingungen der Fibonacci-Zahlen, nämlich F 0 = 0 und F 1 = 1, und erhält damit das Gleichungssystem für c und d c + d = 0, cφ + dψ = 1 mit Lösung c = d = 1/ 5. Damit haben wir die Binetsche Darstellung der Fibonacci-Zahlen [( F n = 1 ( Φ n Ψ n) = ) n ( 5 1 ) n ] 5. Interessant ist hier, dass die Fibonacci-Zahlen ganzzahlig sind, die Binetsche Darstellung aber den Weg über Irrationalzahlen geht. Weil Φ > Ψ setzt Φ sich für große n immer mehr durch und wir haben F n+1 /F n Φ für n. Die Padovan-Rekursion x n+1 = x n 1 + x n lässt sich ganz analog mit dem Ansatz x n = λ n lösen. Nach Division durch λ n ergibt sich die kubische Gleichung λ 3 λ 1 = 0. Solche Gleichungen kann man mit den Formeln von Cardano lösen. Mit u = , v =

6 sind die drei Lösungen γ = u + v, δ = 1 (u + v) + 1 3i, (u v) ε = 1 (u + v) 1 3i, (u v) wobei i = 1 die Gleichung i = 1 erfüllt. Man kann nun im Ansatz x n = aγ n + bδ n + cε n mit den Anfangsbedingungen p 0 = p 1 = p = 1 die Koeffizienten a, b, c ausrechnen und erhält schließlich p n = γn 3γ 1 + δn 3δ 1 + εn 3ε 1. Hier geht die geschlossene Darstellung demnach nicht nur über Irrationalzahlen, sondern nimmt auch komplexe Zahlen zur Hilfe. Es gilt γ > δ und γ > ε, demnach dominiert der erste Summand die beiden anderen für große n und es gilt p n+1 /p n γ. γ = 1, heißt silberne Zahl oder Plastik-Zahl. 4.4 Fibonacci-Rätsel Problem 4.1 (1) Sieht man in den USA eine Entfernung in Meilen, so kann man sie leicht in Kilometern umrechnen, wenn es sich dabei um eine Fibonacci-Zahl handelt, indem man einfach die nächste Fibonacci-Zahl nimmt. Auf diese Weise bestimmt man mit hoher Genauigkeit eine Entfernung von 13 Meilen zu 1 Kilometern. Wie kann das sein? Problem 4. (3) Bestimmen Sie die Anzahl f n der Folgen der Länge n bestehend aus Elementen der Menge {0, 1}, so dass niemals zwei Einser hintereinanderstehen. Beispielsweise ist die Folge erlaubt, die Folge nicht. Hinweis: Man unterteile die Menge dieser Folgen in zwei disjunkte Teilmengen, nämlich mit 0 bzw. 1 als letztem Folgenglied. Problem 4.3 (3) Auf wie viele Arten kann ein (n, )-Rechteck mit (1, )-Dominosteinen überdeckt werden? 4

1 Das Prinzip der vollständigen Induktion

1 Das Prinzip der vollständigen Induktion 1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Fibonacci-Folge Mathematik»Facharbeit«

Fibonacci-Folge Mathematik»Facharbeit« Mathematik»Facharbeit«Mathias Dirksmeier Sven Wilkens Jahrgangsstufe 12 Thomas-Morus-Gymnasium, 2009 Gliederung 1 Allgemeines 2 Allgemein Formel von Moivre-Binet Beziehung zum Goldenen Schnitt 3 Modell

Mehr

Geschichte Grundlagen Fibonacci-Zahlen Geometrischer Trugschluß Anwendung Fazit und Ausblick. Der Goldene Schnitt. Dario Jotanovic

Geschichte Grundlagen Fibonacci-Zahlen Geometrischer Trugschluß Anwendung Fazit und Ausblick. Der Goldene Schnitt. Dario Jotanovic Der Goldene Schnitt Dario Jotanovic Mathematisches Proseminar Implementierung mathematischer Algorithmen Hochschule Darmstadt 19. Dezember 2013 Inhaltsangabe 1 Geschichte 2 Grundlagen Teilung im goldenen

Mehr

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt MATHEMATIK IN KUNST UND NATUR Fibonacci Zahlen und der goldene Schnitt BEGLEITVORTRAG ZUR AUSSTELLUNG MATHEMATIK ZUM ANFASSEN DES MATHEMATIKUMS GIEßEN AN DER HOCHSCHULE PFORZHEIM Prof. Dr. Kirsten Wüst

Mehr

Walter Orlov. Goldener Schnitt und Euleresche Zahl

Walter Orlov. Goldener Schnitt und Euleresche Zahl Walter Orlov Goldener Schnitt und Euleresche Zahl August 2004 Euklid (325-270 vor Christus) wird die Entdeckung des Streckenverhältnis Goldenen Schnittes zugeschrieben. Unter Goldenem Schnitt versteht

Mehr

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates: Hans Walser, [06045] Pythagoras-Schmetterling Das Phänomen Wir beginnen mit einem beliebigen rechtwinkligen Dreieck und zeichnen die übliche Pythagoras-Figur. Dann fügen wir zwei weitere Quadrate an (rot

Mehr

Fibonacci-Zahlen in der Mathematik

Fibonacci-Zahlen in der Mathematik Fibonacci-Zahlen in der Mathematik Christian Hartfeldt Otto-von-Guericke Universität Magdeburg Fakultät für Mathematik Institut für Algebra und Geometrie email: christian.hartfeldt@t-online.de Internetauftritt:

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen?

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen? Hier siehst du Figuren, die aus Kreisen bestehen. Schon ab der zweiten Figur ergibt sich ein Dreieck. Die Anzahl der Kreise, die ein Dreieck bilden, nennt man Dreieckszahlen. Man tut so, als ob auch der

Mehr

Leonardo da Pisa alias Fibonacci

Leonardo da Pisa alias Fibonacci Leonardo da Pisa alias Fibonacci 1. Juli 003 Weber Tony, Ramagnano Nicola Mathematik Fibonacci Seite / 9 Inhaltsverzeichnis Biographie...3 Fibonacci Zahlen...5 Definition...5 Fibonacci Spirale...5 Goldener

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Mathematisches Proseminar: Der Goldene Schnitt Implementierung mathematischer Algorithmen. Dario Jotanovic

Mathematisches Proseminar: Der Goldene Schnitt Implementierung mathematischer Algorithmen. Dario Jotanovic Mathematisches Proseminar: Der Goldene Schnitt Implementierung mathematischer Algorithmen Dario Jotanovic Inhaltsverzeichnis 1 Geschichte 2 2 Grundlagen 3 2.1 Definition des goldenen Schnittes und Φ......................

Mehr

3. rekursive Definition einer Folge

3. rekursive Definition einer Folge 3. rekursive Definition einer Folge In vielen Fällen ist eine explizite Formel für das n-te Glied nicht bekannt, es ist hingegen möglich, aus den gegebenen Gliedern das nächste Glied zu berechnen, d.h.

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

2 Reihen Einleitung Wichtige Sätze Arithmetische Reihen Geometrische Reihen Harmonische Reihe...

2 Reihen Einleitung Wichtige Sätze Arithmetische Reihen Geometrische Reihen Harmonische Reihe... Folgen und Reihen Vorbereitungskurs Raach 013 Birgit Vera Schmidt 10. Mai 013 1 Folgen 1.1 Einleitung und Definition...................................... 1. Wichtige Folgen............................................

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 4. Stufe (DDR-Olympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Fibonaccizahlen. Auftreten in der Biologie. Bodo Werner. Department Mathematik Universität Hamburg

Fibonaccizahlen. Auftreten in der Biologie. Bodo Werner. Department Mathematik Universität Hamburg Fibonaccizahlen Auftreten in der Biologie Department Mathematik Universität Hamburg Fibonacci I Geschichte Leonardo da Pisa, genannt FIBONACCI (etwa 1170-1250) Liber Abbici (1202): Indisch-arabische Ziffern

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Aufgabe S1 (4 Punkte)

Aufgabe S1 (4 Punkte) Aufgabe S1 (4 Punkte) Gegeben sei die Folge a 1 = 3, a 2 = 5, die für n 3 durch fortgesetzt wird Berechnen Sie a 2014 Wir setzen die Folge fort: a n = a n 1 a n 2 n = 1 2 3 4 5 6 7 8 9 a n = 3 5 2 3 5

Mehr

Goldener Schnitt Was war das große Geheimnis der Pythagoräer?

Goldener Schnitt Was war das große Geheimnis der Pythagoräer? Das Pentagramm Der Drudenfuß Das Pentagramm war das Zeichen des Geheimbundes der Pythagoräer, und diese geheimnisvolle Figur gilt schon seit alters her als magisches Symbol. So fand es z.b. in früherer

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen . Mathematik Olympiade. Stufe (Schulolympiade) Saison 96/96 Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

GOLDENER SCHNITT UND FIBONACCI-FOLGE

GOLDENER SCHNITT UND FIBONACCI-FOLGE GOLDENER SCHNITT UND FIBONACCI-FOLGE NORA LOOSE. Der Goldene Schnitt - Eine Irrationalität am Ordenssymbol der Pythagoreer Schon im 5. Jahrhundert v. Chr. entdeckte ein Pythagoreer eine Konsequenz der

Mehr

4.7 Der goldene Schnitt

4.7 Der goldene Schnitt 4.7 Der goldene Schnitt Aus Faust I: MEPHISTO: Gesteh' ich's nur! Dass ich hinausspaziere,verbietet mir ein kleines Hindernis: Der Drudenfuß auf Eurer Schwelle --- FAUST: Das Pentagramma macht dir Pein?

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen Mathematik für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler Musterprüfung mit Lösungen. Sei T N. (a Unter welchen beiden Voraussetzungen an T garantiert das Induktionsaxiom (nach

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Die Goldene Spirale... 1. Der Goldene Schnitt... 3. Das Goldene Rechteck... 7. Gruppenarbeit... 8

Die Goldene Spirale... 1. Der Goldene Schnitt... 3. Das Goldene Rechteck... 7. Gruppenarbeit... 8 Die Goldene Spirale Fach: Mathematik Hauptseminar: Spiralen, WS 2005/2006 Dozent: Prof. Dr. R. Deißler Referenten: Judith Stoiber 1389024 Peter Rath 1389345 Handout zum Referat vom 24.01.2006 Inhaltsverzeichnis:

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Wiederholung Vorlesungen 1 bis 8

Wiederholung Vorlesungen 1 bis 8 Wiederholung Vorlesungen 1 bis 8 Aufgabe 1 a) Sind die im Folgenden gegebenen Ausdrücke als Folge interpretierbar? Wenn ja, wie? i) 1,,4,8,16,3,64,..., ii)... 5, 3, 1,1,3,5,..., iii) 3,10,π,4, 1 7,10,1,14,16,18,...

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) Der fünfstelligen Zahl F = 3ab1 sind die Zehner- und die Tausenderstelle abhanden gekommen Alles, was man von a, b {0, 1,, 9} weiß, sind die beiden folgenden unabhängigen Bedingungen:

Mehr

Polynome Teil V: Elementarsymmetrische Funktionen.

Polynome Teil V: Elementarsymmetrische Funktionen. Die WURZEL Werkstatt Mathematik Polynome Teil V: Elementarsymmetrische Funktionen. Es gibt Gleichungssysteme, die lassen sich mit schulischen Mitteln nicht bzw. nur sehr mühsam knacken. So musste etwa

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Rekursive Folgen. Axel Schüler, Mathematisches Institut, Univ. Leipzig

Rekursive Folgen. Axel Schüler, Mathematisches Institut, Univ. Leipzig Rekursive Folgen Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:axel.schueler@math.uni-leipzig.de 5.05.2005 Rekursive Folgen. Einleitung Rekursive Folgen umfassen viele aus dem Unterricht

Mehr

Erste Schularbeit Mathematik Klasse 7A G am

Erste Schularbeit Mathematik Klasse 7A G am Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Fibonacci-Zahlenfolge und der Goldene Schnitt

Fibonacci-Zahlenfolge und der Goldene Schnitt 016 Fibonacci-Zahlenfolge und der Goldene Schnitt Julian Neumann Klasse 1 B 4.0.016 Inhaltsverzeichnis 1 Einleitung... Sachdarstellung... 3 3 Die Fibonacci-Zahlen... 4 3.1 Kaninchenproblem... 6 3. Herleitung

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte

Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte 1 Geometrie und Zahlentheorie. Ganzzahlige geometrische Objekte Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 19. Tag der Mathematik 17. Mai 014, TU Berlin Pythagoräische

Mehr

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG Abitur Mathematik: Musterlösung Bayern 212 Aufgabe 1 a) ZEICHNUNG LAGE DER GRUNDFLÄCHE ABC Man kann anhand der gleichen x 1 -Koordinate 1 bei allen drei Punkten erkennen, dass die Grundfläche ABC parallel

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Folgen und Reihen. Zahlenfolgen , ,

Folgen und Reihen. Zahlenfolgen , , 97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.

Mehr

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag

55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag 55. Mathematik-Olympiade 4. Stufe (Bundesrunde) Olympiadeklasse 10 Lösungen 1. Tag c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 551041

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Karin Roller, 14. März 2016 KURSZIELBESTIMMUNG MIT FIBONACCI

Karin Roller, 14. März 2016 KURSZIELBESTIMMUNG MIT FIBONACCI Karin Roller, 14. März 2016 KURSZIELBESTIMMUNG MIT FIBONACCI 2. Auflage 2. Auflage 3. Auflage Karin Roller Vorstandsmitglied der VTAD e.v. und stellv. Regionalmanagerin in Stuttgart Boardmember der IFTA

Mehr

2 ist Teiler von p² fl 2 ist Teiler von p, p kann also geschrieben werden als p=2a

2 ist Teiler von p² fl 2 ist Teiler von p, p kann also geschrieben werden als p=2a Station Der Beweis, dass irrational ist ufgabe 1 Hört euch auf youtube von DorFuchs den Song Die Wurzel aus ist irrational an. Der Link dazu ist http://www.youtube.com/watch?v=tpfneby9r0. Notiert euch

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

Lösung zur Aufgabe Würfel färben von Heft 20

Lösung zur Aufgabe Würfel färben von Heft 20 Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein

Mehr

Berechnung von Pi und verwandte Probleme

Berechnung von Pi und verwandte Probleme Berechnung von Pi und verwandte Probleme 1. Gitterpunkte im Kreis 1.1. Näherungsformel. Wir wollen eine möglichst einfache näherungsweise Formel finden für die Anzahl der Gitterpunkte in einem Kreis um

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

28 4. DIE MATHEMATIK HINTER DER COMPACT DISC. Abbildung 4.1: Selbstkorrigierende Codes

28 4. DIE MATHEMATIK HINTER DER COMPACT DISC. Abbildung 4.1: Selbstkorrigierende Codes 8 4. DIE MATHEMATIK HINTER DER COMPACT DISC y1 1 4 3 y3 y Abbildung 4.1: Selbstkorrigierende Codes 4. Die Mathematik hinter der Compact Disc 4.1. Selbstkorrigierende Codes Wenn wir eine Reihe von 0 und

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras

Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck

Mehr

Mathematische Überraschungen in der Natur

Mathematische Überraschungen in der Natur Mathematische Überraschungen in der Natur Die Goldene Zahl ist wahrscheinlich die außergewöhnlichste aller Zahlen. Sie hat hunderterlei einzigartige Eigenschaften wie sonst keine andere Zahl und so verwundert

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

c Swiss Mathematical Society, 2006 Lösungen sind bis zum 10. August 2006 erbeten. Sie können auf postalischem Weg (bevorzugt)

c Swiss Mathematical Society, 2006 Lösungen sind bis zum 10. August 2006 erbeten. Sie können auf postalischem Weg (bevorzugt) Elem Math 61 (2006) 36 1 0013-6018/06/010036-6 c Swiss Mathematical Society, 2006 Elemente der Mathematik Aufgaben Neue Aufgaben Lösungen sind bis zum 10 August 2006 erbeten Sie können auf postalischem

Mehr

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt.

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt. Summen von Quadraten 1 Physikalische Motivation Eine schwingende Saite hat eine Grundfrequenz F, die von Länge, Dicke, Beschaffenheit der Saite und so fort abhängt Neben dieser Grundfrequenz gibt es auch

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

Exponentielles Wachstum

Exponentielles Wachstum Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. Oktober 2013 Fibonacci-Zahlen Kaninchenvermehrung Fibonacci-Folge Geometrisches Mittel vs. arithmetisches Mittel Beispiele Kaninchenvermehrung

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

2.2C. Das allgemeine Dreieck

2.2C. Das allgemeine Dreieck .C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Die Fibonacci-Zahlen 1

Die Fibonacci-Zahlen 1 Die Fibonacci-Zahlen 1 Leonardo Pisano Leonardo von Pisa ca. 1170 bis 1250 Sohn eines Kaufmanns aus Pisa Sein Vater war Handelsattaché der Republik Pisa in Bugia (im heutigen Algerien). Er zeigte früh

Mehr

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 5. Mathematik Olympiade Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr