Ausarbeitung zum Thema Signalverarbeitung und Signalanalyse in der Spracherkennung

Größe: px
Ab Seite anzeigen:

Download "Ausarbeitung zum Thema Signalverarbeitung und Signalanalyse in der Spracherkennung"

Transkript

1 Ausarbeitung zum Thema Signalverarbeitung und Signalanalyse in der Spracherkennung Michael Munz Fakultät für Informatik Universität Ulm 23. November

2 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Motivation 3 2 Überblick 3 3 Typen von Filterbänken Gleichförmige Filterbänke Ungleichförmige Filterbänke Implementierung von gleichförmigen Filterbänken FIR-Implementierung Windowing-Methode für FIR-Implementierung STFT-Implementierung mit FFT-Methoden Implementierung von ungleichförmigen Filterbänken FFT-basierende Implementierung ungleichförmiger Filterbänke QMF-basierende Implementierung ungleichförmiger Filterbänke Zusammenfassung 13 7 Anhang: Einführung in die Systemtheorie Der Dirac-Impuls Die Abtastung Die diskrete Fourier-Transformation (DFT) Die Interpretation der Fourier-Transformation Die Faltung Das Faltungstheorem Lineare zeitinvariante Systeme

3 1 MOTIVATION 3 Abbildung 1: Modell einer kompletten Filterbank-Analyse 1 Motivation Um in der Spracherkennung eine hohe Wahrscheinlichkeit für eine korrekte Erkennung eines Sprachsignals zu erzielen, spielt die Vorverarbeitung des Signales und die Merkmalextraktion eine sehr wichtige Rolle. Die extrahierten Merkmale werden später mit Hilfe von Merkmalqualifikatoren weiterverarbeitet. Es stellt sich natürlich die Frage, welche Merkmale eines Signales für die Spracherkennung am wesentlichsten und aussagekräftigsten sind. Da auch biologisch die menschliche Fähigkeit, Sprache zu erkennen, noch nicht endgültig geklärt ist, ist auch die Problemstellung der maschinellen Spracherkennung noch nicht vollständig gelöst. Es gibt jedoch viele Lösungsansätze, die sich auch in der Praxis bereits bewährt haben. Filterbänke sind eine mögliche Art, Merkmale aus Sprachsignalen zu extrahieren. Dabei wird das Signal in unterschiedliche Frequenzbänder zerlegt und jeweils deren Energie bestimmt. Diese Energiesignale sind die Ausgabe der Filterbank. 2 Überblick Zunächst möchte ich einen Überblick über den Ablauf der Verarbeitung geben, wie sie bei Filterbänken üblich ist. Dabei wird die Verarbeitung aus systemtheoretischer Sicht erläutert. 1. Abtastung und Quantisierung Da Sprache ein kontinuierliches Signal ist, jedoch ein Spracherkennungs-System nur mit zeit-und wertdiskreten Signalen arbeiten kann, muss das Sprachsignal s(t) abgetastet werden. Dies entspricht einer Multiplikation des Signales s(t) mit der Sha-Funktion (auch: Delta-Impuls-Folge, Kamm- Funktion). Dieses Ergebnis wird im folgenden mit s(n) bezeichnet. Also: s(n) = k= s(t) δ(n kt ). Menschliche Sprache umfasst ein Spektrum von ca Hz. Daher genügt nach dem Abtasttheorem eine Abtastrate von 16 khz, um das Signal eindeutig zu repräsentieren. Das Signal wird anschliessend noch quantisiert, um ein wertdiskretes Ergebnis zu erhalten. 2. Vorverarbeitung Hierbei wird das Sprachsignal verstärkt, Rauschen entfernt und das Signal geglättet. Dies dient dazu, dass die anschliessende Verarbeitung die Fehler, z.b. in Form von Rauschen, nicht noch mehr verstärkt, wie es bei manchen Filtern der Fall ist. Das verbesserte Signal wird mit s(t) bezeichnet.

4 2 ÜBERBLICK 4 3. Bandpass-Filter Die eigentliche Filterbank-Verarbeitung. Hier wird das Signal s(n) mittels mehrerer unterschiedlicher Bandpassfilter gefiltert. Die Impulsantwort h i (n) der Bandpassfilter wird mit dem Signal gefaltet. Das Ergebnis wird mit x i (n) bezeichnet: x i (n) = s(n) h i (n) 4. Wellengleichrichter Für die folgende Betrachtung soll angenommen werden, dass die Ausgaben der Bandpassfilter x i (n) ideal sind, d.h. genau eine Sinusschwingung beinhalten: x i (n) = α i sin(ω i n). Hinzu kommt noch, dass der Bandpassfilter eng genug sein muss, damit er nicht zwei oder mehr starke Signalharmonien umfasst. Ein Wellengleichrichter ist ein nicht-lineares System. Man kann das System durch folgende Gleichung beschreiben: { +1, x i (n) 0 v i (n) = f(x i (n)) w(n), w(n) = 1, x i (n) < 0 Diese Gleichung entspricht also im Ortsbereich der Betragsfunktion, wodurch auch klar wird, dass diese nicht durch ein lineares System beschrieben werden kann. Im Frequenzbereich kann dieses System durch folgende Faltung ausgedrückt werden: V i (f) = X i (f) W (f), wobei die zirkulare Faltung bedeutet. Im Frequenzraum betrachtet verschiebt der Wellengleichrichter das Spektrum in Richtung 0, erzeugt jedoch gleichzeitig höherfrequente Kopien des Spektrums (Aliase). Idealisierte Spektren: X i (n) = j 2 (δ(f f i) δ(f f i )), Sinus enthält nur eine Frequenz. W (f) : Folge von schnell abklingenden Sinc-Funktionen ( sin(x) x δ(f), Korrespondenzen der Fenster-Funktionen) an ungeraden harmonischen Frequenzen f q = f i q, q = 1, 3,..., q max. V i(f) : Impuls δ(f) und Folge von kleiner werdenden Impulsen an geraden harmonischen Frequenzen f q = f i q, q = 2, 4, 6,... (vgl. Abbildung 2 und 3). 5. Tiefpassfilterung Die Tiefpassfilterung des Signales v i (n) soll bewirken, dass die durch die nicht-lineare Verarbeitung des Signales im vorherigen Schritt entstandenen Aliase entfernt werden. Dabei werden die höheren Frequenzen weggefiltert. Damit bleibt, im Frequenzraum betrachtet, nur noch das zum Nullpunkt hin verschobene Frequenzspektrum des bandpassgefilterten Signales übrig, im Idealfall ein einzelner Dirac-Impuls. Die Gleichrichtung und die anschliessende Tiefpassfilterung kann man auch als Berechnung des Gleichanteils der Signalfunktion sehen. Der Gleichanteil ist im Spektrum nahe dem Koordinaten-Ursprung. Dies funktioniert jedoch nur solange ideal wie auch das Signal ideal ist, d.h. dass bereits das Ausgangssignal x i (n) der Bandpassfilter ideal ist, wie oben beschrieben. Im praktischen Fall ist jedoch das Ausgangssignal des Bandpasses nicht ideal, was wiederum bedeutet, dass das Ausgangsspektrum des Tiefpasses nicht nur ein einzelner Dirac ist, sondern die Information befindet sich in einem (engen) Spektrum um den Gleichanteil im Ursprung. Die Breite dieses Spektrums hängt von der schnellsten Änderung im jeweiligen Frequenzband zusammen. Meist liegt die Breite bei Hz. 6. Sampling Rate Reduction Box Die Sampling Rate Reduction Box dient zur Komprimierung der Datenmenge. Da das Frequenz- Spektrum des Tiefpasses wie oben erwähnt eine maximale Frequenz von 30 Hz hat, kann das Signal nun gemäß dem Abtasttheorem auch mit weniger Samples rekonstruiert werden. Es reicht hierfür

5 2 ÜBERBLICK 5 Abbildung 2: Idealisiertes Spektrum einer Sinus-Schwingung bei der Filterung durch Wellengleichrichter eine Abtastrate von 60 Hz, was zu einer erheblich geringeren Datenmenge führt. 7. Amplitudenkomprimierung Eine letzte oft angewendete Methode, um die Datenmenge zu reduzieren, ist die Amplitudenkompression. Hierbei werden Verfahren wie log-encoding oder µ-law-encoding verwendet, die hier nicht weiter betrachtet werden sollen. Ein Beispiel: 16 Kanal-Filterbank, maximale Frequenz im zu untersuchenden Spektrum: f max = 8000 Hz. Es soll eine Samplingrate von f s = Hz verwendet werden, Quantisierung mit 12 bit sample bitrate = samples s 12 bit bit sample = s Mit Hilfe der Sampling Rate Reduction Box mit Resampling-Frequenz 50 Hz und eines 7-bit-log- Encoders wird die Datenmenge auf 5600 bit s reduziert, was einer Komprimierung von 42:1 entspricht. Zu beachten ist, dass diese Komprimierung für die zu extrahierende Datenmenge verlustlos ist. 8. Nachverarbeitung Nach der Komprimierung kann das Signal noch nachverarbeitet werden, um die Ausgabe des Filterbank-Analysators so klar wie möglich zu machen. Hierzu können unter anderem verwendet werden: zeitliche Glättung, Frequenzglättung, Normalisierung, Quantisierung oder Schwellwertverfahren, Hauptachsentransformation.

6 2 ÜBERBLICK 6 Abbildung 3: Spektrum einer Sinus-Schwingung bei der Filterung durch Wellengleichrichter

7 3 TYPEN VON FILTERBÄNKEN 7 Abbildung 4: Frequentunterteilung einer ungleichförmigen Filterbank 3 Typen von Filterbänken Es gibt meherere Arten von Filterbänken. Mit Filterbank wird eine Gruppe von Filtern bezeichnet. Im folgenden werden wir uns mit gleichförmigen und ungleichförmigen Filterbänken befassen. Dabei unterscheidet man die Art, wie die Frequenzbänder der Filteraufgeteilt sind, mit denen das Signal gefiltert wird. 3.1 Gleichförmige Filterbänke Gleichförmige Filterbänke sind die am meisten verwendete Filterart. Dabei wird das zu untersuchende Frequenzspektrum gleichförmig unterteilt, d.h. die Mittelfrequenz des i-ten Filters bei Q Filtern ist f i = F s N i, 1 i Q, wobei F s die Sampling-Rate ist und N die Anzahl der Filter, die benötigt werden, um das Frequenzspektrum komplett abzudecken. Für das Design von gleichförmigen Filterbänken gibt es mehrere Parameter, die eingehalten werden sollten. Für die Anzahl Q der Filter soll gelten: Q N 2. Falls Q = N 2, so wird das gesamte Spektrum abgedeckt. Für die Breite b i der einzelnen Filterspektren soll gelten: b i Fs N. Hierbei bedeutet Gleichheit, dass sich die Spektren nicht überlappen, sondern gerade aneinanderstoßen. Die Anzahl sollte nicht zu klein sein, da sonst das Spektrum nicht genügend untersucht wird. Die Anzahl darf natürlich auch nicht zu groß sein, da sonst die Filterbreite zu eng werden würde, oder die Filter sich zu einem Großteil überschneiden würden. Ein zu enger Filter hat den Nachteil, dass evtl. einzelne Harmonien nicht durch den Filter erkannt werden, insbesondere bei sehr hochfrequenten Sprechern wie Kindern oder Frauen. Wenn diese Größe unterschritten wird, würde ein Teil des Spektrums fehlen und das Ergebnis daher unbrauchbar sein. Meist wählt man 8 < Q Ungleichförmige Filterbänke Ungleichförmige Filterbänke haben die Eigenschaft, dass die Breite der Filterspektren nicht gleich ist, sondern mit zunehmender Mittelfrequenz der Filter größer wird. Eine häufig verwendete Methode ist die logarithmische Aufteilung. Diese wird gern verwendet, da die menschliche Wahrnehmung von Audio-Signalen logarithmisch ist (vgl. z.b. Lautstärke in db). Dies bedeutet dann für Q Bandpassfilter der Breite b i : b 1 b i = C = α b i 1, 2 i Q i 1 f i = f 1 + b j + b j b 1 1 j=1

8 4 IMPLEMENTIERUNG VON GLEICHFÖRMIGEN FILTERBÄNKEN 8 Abbildung 5: Kritische Bandbreite wobei C die Anfangsbreite und f 1 die Anfangsfrequenz ist. α ist ein konstanter Wachstumsfaktor. Meist wird hierbei α = 2 verwendet. Dies verdoppelt jeweils die Frequenz, was für die menschliche Wahrnehmung eine Erhöhung des Tons um 1 Oktave entspricht. Dies ergibt dann einen sog. Oktavfilter. Eine Alternative zu dieser Aufteilung ergab sich aus einer Studie, wie unterschiedliche Frequenzen vom Menschen wahrgenommen werden. Psychoakkustische Experimente zeigten, dass es mehrere Gruppen von Frequenzen gibt, die jeweils in bestimmten Kriterien vom Menschen gleich empfunden werden. Die Breite der Frequenzgruppe wird kritische Bandbreite genannt. Die kritische Bandbreite ist unter 1000Hz annähernd konstant und umfasst jeweils 1/3 Oktave, was einer linearen Skalierung entspricht (vgl. Abbildung 6). Oberhalb von Hz steigt sie exponentiell an, was zu einer logarithmischen Skalierung führt. Dies kann bei der Aufteilung der ungleichförmigen Filterbänke verwendet werden, um möglichst gut die menschlichen psychoakkustischen Wahrnehmungen zu simulieren. Die bekanntesten Skalierungen hierbei sind die mel-scale und die Bark-Scale. Es wird jedoch auch oft α = 2 3 verwendet, was eine Oktav- Drittelung ergibt und daher unter 1000 Hz einer kritischen Bandbreite entspricht. Dies nennt man dann einen Terzfilter. 4 Implementierung von gleichförmigen Filterbänken Das System einer gleichförmigen Filterbank kann unterschiedlich implementiert werden. Zunächst können die verwendeten Filter erst einmal in 2 Kategorien aufgeteilt werden: IIR (Infinite Impulse Response - unendliche Impulsantwort) und FIR (Finite Impulse Response - endliche Impulsantwort). IIR-Filter sind komplizierter zu implementieren, da die Impulsantwort eines IIR-Filters unendlich ist und daher die Faltung mit dem Signal nicht möglich ist. Die effizienteste Implementierung ist eine kaskadierte oder parallele Berechnung. Wir wenden uns im Folgenden den FIR-Filtern zu. 4.1 FIR-Implementierung Die einfachste Implementierung eines FIR-Filters in Hard- oder Software ist die folgende: man faltet das Signal s(n) diskret mit der Impulsantwort des Filters h i (n). Dies ist möglich, da die Impulsantwort eines FIR-Filters endlich ist. Dies muss für jeden Kanal wiederholt werden. Für L Samples und Q Kanäle ergibt sich: Dabei ergibt sich eine Komplexität von x i (n) = s(n) h i (n) = L 1 m=0 h i (m) s(n m) (1) C F IR = L Q (2)

9 4 IMPLEMENTIERUNG VON GLEICHFÖRMIGEN FILTERBÄNKEN Windowing-Methode für FIR-Implementierung Die Windowing-Methode ist eine effizientere Implementierung für FIR-Filter. Diese Methode kann angewendet werden, falls die Systemantwort jedes Filters beschrieben werden kann durch ein Fenster, dass auf der Frequenzachse verschoben ist: H i (f) = W (f f i ). Dies korrespondiert im Ortsbereich mit: h i (n) = w(n) e j2πfin, also einer Modulation des Signales. In diesem Fall kann man die Ausgabe des Filters in Gleichung 1 ausdrücken durch: x i (n) = m = m w(m)e jωin s(n m) s(m)w(n m)e jωi(n m) = e jωin s(m)w(n m)e jωim m }{{} S n(f ) = e jωin S n (ω i ) (4) (3) wobei ω i = 2πf i n und S n (ω i ) die Kurzzeit-Fourier-Transformation (STFT) von s(n) ist. Die Kurzzeit- Fourier-Transformation kann wesentlich effizienter implementiert werden, wie im folgenden beschrieben wird. Betrachtet man die STFT in Gl. 3 im Frequenzraum für ein festes n = n 0 : S n0 (f i ) = m s(m)w(n 0 m)e jωim = F T [s(m) w(n 0 m)] f=fi wobei F T [ ] die Fouriertransformation ist. Dies bedeutet: die STFT ist gleichbedeutend mit der Fouriertransformation des Signals, welches mit einem Zeitfenster multipliziert wird, an der Stelle f = f i. Es wird also immer nur ein bestimmter Zeitabschnitt des Signales transformiert. Da w ein FIR-Filter ist, kann seine Größe L explizit festgelegt werden. L bestimmt also die Anzahl der Samples, die bei der DFT berücksichtigt werden. Man kann für unterschiedliche Filtergrößen L feststellen, dass dies stark unterschiedliche Auswirkungen auf das Filterergebnis sowohl im Frequenz- als auch im Zeitbereich hat. Falls L 1 Signalperiode: im Spektrum von S n (f) sind die einzelnen Frequenzen gut sichtbar, ebenso können die einzelnen Obertöne klar voneinander getrennt werden. Im Zeitbereich kann man die Periodizität des gefilterten Signales sehr gut sehen. Falls jedoch L 1 Signalperiode: Jetzt sind im Spektrum von S n (f) die einzelnen Frequenzen nicht mehr klar voneinander getrennt, jedoch erhält man so eine gute Abschätzung des groben Spektralverlaufes. Man kann die STFT jedoch auch als lineare Filteroperation im Zeitbereich eines zeitdiskreten Signales interpretieren. Hierzu betrachten wir uns noch einmal Gl. 3: interpretiert man die Summe als Faltung, so ergibt sich Folgendes für ein festes f = f i, bzw. w = w i = 2πf i :

10 4 IMPLEMENTIERUNG VON GLEICHFÖRMIGEN FILTERBÄNKEN 10 S n (f i ) = m s(m)w(n 0 m)e jωim = (s(n) } e jωin {{} ) w(n) Modulation S n (f i ) ist also die Faltung des frequenzmodulierten Signals mit einem Tiefpassfilter. Betrachten wir dies im Frequenzbereich: da die Modulation im Zeitbereich zu einer Verschiebung im Frequenzbereich korrespondiert, erhalten wir: F T [S n (f i )] = F T [(s(n) e jωin ) w(n)] = S(f ω i 2π ) W (f) wobei W (f) die Fouriertransformierte von w(n) und S(f ωi 2π ) die verschobene Fouriertransformierte von s(n) ist. W (f) approximiert innerhalb eines schmalen Bandes 1 und ist sonst überall 0. Dies erlaubt uns also folgende Interpretation: S n (f) ist also das Spektrum des Signales, gefiltert mit einem Filter, dessen Bandbreite gleich der Bandbreite von W (f) ist, bei fester Frequenz f i. 4.3 STFT-Implementierung mit FFT-Methoden Nach den oben angestellten Beobachtungen können wir nun die Kurzzeit-Transformation auf FFT- Methoden zurückführen. Wir wollen dies nun verwenden, um eine gleichförmige Filterbank zu implementieren mit der gleichförmigen Frequenzaufteilung f i = i(f s/n), i = 0, 0,..., N 1. Betrachten wir dazu noch einmal Gl. 3: x i (n) = e j 2π N in m Setzen wir m = Nr + k, 0 k N 1, < r <, so erhalten wir: s(m)w(n m) e j 2π N im (5) }{{} =:s n(m) x i (n) = e j 2π N in r e j2πir =1 N 1 k=0 s n (Nr + k)e j 2π N i(nr+k) (6) N 1 = e j 2π N in s n (Nr + k) e j 2π N ik (7) k=0 N 1 = e j 2π N in k=0 r } {{ } =:u n(k) u n (k)e j 2π N ik (8) Nach dieser äquivalenten Umformung der Darstellung haben wir unser Ziel erreicht. Denn Gleichung 8 beschreibt lediglich die N-Punkt diskrete Fouriertransformation (DFT) der Sequenz u n (k), welche anschliessend moduliert wird. u n (k) ist jedoch die gefensterte Ausgangsfunktion s n (m), die stückweise aufsummiert wird. Formulieren wir nun den Algorithmus (s. auch Abbildung 4): 1. Filterung des Signals s(m) mit dem Fenster-Filter mit L Samples ergibt s n (m) = s(m)w(n m)

11 4 IMPLEMENTIERUNG VON GLEICHFÖRMIGEN FILTERBÄNKEN 11 Abbildung 6: STFT-Implementierung einer gleichförmigen Filterbank 2. Bilden von u n (k): das Signal s n (m) wird jeweils in N Samples große Stücke geteilt. Diese werden alle aufsummiert. 3. Die Transformation: hierbei kann die DFT mit FFT-Methoden verwendet werden: transformiere mit der N-Punkt-DFT das Signal u n (k). 4. Moduliere das DFT-Ergebnis mit der Sequenz e j 2π N in oder: das Signal u n (k) wird im Zeitbereich vor der Transformierung zirkular verschoben, was zu der Modulation korrespondiert und effizienter zu berechnen ist. Was wir durch die Umformung gewonnen haben, erkennt man am Besten, indem man sich die Komplexität der DFT-Implementierung (die natürlich FFT-Methoden verwendet) ansieht: C F F T = 2Nlog(N) (9) LQ Vergleicht man nun Gl. 4.1 mit Gl. 9, so erhält man das Verhältnis R = 2Nlog(N), das in den meisten praktischen Fällen größer als 1 ist. Dies bedeutet, dass die Implementierung mit Hilfe der DFT wesentlich effizienter ist. Ein Beispiel: 16 Kanal-Filterbank, N = 32, Filter mit L = 128 Samples, 12, 8 ms bei 10 khz Sampling Rate und Q = 16 Kanäle R = = 6, 4 Hier ist die DFT-Implementierung also 6,4-mal so schnell.

12 5 IMPLEMENTIERUNG VON UNGLEICHFÖRMIGEN FILTERBÄNKEN 12 5 Implementierung von ungleichförmigen Filterbänken Bei ungleichförmigen Filterbänken besitzt der k-te Bandpass-Filter die Impulsantwort h k (n) mit der Mittelfrequenz ω k und der Bandbreite w k. Die einfachste Implementierung einer ungleichförmigen Filterbank ist die direkte Faltung der Impulsantwort h k (n) mit dem Eingangssignal s(n). Dabei ergeben sich Q bandpassgefilterte Ausgangssignale. Die Faltung ist jedoch insbesondere bei längeren Sequenzen ineffizient. Falls jedoch jeder Filter mit Hilfe der Fenster-Design-Methode implementiert wird, ergibt sich, dass die Ausgabe eines Q-Kanal-Filterbank-Analysators völlig unabhängig von der Verteilung und der Anzahl der verwendeten Filters ist. Der Beweis hierzu kann folgendermaßen skizziert werden: Sei h k (n) die Impulsantwort des zu designenden idealen Filters, w(n) ein FIR-Fenster-Filter. Die Impulsantwort des k-ten Bandpassfilters sei h k (n) = w(n) h k (n) Die korrespondierenden Fourier-Transformierte der Summe aller Filterantworten lautet dann H(f) = Q Q W (f) H k (f) = W (f) H k (f) k=1 wobei Q H k=1 k (f) die Summe aller Impulsantworten aller Q idealen Filter ist, also ein zusammengesetztes Fenster aus lückenlos aneinandergefügten Fenstern. Und damit ist H(f) := { Q H 1, f min f f max k=1 k (f) =, mit f min und f max den jeweils kleinsten 0, sonst und größten im Spektrum zu untersuchenden Frequenzen, und damit unabhängig von der Verteilung und der Anzahl der einzelnen Filter. Insgesamt also: H(f) = W (F ) H(f). 5.1 FFT-basierende Implementierung ungleichförmiger Filterbänke Um ungleichförmige Filterbänke effizient zu implementieren, kann man das Ergebnis aus 4.3 verwenden, indem man aus der gleichförmigen Filterbank einzelne Kanäle kombiniert. Diese mögliche Implementierung verwendet dann ebenfalls die FFT-Methoden, jedoch kann man dies noch optimieren. Wir untersuchen, wie sich die Addition zweier Filterausgaben mathematisch darstellen lässt. Filtern wir das Eingangssignal s(n) mit einem Fenster-Filter mit der Impulsantwort w(n) und transformieren das Ergebnis anschliessend mit der N-Punkt-DFT, so ergibt sich Folgendes: X k = N 1 n=0 x(n)e j 2π N nk Addiert man nun, wie oben beschrieben, das Ergebnis zweier Filter zusammen, so erhält man: k=1 X k + X k+1 = = N 1 n=0 n=0 x(n)(e j 2π N nk + e j 2π N n(k+1) ) N 1 [x(n)2e j 2π N n cos( πn 2π )]e j N nk N Dies bedeutet, dass die Kombination zweier Kanal-Antworten äquivalent berechnet werden kann, indem man das Eingangssignal zuerst fenstert, anschliessend mit der komplexen Folge 2e j 2π N n cos( πn N ) multipliziert und erst dann Fourier-transformiert. Bei mehr als zwei Kanälen ergibt sich analog dazu ein anderer Faktor, der jeweils wieder wie oben bestimmt werden kann. Wir erhalten also daraus den Vorteil, dass die Ergebnisse nicht mehr rekursiv berechnet werden müssen.

13 6 ZUSAMMENFASSUNG 13 Abbildung 7: QMF-Schema, inkrementelle Filterung 5.2 QMF-basierende Implementierung ungleichförmiger Filterbänke Da sich aus rekursiven Strukturen oftmals leicht Bäume bilden lassen, kann für die Implementierung ungleichförmiger Filterbänke auch ein Baum-basierender Ansatz gewählt werden. Dabei verfährt man folgendermaßen (vgl. Abbildung 7: das Eingangssignal wird schrittweise gefiltert. In jeder Stufe wird das Signal in ein Hoch- und ein Tiefband zerlegt. Das Tiefband wird anschliessend weitergefiltert. Da durch die Filterung natürlich die maximale Frequenz reduziert wird und sich somit das Signal auch aus weniger Samples wieder eindeutig und korrekt rekonstruieren lässt, wird zudem nach jeder Stufe die Sampling Rate reduziert, um die Filterung effizienter ablaufen lassen zu können. Meist werden hierbei sog. Quadratur Mirror-Filter (QMF-Filter) verwendet. Dies sind Filter, deren Impulsantworten komplementär sind. Diese Filter sind besonders für Oktav-Bänder sehr effizient zu implementieren. Bei einer Oktav-Skalierung bedeutet dies, dass ein QMF-Filter-Paar aus Hoch- und Tiefpass ein Spektrum in 2 genau gleich große Anteile zerlegt. Dies bedeutet auch, dass die Sampling-Rate anschliessend um den Faktor 2 verkleinert werden kann. Der Hochpass-Anteil wird anschliessend in die nächste Stufe weitergegeben, und das Verfahren beginnt wieder von vorne. Man erhält so schrittweise die Filterantworten X n, X n 1,..., X 2, X 1. 6 Zusammenfassung Es gibt also eine Reihe unterschiedlicher Verfahren, um gleichförmige wie auch ungleichförmige Filterbänke zu implementieren. Sie unterscheiden sich in Aufwand der Implementierung, Effizienz und natürlich in der Ausgabequalität. Beim Design solcher Filterbänke spielen eine Reihe unterschiedlicher Parameter eine Rolle, die bisher noch nicht genauer betrachtet wurden. Hierzu zählt die Art der Filter (IIR, FIR), die Art des Fenster-Filters (z.b. Hamming-Window,...), Anzahl der Kanäle.

14 7 ANHANG: EINFÜHRUNG IN DIE SYSTEMTHEORIE 14 7 Anhang: Einführung in die Systemtheorie An dieser Stelle möchte ich eine kurze Einführung zur Systemtheorie, Transformationen und Signalanalyse geben. 7.1 Der Dirac-Impuls Der Dirac-Impuls (auch: Dirac-Stoß) ist eine in der Systemtheorie wesentliche Funktion, die auf den ersten Blick recht einfach aussieht, jedoch ist die mathematisch exakte Beschreibung des Signales sehr komplex. Die diskrete Definition des Dirac-Impulse δ(n): δ(n) := { 1, n = 0 0, n 0 Für kontinuierliche Betrachtungen muss dieser Dirac-Impuls jedoch über Distributionen beschrieben werden, was jedoch hier nicht weiter betrachtet werden soll. Anschaulich kann man sich den Dirac-Impuls als unendlich schmales, unendlich hohes Signal vorstellen, dass genau die Fläche 1 hat. 7.2 Die Abtastung Die Abtastung ist ein wesentliche Instrument der Systemtheorie. Sie beschreibt die Verarbeitung kontinuierlicher Signale zu diskreten Signalen, die in einem Rechner verarbeitet werden können. Dabei werden abzählbar viele Signalwerte des kontinuierlichen Signales verwendet und an das System weitergeleitet. Die Abtastung eines Signales x(n) ist definiert als Multiplikation des Signales mit der Dirac-Impuls-Folge (n): (n) = k= δ(n kt ) Also ist die Gleichung eines abgetasteten Signales: x(n) = x(t) δ(n kt ) wobei x(t) das kontinuierliche Signal und 1 T k= die Abtastrate ist. 7.3 Die diskrete Fourier-Transformation (DFT) Die Fourier-Transformation ist eine Operation der Systemtheorie. Da wir uns im Folgenden nur mit wert- und zeitdiskreten Signalen beschäftigen, beschränke ich mich hierbei auf die sog. diskrete Fourier- Transformation (DFT). Die DFT ist definiert für eine endliche Anzahl N Abtastpunkte. Die Definition lautet: X i (f) = N 1 k=0 x(k)ω ki n, i = 0, 1,..., N 1 wobei ω n = e j 2π n die n-ten Einheitswurzeln sind. Die Definition der inversen diskreten Fouriertransformation (IDFT) lautet: x(k) = 1 N N 1 i=0 X(i)ω ki n, k = 0, 1,..., N 1

15 7 ANHANG: EINFÜHRUNG IN DIE SYSTEMTHEORIE 15 Um N Abtastwerte zu erhalten, wird also jeweils das Signal zuerst abgetastet und anschliessend mit einem Fenster (ideal: rect) multipliziert, um nur einen Bereich von N Abtastwerten zu transformieren. Die Transformierte eines Signales wird immer mit Großbuchstaben und der Variablen f oder ω bezeichnet, die Rücktransformierte mit Kleinbuchstaben und der Variablen n oder k (im kontinuierlichen Fall mit t) Ein solches Fourier-Paar wird auch Korrespondenz genannt. Man sagt: x(n) korrespondiert mit X(f). 7.4 Die Interpretation der Fourier-Transformation Die Fourier-Transformation kann auf unterschiedliche Weise interpretiert werden. Allen Interpretationen gleich ist jedoch das Resultat der Transformation: Die DFT transformiert ein Signal aus dem sog. Ortsoder Zeitbereich in den Fourier- oder Frequenzbereich. Dieser Frequenzbereich gibt an, wie stark die im Signal vorkommenden verschiedenen Frequenzen sind. Dies beruht auf der Tatsache, dass jedes periodische Signal aus unterschiedlichen Kombinationen von Sinus- bzw. Cosinus-Funktionen zusammengesetzt werden kann. Jede Sinus-Funktion enthält also genau eine Frequenz. Für die Begründung, warum die Fourier-Transformation dies leistet, hat unterschiedliche Interpretationsmöglichkeiten, wovon jedoch alle äquivalent sind, jedoch jede für sich einen anderen anschaulichen Ansatz hat: 1. Möglichkeit: Die Fourier-Transformation korreliert die Funktion mit allen möglichen Sinus-Cosinus- Schwingungen (die Exponential-Funktion enthält Sinus-Cosinus-Schwingungen). Vgl. die Fourierreihe und ihre Fourier-Koeffizienten. 2. Möglichkeit: Die Fourier-Transformation projiziert die Funktion auf verschiedene Sinus-Cosinus- Schwingungen durch das Skalarprodukt. Beachte: das Ergebnis einer Fourier-Transformation ist (in den meisten Fällen) nicht reell, sondern komplex. Daher wird in einem Plot die Transformierte meist durch Betrag und Phase (im Folgenden meist nur durch Betrag) dargestellt. 7.5 Die Faltung Die Faltung ist eine weitere wesentliche Operation der Systemtheorie. Die Faltung eines Signales x(n) mit einem Signal y(n) ist definiert als: w(n) = x(n) y(n) = x(i)u(n i) i= Anschaulich kann dies folgendermaßen interpretiert werden: Spiegle das zweite Signal, verschiebe dies von links nach rechts über das erste Signal und bestimme für jede Verschiebung die Fläche des Produktes beider Signale. Das neutrale Element der Faltung ist der Dirac-Impuls: x(k) δ(k) = x(k) 7.6 Das Faltungstheorem Die Faltung und die Fourier-Transformation hängen sehr eng zusammen. Es gilt nämlich für ein Signal w(k): w(n) = x(n) y(n)

16 LITERATUR 16 korrespondiert im Frequenzbereich mit W (f) = X(f) Y (f) wobei W (f), X(F ), Y (F ) die jeweils korrespondierenden Funktionen zu w(k), x(k), y(k) sind. Dies bedeutet also, dass die Faltung mit der Multiplikation korrespondiert. Dies gilt auch analog umgekehrt. Dies wird oft verwendet, um eine Faltung effizienter zu berechnen. Mit Hilfe der Fast-Fourier-Transformation (FFT) kann die DFT mit der Zeit-Komplexität N log(n) berechnet werden. Dies ist insbesondere bei langen Sequenzen viel effizienter als die Faltung. In diesem Fall transformiert man also die beiden Signale, multipliziert sie im Frequenzbereich und transformiert dann das Ergebnis wieder zurück in den Ortsbereich, um so eine Faltung zu berechnen (der Befehl convïn Matlab ist genau so implementiert). 7.7 Lineare zeitinvariante Systeme Ein lineares zeitinvariantes System (LTI-System) ist die zentrale Beschreibungsform in der Systemtheorie. Für LTI-Systeme muss gelten, dass das Systemverhalten linear und zeitinvariant ist. LTI-Systeme werden immer anhand ihrer Impulsantwort beschrieben. Ein System bildet eine Folge von Eingangswerten x(n) auf eine Folge von Ausgangswerten y(k) ab. Man schreibt: y(k) = H{x(k)}. Die Impulsantwort h(k) eines Systems ist die Antwort(das Ergebnis) am Ausgang eines Systems, wenn die Eingabe ein Dirac-Impuls ist. Betrachtet man nun die Antwort des LTI-Systems auf den Dirac-Impuls: Für LTI-Systeme gilt also: y(k) = H{x(k)} = H Linearitaet = = = i= i= i= x(i)h{δ(k i)} x(i)δ(k i) x(i) H{δ(k)} }{{} h(k i),zeitinvarianz x(i)h(k i) i= = x(k) h(k) y(k) = x(k) h(k) Systeme, deren Impulsantwort unendlich ist, nennt man Infinite Impulse Response System (IIR-System) oder auch rekursive Systeme, analog dazu Systeme mit endlicher Impulsantwort nennt man Finite Impulse Response System (FIR-System). Endlich heisst hier: die Antwort besteht aus unendlich vielen Stellen 0. Literatur [1] Lawrence Rabiner, Biing-Hwang Juang: Fundamentals of Speech Recognition, Kapitel 3, Prentice Hall, 1993 [2] Prof. Dr-Ing. M.Bossert: Skript Signale und Systeme, Universität Ulm, Stand 15.Otober 2003 [3] Stearns, Hush: Digitale Verarbeitung analoger Signale, Oldenburg, 7. Auflage, 1999 [4] Hoffmann: Grundlagen der Frequenzanalyse, expert- Verlag, 2000

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 6: Impulsantwort und Faltung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Grundlegende Systemeigenschaften Beispiele führten zu linearen Differenzengleichungen

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

6. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 6. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Letzte Woche: 1.) Erweiterung von Fourier- zu Laplace-Transformation

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Spektrum zeitdiskreter Signale

Spektrum zeitdiskreter Signale Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

3. Basisbandtransformation durch Integerband-Abtastung

3. Basisbandtransformation durch Integerband-Abtastung Bearbeiten von Frequenzbändern 1. Analyse-Filterbank, Basisbandtransformation 2. Basisbandtransformation durch Modulation 3. Basisbandtransformation durch Integerband-Abtastung 1 1. Analyse-Filterbank

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Digitale Signalverarbeitung mit MATLAB

Digitale Signalverarbeitung mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 4., durchgesehene und ergänzte Auflage Mit 180 Abbildungen und 76 Tabellen STUDIUM VIEWEG+ TEUBNER 1 Erste

Mehr

Digitale Signalverarbeitung. mit MATLAB

Digitale Signalverarbeitung. mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 3., vollständig überarbeitete und aktualisierte Auflage Mit 159 Abbildungen und 67 Tabellen Studium Technik

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter

4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen

Mehr

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

4. Beschreibung von LTI-Systemen mit der Fourier-Transformation Die Fourier-Transformation 1. Anwendungsbeispiele der Fourier-Transformation 2. Die kontinuierliche Fourier-Transformation 3. Die Fourier-Reihe 4. Beschreibung von LTI-Systemen mit der Fourier-Transformation

Mehr

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 6Si 6. Signal-und Bildfilterung sowie Korrelation H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I Bildfilterung und Korrelation Die lineare Bildfilterung wird zur Rauschunterdrückung

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

Lösungsblatt 2 Signalverarbeitung

Lösungsblatt 2 Signalverarbeitung Fakultät für nformatik Übung zu Kognitive Systeme Sommersemester 208 S. Constantin (stefan.constantin@kit.edu) T. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 2 Signalverarbeitung Aufgabe : Faltung Abbildung

Mehr

Einführung in die Signalverarbeitung

Einführung in die Signalverarbeitung Einführung in die Signalverarbeitung Phonetik und Sprachverarbeitung, 2. Fachsemester, Block Sprachtechnologie I Florian Schiel Institut für Phonetik und Sprachverarbeitung, LMU München Signalverarbeitung

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1 Grundbegriffe 4.2 Frequenzspektren, Fourier-Transformation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

Fouriertransformation, z-transformation, Differenzenglei- chung

Fouriertransformation, z-transformation, Differenzenglei- chung Kommunikationstechnik II 1.Übungstermin 31.10.2007 Fouriertransformation, z-transformation, Differenzenglei- Wiederholung: chung Als Ergänzung dieser sehr knapp gehaltenen Wiederholung wird empfohlen:

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

Schnelle Fouriertransformation (FFT)

Schnelle Fouriertransformation (FFT) Schnelle Fouriertransformation (FFT) Inhaltsverzeichnis 1 Schnelle Fouriertransformation (FFT)... 3 1.1 Das Realtime-Konzept der Goldammer-Messkarten... 3 1.2 Das Abtasttheorem oder Regeln für die Abtastung

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Signale und Systeme. Martin Werner

Signale und Systeme. Martin Werner Martin Werner Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB -Übungen und Lösungen 3., vollständig überarbeitete und erweiterte Auflage Mit 256 Abbildungen, 48 Tabellen und zahlreichen Beispielen,

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 15: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Entwurfsmethoden für IIR-Filtern sind für Zeitbereich und Bildbereich bekannt Finite-Impulse-Response

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe! 4.2! Frequenzspektren, Fourier-Transformation! 4.3! Abtasttheorem: Eine zweite Sicht Weiterführende Literatur (z.b.):!! Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Biosignal Processing II

Biosignal Processing II Biosignal Processing II LEARNING OBJECTIVES Describe the main purposes and uses of the Fouriertransforms. Describe the basic properties of a linear system. Describe the concepts of signal filtering. FOURIERREIHE

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004 4 Signalverarbeitung 4.1! Grundbegriffe 4.2! Frequenzspektren, Fourier-Transformation 4.3! Abtasttheorem: Eine zweite Sicht 4.4! Filter! Weiterführende Literatur (z.b.): Beate Meffert, Olaf Hochmuth: Werkzeuge

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB Signale und Systeme Grundlagen und Anwendungen mit MATLAB Von Professor Dr.-Ing. Dr. h. c. Norbert Fliege und Dr.-Ing. Markus Gaida Universität Mannheim Mit 374 Bildern, 8 Tabellen und 38 MATLAB-Projekten

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h] Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) Herbert.Gruenbacher@tuwien.ac.at

Mehr

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale Zeitsignale Je nach Zeitbasis und Wertemenge des Signals unterscheidet man zeit- und wertkontinuierliche Signale (analoge Signale); zeitdiskrete, aber wertkontinuierliche Signale (zeitdiskrete Signale);

Mehr

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 Gerrit Buhe, Inhalt 2 Aufbau DSP-System Digitalisierung und Abtasttheorem Beschreibung LTI-System Impulsantwort zu Übertragungsfunktion Werkzeuge

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Erweiterung einer digitalen mit Einplatinencomputern Alexander Frömming Mario Becker p.1 Inhalt 1 Ausgangssituation 2 Zielsetzung 3 Theoretische Grundlagen 4 Umsetzung - Hardware 5 Umsetzung - Software

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

3. Informationsverarbeitung in Objekten

3. Informationsverarbeitung in Objekten 3. Informationsverarbeitung in Objekten 1 3.1. Abtastung von Signalen an der Schnittstelle 2 Falls System an einen Rechner angeschlossen ist wert- und zeit-diskrete Signale x * (t k ) = abstrakte Zahlen

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 1. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11

Vorwort. I Einführung 1. 1 Einleitung Signale Systeme Signalverarbeitung Struktur des Buches 9. 2 Mathematische Grundlagen 11 Vorwort V I Einführung 1 1 Einleitung 3 1.1 Signale 4 1.2 Systeme 4 1.3 Signalverarbeitung 6 1.4 Struktur des Buches 9 2 Mathematische Grundlagen 11 2.1 Räume 11 2.1.1 Metrischer Raum 12 2.1.2 Linearer

Mehr

3. Fourieranalyse und Amplitudenspektren

3. Fourieranalyse und Amplitudenspektren 3.1 Fourieranalyse 3.1.1 Einleitung Laut dem französischen Mathematiker Fourier (1768-1830) kann jedes periodische Signal in eine Summe von sinusförmigen Signalen mit unterschiedlichen Amplituden, Frequenzen

Mehr

filter Filter Ziele Parameter Entwurf

filter Filter Ziele Parameter Entwurf 1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Digitale Verarbeitung analoger Signale

Digitale Verarbeitung analoger Signale Digitale Verarbeitung analoger Signale Digital Signal Analysis von Samuel D. Stearns und Don R. Hush 7., durchgesehene Auflage mit 317 Bildern, 16 Tabellen, 373 Übungen mit ausgewählten Lösungen sowie

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2 Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

5. Beispiele - Filter Seite 15

5. Beispiele - Filter Seite 15 5. Beispiele - Filter Seite 15 5.2 Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

Runde 9, Beispiel 57

Runde 9, Beispiel 57 Runde 9, Beispiel 57 LVA 8.8, Übungsrunde 9,..7 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 3..7 Angabe Seien y, z C N und c, d C N ihre Spektralwerte. Außerdem bezeichne (x k ) k die N - periodische

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale ufgabe (5 Punkte) ufgabe : Kontinuierliche und diskrete Signale. Zeichnen Sie jeweils den geraden und den ungeraden nteil des Signals in bb..!. Sind Sie folgenden Signale periodisch? Falls ja, bestimmen

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Musterklausur 1 zu Signal- und Systemtheorie I 5. Januar 2013

Musterklausur 1 zu Signal- und Systemtheorie I 5. Januar 2013 Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Musterklausur 1 zu Signal- und Systemtheorie I 5. Januar 2013 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation

Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation Digitale Signalverarbeitung, Vorlesung 10 - Diskrete Fouriertransformation 23. Januar 2017 Siehe Skript Digitale Signalverarbeitung, Abschnitte 10.1 und 11, Kammeyer & Kroschel (7.1-7.3) eues Thema in

Mehr

Klausur zu Signal- und Systemtheorie I 20. Januar 2015

Klausur zu Signal- und Systemtheorie I 20. Januar 2015 Institut für Kommunikationstechnik Prof. Dr. Helmut Bölcskei Klausur zu Signal- und Systemtheorie I 20. Januar 2015 Bitte beachten Sie: Prüfungsdauer: 180 Minuten Erreichbare Punkte: 100 Als Hilfsmittel

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Karl-Dirk Kammeyer, Kristian Kroschel Digitale Signalverarbeitung Filterung und Spektralanalyse mit MATLAB-Übungen 6., korrigierte und ergänzte Auflage Mit 315 Abbildungen und 33 Tabellen Teubner Inhaltsverzeichnis

Mehr

Diskrete und Schnelle Fourier Transformation. Patrick Arenz

Diskrete und Schnelle Fourier Transformation. Patrick Arenz Diskrete und Schnelle Fourier Transformation Patrick Arenz 7. Januar 005 1 Diskrete Fourier Transformation Dieses Kapitel erläutert einige Merkmale der Diskreten Fourier Transformation DFT), der Schnellen

Mehr