Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1

2

3

4

5

6

7

8 Zugefürte Brenntoffleitung kw B B u Effektiver Wirkunggrad eelwirkunggrad Rorleitungwirkunggrad Tericer Wirkunggrad Innerer Wirkunggrad i Hocdruck-Teil bzw. bei einfacer rozeßfürung Innerer Wirkunggrad i Niederdruck-Teil Geater innerer Wirkunggrad bei zweifacer rozeßfürung Mecanicer Wirkunggrad Elektricer Wirkunggrad Eigenbedarfwirkunggrad Tecnice Arbeit i Hocdruck-Teil reiprozeß der apfacine B Q = H = = eff R t i el eig Q B einface rozeßfürung ( ) = Q W B zweiface rozeßfürung (it Zwicenüberitzer) R ( ) ( ) + = Q = W W W einface rozeßfürung t w = = q W zu B zweiface rozeßfürung (it Zwicenüberitzer) t ih in + w = = + q = = W zu (=? i bei einface rozeß) Brenntoffaentro H Heizwert u leleitung a Netz kw Q B Zugefürte Brenntoffleitung kw + wik ih + in i = = + w w ek = = wik el el = = wek th Tecnice Arbeit i Niederdruck-Teil w e i tn Spezifice Nutzarbeit bei zweifacer rozefürung w el e w w el eig eig = = = wel wel el w = (=w k bei einface rozeß) w = w = wth + wtn = + apfaentro pez. Entalpie de apfe a apferzeugerautritt pez. Entalpie de Waer a W apferzeugereintritt ( ) pez. Entalpie de apfe a Zwicenüberitzerautritt pez. Entalpie de apfe a Zwicenüberitzereintritt (wirklic) Q B Zugefürte Brenntoffleitung kw W W pez. Entalpie de apfe a apferzeugerautritt pez. Entalpie de Waer a apferzeugereintritt ( ) pez. Entalpie de apfe a H-Turbineneingang pez. Entalpie de apfe a H-Turbineneingang pez. Entalpie de apfe a H-Turbinenaugang (ientrop) pez. Entalpie de Waer a apferzeugereintritt ( ) pez. Entalpie de apfe a Zwicenüberitzerautritt pez. Entalpie de apfe a N-Turbinenaugang (ientrop) pez. Entalpie de apfe a H-Turbineneingang pez. Entalpie de apfe a H-Turbinenaugang (ientrop) pez. Entalpie de apfe a H-Turbinenaugang (wirklic) pez. Entalpie de apfe a Zwicenüberitzerautritt pez. Entalpie de apfe a N-Turbinenaugang (ientrop) pez. Entalpie de apfe a N-Turbinenaugang (wirklic) kj w ik pez. innere Arbeit w pez. Nutzarbeit w ek pez. upplungarbeit w pez. innere Arbeit ik e upplungleitung kw i Innere eitung kw w pez. el. Arbeit de Generator el w pez. upplungarbeit ek el Generatorleitung kw e upplungleitung kw w pez. abgeg. el. Arbeit w pez. el. Arbeit de Generator el w pez. Arbeit al Eigenbedarf eig leleitung a Netz kw el Generatorleitung kw pez. Entalpie de apfe a H-Turbineneingang pez. Entalpie de apfe a H-Turbinenaugang (ientrop) pez. Entalpie de apfe a Zwicenüberitzerautritt pez. Entalpie de apfe a N-Turbinenaugang (ientrop) pez. Entalpie de apfe a H-Turbineneingang pez. Entalpie de apfe a H-Turbinenaugang (ientrop) pez. Entalpie de apfe a Zwicenüberitzerautritt pez. Entalpie de apfe a N-Turbinenaugang (ientrop)

9 Innere eitung kw Teoretice eitung kw eitung Überitzer+eel kw eitung Zwicenüberitzer kw eitung ondenator kw leleitung kw Spezificer apfverbrauc Speiewaervorwärung einface rozeßfürung ( ) = = w i ik zweiface rozeßfürung (it Zwicenüberitzer) ( ) = + = w i ik einface rozeßfürung ( ) = = w teo zweiface rozeßfürung (it Zwicenüberitzer) ( ) = + = w teo Üb ( ) Q = > 0 ZÜ w ( ) Q = > 0 ( ) Q = < 0 o w Nur bei einfacer rozefürung = teo i el eig teo eff d = Erte Abzweigtelle ( ) ( α) ( ) α = Zweite Abzweigtelle ( ) ( ) ( ) β = α β apfaentro pez. Entalpie de apfe a H-Turbineneingang pez. Entalpie de apfe a H-Turbinenaugang (wirklic) pez. Entalpie de apfe a Zwicenüberitzerautritt pez. Entalpie de apfe a N-Turbinenaugang (wirklic) w pez. innere Arbeit ik apfaentro pez. Entalpie de apfe a H-Turbineneingang pez. Entalpie de apfe a H-Turbinenaugang (wirklic) pez. Entalpie de apfe a Zwicenüberitzerautritt pez. Entalpie de apfe a N-Turbinenaugang (wirklic) w pez. Nutzarbeit apfaentro pez. Entalpie de apfe a kj H-Turbineneingang W pez. Entalpie de Waer a apferzeugereintritt ( ) apfaentro pez. Entalpie de apfe a Zwicenüberitzerautritt pez. Entalpie de apfe a H-Turbinenaugang (wirklic) apfaentro pez. Entalpie de Waer a W apferzeugereintritt ( ) pez. Entalpie de apfe a N-Turbinenaugang (wirklic) i Innere eitung kw Mecanicer Wirkunggrad el Elektricer Wirkunggrad Eigenbedarfwirkunggrad eig apfaentro leleitung a Netz kw apfaentroanteil der α Abgezweigt wird ( α ) Verbleibender apfaentroanteil 0 9 pez. Entalpie de apfe an der Abzweigtelle pez. Entalpie de Waer nac de zuicen pez. Entalpie de Waer vor de zuicen Einface rozeßfürung k T k w w Zweiface rozeßfürung k w

10 Relative Feucte Geatdruck ϕ p p a Maentro feucte uft Feucte uft = = 0 ϕ ρ ρ f Maentro trockene uft Feuctegrad p = p + p N = + f = V f ρf = + x f = + f x ( ) a bar = 0 a 5 = ( 0 ϕ ) = p p V R J R = 87 x 0,6 ϕ p = = p ϕ p Verduntete Waerenge = x w Befeuctung it apf = x = x T Spez. Entalpie kj =,00 t+ x (,86 t+ 500) icte der feucten uft Urecnung auf andere rücke Wäreleitung ρf = ρtr 0,77 p0 ρ tr = R R T ϕ it p = ϕia p kw H H älteleitung kw Micung zweier feucten uftengen Entalpie der Micung zweier feucten uftengen it ia p artialdruck Waerdapf a p Sättigungdruck T6. a ρ icte Waerdapf ρ Sättigungdicte T6. p artialdruck trockene uft a p artialdruck Waerdapf a Maentro trockene uft Maentro Waerdapf V f Voluentro feucte uft ρ icte feucte uft f x 0 f Feuctegrad Maentro feucte uft p Atopärendruck (,05bar) a ϕ Relative Feucte p Sättigungdruck T6. a V f Voluentro feucte uft R pez. Gakontante tr. uft T Teperatur (0 =7) Maentro Waerdapf x Maentro trockene uft Feuctegraddifferenz Entalpie Sattdapf bzw. Fricdapf TB5. bzw. T5.5 J kj Entalpiedifferenz x Feuctegraddifferenz apfenge Maentro trockene uft t Teperatur C x Feuctegrad ρ tr icte trockene uft ϕ p ϕ Relative Feucte p0 p Sättigungdruck T6. a p 0 Atopärendruck (,05bar) a J J = 87 R pez. Gakontante tr. uft T Teperatur (0 =7) Q = = > 0 kj kw = Q = = < 0 kj = + a b x x = = x x b b a a a b + = a a b b a + b Feuctegrad der Micung zweier feucten uftengen b a = a b kw = a b = a a b b a + b x x + x = x x x x a b = x x b a = x a x b b b a a ϕ it Vorandene rel. Feucte ϕ ia Rel. Feucte au iagra p Vorandener ruck bar it p ruck für iagra (,05bar) bar ia H Wäreleitung kw Maentro trockene uft kj Entalpiedifferenz älteleitung kw Maentro trockene uft kj Entalpiedifferenz Maentro trockene uft a Maentro a trockene uft Maentro b trockene uft b Entalpie der Micung Entalpie de Maentro a a Entalpie de Maentro b b x x x a b Feuctegrad der Micung Feuctegrad de Maentro a Feuctegrad de Maentro b Maentro trockene uft Maentro a trockene uft a Maentro b trockene uft b kj Entalpie de Maentro a a kj Entalpie de Maentro b b Maentro trockene uft Maentro a trockene uft a Maentro b trockene uft b x a x b Feuctegrad de Maentro a Feuctegrad de Maentro b

11

12

13

14

15

16

17

18

Rechnung wurde das gerundete Ergebnis verwendet. Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

Rechnung wurde das gerundete Ergebnis verwendet. Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen! Löungen zur chriftlichen Prüfung au VO Kraftwerke a..0 Hinwei: Bei den Berechnungen wurden alle Zwichenergebnie in der technichen Notation (Forat ENG) dargetellt und auf drei Nachkoatellen gerundet. Für

Mehr

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8 Der einface Dapfproze Clauiu Rankine Proze Seite von 8 darin ind e die Exergie, b die Anergie und U die Ugebungteperatur Wie vergleicen zunäct den Carnot cen η C Prozewirkunggrad it de Clauiu-Rankine Prozewirkunggrad

Mehr

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt.

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt. Kraftwandler Die Energie al Eraltunggröße Ein Kraftwandler it eine mecanice Anordnung, die eine Kraft wirken lät, welce größer it al die Kraft, die aufgewendet wird (oder umgekert). Beipiel: lacenzug Aufgewendete

Mehr

Rechnung wurde das gerundete Ergebnis verwendet. Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

Rechnung wurde das gerundete Ergebnis verwendet. Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen! Löungen zur chriftlichen Prüfung au VO Kraftwerke a 28.04.205 Hinwei: Bei den Berechnungen wurden alle Zwichenergebnie in der technichen Notation (Forat ENG) dargetellt und auf drei Nachkoatellen gerundet.

Mehr

1. Stirlingmotor a. Skizzieren Sie das pv- und das TS-Diagramm und beschriften Sie die relevanten Punkte.

1. Stirlingmotor a. Skizzieren Sie das pv- und das TS-Diagramm und beschriften Sie die relevanten Punkte. Löungen zur chriftlichen Prüfung au VO Kraftwerke a 08.0.2017 Hinwei: Bei den Berechnungen wurden alle Zwichenergebnie in der technichen Notation 1 (Forat ENG) dargetellt und auf drei Nachkoatellen gerundet.

Mehr

Energietechnik Klausur WS 2007/2008

Energietechnik Klausur WS 2007/2008 Energietechnik Klauur WS 007/008 Prof. Dr. G. Wilhelm Name: Vorname: Matr.-Nr.: Aufgabenteil / 00 Minuten Da Aufgabenblatt mu unterchrieben und zuammen mit den (nummerierten und mit Namen verehenen) Löungblättern

Mehr

Physikalische Formeln

Physikalische Formeln Phyikaliche Foreln Oliver Gebele, dg2og@darc.de 3. Januar 2009 Allgeeine Dichte: ρ = V Dichte = Mae Voluen ρ V 3 3 Elatiche Verforung (Hookeche Geetz): F = D Kraftänderung = Federkontante Längenänderung

Mehr

HP 2003/04-3: Blockschaltbild eines Dampfkraftwerks:

HP 2003/04-3: Blockschaltbild eines Dampfkraftwerks: HP 003/04-3: Blockschaltbild eines Dampfkraftwerks: HP 003/04-3: Blockschaltbild eines Dampfkraftwerks: Teilaufgaben: 1 Welche Energieformen werden den Bauteilen Dampferzeuger, Turbine, Generator und Verbraucher

Mehr

Varianten der Wärme- und Stromproduktion aus Brennstoffen V

Varianten der Wärme- und Stromproduktion aus Brennstoffen V Dr. Martin Zogg WKK_StromV1.MCD 02.04.26 / Seite 1 Varianten der Wärme- und Stromproduktion au Brenntoffen V.020416 Berechnungannahmen zu produzierende elektriche Leitung : 25kW zu produzierende Wärmeleitung

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkann http://brinkann-du.de Seite 1 5.11.013 Obertufe: Ergebnie und auführliche Löungen zu Arbeit, Leitung und de Wirkunggrad VI Ergebnie: E1 E E3 E4 E5 E6 Wa wäre da für eine Machine, die einen

Mehr

konstant. Für den Saugmotor (Index 0) wurden bereits folgende Daten ermittelt: = 216 N Drehzahl n = 4000 min -1 Kraftstoffvolumenstrom V

konstant. Für den Saugmotor (Index 0) wurden bereits folgende Daten ermittelt: = 216 N Drehzahl n = 4000 min -1 Kraftstoffvolumenstrom V Berechnung der Motorleitung Ein 6-Zylinder-4-kt-Ottootor oll in drei verchiedenen Vrinten uf eine Motorrüftnd betrieben werden: l Sugverion 2 it echniche der 3 it Abgturbolder In llen drei Fällen eien

Mehr

1. Zulassungsklausur in "Technischer Thermodynamik 2" am im Sommersemester Teil

1. Zulassungsklausur in Technischer Thermodynamik 2 am im Sommersemester Teil Zulassungsklausur in "Tecniscer Termodynamik " am 6998 im Sommersemester 98 Teil Es sind keine Hilfsmittel zugelassen Rictige Antworten sind mit dokumentenectem Stift anzukreuzen Falsc beantwortete Aufgaben

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II NAME, Vorname Matr.-Nr. Studiengang ÈÖÓ º Öº¹ÁÒ º º Ë Ñ ØÞ Prüfung am 0. 03. 201 im Fac Termodynamik II Fragenteil one Hilfsmittel erreicbare Punktzal: 20 Dauer: 1 Minuten Regeln Nur eine eindeutige Markierung

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: /

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / Schriftliche Prüfung aus VO Kraftwerke am 23.01.2017 KW 01/2017 Name/Vorname: / Matr.-Nr./Knz.: / 1. CO 2 Vergleich (25 Punkte) Zur Erzeugung von elektrischer Energie stehen zwei Kraftwerkstypen zur Auswahl:

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

R. Brinkmann Seite Lösungen zum Arbeitsblatt Energiebedarf im Haushalt

R. Brinkmann  Seite Lösungen zum Arbeitsblatt Energiebedarf im Haushalt R. Brinkann http://brinkann-du.de Seite 1 5.11.01 Lösungen zu Arbeitsblatt Energiebedarf i Haushalt Aufgabe: 1 Welche Masse in kg hat ein Raueter Buchenholz? Wie teuer sind 100 kg, wenn 1 r kostet? kg

Mehr

Klausur Strömungsmaschinen I SoSe 2012

Klausur Strömungsmaschinen I SoSe 2012 Klauur Strömungmachinen I SoSe 01. Augut 01, Beginn 13:30 Uhr Prüfungzeit: 90 Minutenn Zugelaene Hilfmittel ind: Tachenrechner, Geodreieck, Zeichenmaterial Andere Hilfmittel, inbeondere: Alte Klauuren

Mehr

Übung 11 Physikalische Eigenschaften der Metalle

Übung 11 Physikalische Eigenschaften der Metalle Werkstoffe und Fertigung II Prof.Dr. K. Wegener Soerseester 2007 C1 Nae Vornae Legi-Nr. Übung 11 Physikalische Eigenschaften der Metalle Musterlösung usgabe: 29.05.2007 bgabe: 31.05.2007 Institut für Werkzeugaschinen

Mehr

10 Trocknung fester Stoffe

10 Trocknung fester Stoffe oknung feste toffe ösungen Aufgabe (leit Bestimmung de Beaungstempeatu Enegiebilanz (6.4 A m A A p ( p, p R / ~ v B v B Unte Beüksitigung de Analogie zwisen Enegie- und toffaustaus egibt si Gl.(6.7 B p

Mehr

Elektrotechnik Formelsammlung. Andreas Zimmer SS 98

Elektrotechnik Formelsammlung. Andreas Zimmer SS 98 Elektrotechnik Formelammlung Andrea Zimmer SS 98 nhaltverzeichni. Gleichtrom. Stromtärke und elektr. adung... 5. Sannung... 5. Ohmche Geetz... 5.4 Energie, Arbeit und eitung... 5.5 Wirkunggrad... 5.6 Stromdichte...

Mehr

Name. Vorname. Legi-Nr.

Name. Vorname. Legi-Nr. Dimensionieren Prof. Dr. K. Wegener Name Vorname Legi-Nr. Übung 7: Hydrodynamisches Radialgleitlager Voraussetzungen: Lagerungen Problemstellung Für ein hydrodynamisches Radialgleitlager analog zu den

Mehr

Vorläufige Fassung keine Weitergabe! Keine Gewährleistung auf Vollständigkeit und Richtigkeit! Klausur vom , Seite 1

Vorläufige Fassung keine Weitergabe! Keine Gewährleistung auf Vollständigkeit und Richtigkeit! Klausur vom , Seite 1 Tecnice Hydroecanik - Klauuruterlöung Vorläufige Faung keine Weitergabe! Keine Gewärleitung auf Volltändigkeit und Rictigkeit! Klauur o.0.009, Seite. ufgabe (0 Punkte) ) Waertand bleibt gleic e wird lediglic

Mehr

Schriftliche Abschlussprüfung Physik Realschulabschluss Schuljahr 2001/2002. Musterlösungen

Schriftliche Abschlussprüfung Physik Realschulabschluss Schuljahr 2001/2002. Musterlösungen Schriftliche Abchluprüfung Phyik Realchulabchlu Schuljahr 00/00 Muterlöungen Hinweie:. Die vorliegenden Löungen ind Muterlöungen von Uwe Hempel, Georg-Schumann- Schule in Leipzig, und keine offiziellen

Mehr

Ausführung von Kesselanlagen

Ausführung von Kesselanlagen Ausfürung von Kesselanlagen Speisewassereintritt Econoiser 3 Dapftroel 4 Verdapfer 5 Verteiler 6 Asce 7 Kole und Verbrennungsluft 8 Überitzer 9 Friscdapfaustritt 0 Abgas Uwälzpupe Wasserabsceidung a: Naturulaufkessel

Mehr

+\GUDXOLN.ODXVXUYRP)HEUXDU

+\GUDXOLN.ODXVXUYRP)HEUXDU +\GUXOLN.OXVXUYRP)HEUXU u einem Seiceree wird durc eine m lange Rorleitung Waer in ein Reeroir geleitet. ie Oberfläcen de Seiceree und de Reeroir ind er groß. a) Wie groß it der urcflu Q om Seiceree um

Mehr

Brennkammer. 12 Brenner. Plenum. 1 Berechnen Sie die Molmasse M F des Erdgases unter Anwendung des J

Brennkammer. 12 Brenner. Plenum. 1 Berechnen Sie die Molmasse M F des Erdgases unter Anwendung des J 1 Berechnen Sie die Molmasse M F des Erdgases unter Anwendung des J idealen Gasgesetzes (R u = 8314 K ) sowie den massebezogenen Heizwert H u und schließlich den Brennstoffmassenstrom der Brennkammer ṁ

Mehr

I A Ampere 1 A = 1 V. T, K Kelvin 273,15 C 0 K T(K) = t + 273,15 K. C Grad Celcius. 1 kj kg C, 1 kj. 1 kcal m 2 h C m 2 K

I A Ampere 1 A = 1 V. T, K Kelvin 273,15 C 0 K T(K) = t + 273,15 K. C Grad Celcius. 1 kj kg C, 1 kj. 1 kcal m 2 h C m 2 K geeie Gruage orezeiche u Eiheite Größe eiche Eiheit Hiweis ecke s, Meter = = c = k = '' = 5,4 uch ie Bezeichug äge ist ögich. ostärke, pere = Ω Trägheitsoet J kg Bezeichug Masseträgheitsoet ist icht ehr

Mehr

Klausur Strömungsmaschinen I WS 2011/12

Klausur Strömungsmaschinen I WS 2011/12 Klauur Strömungmachinen I WS 2011/12 28. Februar 2012, Beginn 14:00 Uhr Prüfungzeit: 90 Minuten Zugelaene Hilfmittel ind: Vorleungkript (einchließlich handchriftlicher Notizen) und zugehörige Abbildungen

Mehr

Physik-Praktikum: VAK

Physik-Praktikum: VAK Pyik-Praktiku: VAK. Veruc: Eicung de Pirani-Druckeer Ein Pirani-Manoeter oll it Hilfe eine McLeod-Manoeter geeict werden. Aufbau An die Drecieberue werden über einen Sclauc ein Pirani-Manoeter und ein

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

Multivariate Verteilungen und Copulas

Multivariate Verteilungen und Copulas Multivariate Verteilungen und Copulas Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Kolbenmaschinen 3 Kenngrößen und Kennfelder Herzog

Kolbenmaschinen 3 Kenngrößen und Kennfelder Herzog 3 Kenngrößen und Kennfelder 3.1 Kenngrößen 3.1.1 Indizierte Mitteldruck 3.1.2 Indizierte Leistung 3.1.3 Indizierter (innerer) Wirkungsgrad 3.1.4 Gütegrad 3.1.5 Effektive Leistung und effektiver Wirkungsgrad

Mehr

"Strömungsmaschinen - Francis-Turbine: Auslegung und Darstellung der Geschwindigkeitsdreiecke"

Strömungsmaschinen - Francis-Turbine: Auslegung und Darstellung der Geschwindigkeitsdreiecke HTBL Wien 0 Laufrad einer Franci-Turbine Seite von 7 DI Dr. techn. Klau LEEB klau.leeb@chule.at "Strömungmachinen - Franci-Turbine: Aulegung und Dartellung der Gechwindigkeitdreiecke" Mathematiche / Fachliche

Mehr

Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten

Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten 1 / 20 Lineares Gleichungssystem Ax = f, n A[i, j]x j = f i j=1 für i = 1,..., n Voraussetzungen Matrix A sei symmetrisch: A[i, j] =

Mehr

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II

NAME, Vorname Matr.-Nr. Studiengang. Prüfung am im Fach Thermodynamik II NAME, Vornae Matr.-Nr. Studiengang Prof. Dr.-Ing. G. Schitz Prüfung a 03. 0. 2013 i Fach Therodynaik II Fragenteil ohne Hilfsittel erreichbare Punktzahl: 20 Dauer: 20 Minuten 1. ( Punkte) Skizzieren Sie

Mehr

Ausgangsdaten. Holzzusammensetzung (Buche): kg kg. kg kg. kg B := kg n kg B := kg. Literaturwerte für Holzgas: m 3

Ausgangsdaten. Holzzusammensetzung (Buche): kg kg. kg kg. kg B := kg n kg B := kg. Literaturwerte für Holzgas: m 3 Ausgangsdaten Holzzusammensetzung (Buche): c B := 0.47 h B := 0.062 o B := 0.447 n B := 0.0022 s B := 0.0002 Literaturwerte für Holzgas: r CO := 0.2 m3 r H.2 := 0.2 m3 r CO2 := 0.13 m3 r N2 := 0.45 m3

Mehr

1 F r e q u e n t l y A s k e d Q u e s t i o n s Was ist der Global Partner Event Calendar (GPEC)? D e r g l o b a l e V e r a n s t a l t u n g s k a l e n d e r f ü r P a r t n e r i s t e i n w i c

Mehr

Formelsurium E Technik Stand:

Formelsurium E Technik Stand: : nur handchriftlich in den gekennzeichneten Feldern, Textmarker ind überall zuläig zuläig ind weitere Formeln, tichwortartige Sachverhalte, Skizzen nicht zuläig ind komplette Herleitungen, Altaufgaben

Mehr

Dimensionieren 2 Prof. Dr. K. Wegener Prof. Dr. M. Meier

Dimensionieren 2 Prof. Dr. K. Wegener Prof. Dr. M. Meier Dimensionieren Prof. Dr. K. Wegener Prof. Dr. M. Meier Name Vorname Legi-Nr. Engineering-Case: Hydrodynamisches Radialgleitlager Voraussetzungen: Lagerungen Problemstellung Für ein hydrodynamisches Radialgleitlager

Mehr

Industrielle ECOP Wärmepumpe und Kältemaschine mit Edelgaskreislauf

Industrielle ECOP Wärmepumpe und Kältemaschine mit Edelgaskreislauf Großwärmepumpen Projekte, Erfahrungen und Perpektiven VDI-Forum 05 - Linz, 6. April 05 Indutrielle ECOP Wärmepumpe und Kältemachine mit Edelgakreilauf ECOP echnologie GmbH,Wien Bernhard Adler, CO Sebatian

Mehr

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1 Aufaben zu Ipul. Zwei Kueln it den Maen 5,0 k und 0 k toßen it den Gecwindikeiten 5,0 / und 8,0 / erade eeneinander. Wie cnell ind die Kueln nac de Stoß, wenn dieer a) elatic b) unelatic it? c) Wieiel

Mehr

Aufgabe 1 ca. 110 Punkte Bitte alles LESBAR verfassen!!!

Aufgabe 1 ca. 110 Punkte Bitte alles LESBAR verfassen!!! Prof. Dr.-Ing. Victor Gheorghiu S-Klauur vo.0.07 Nae / Matrikel-Nr.: Aufgabe ca. 0 Punkte Bitte alle LESBAR verfaen!!! Durch ein Rohr ollte Preluft it eine Überdruck von p 0ü : 00 Pa, eperatur t 0 : 0

Mehr

isochor isobar isotherm isentrop

isochor isobar isotherm isentrop evt. benötigte Kontanten: Zuatzübungen zur. Klaenarbeit in ABKA Luftdruck:,0 bar Außenteeratur: 0,0 o C Waer c 4,9 kj/(kg K) Dichte kg/d Theroöl c,5 kj/(kg K) Dichte 0,7 kg/d Luft: R i 87,0 J/(kg K) c,004

Mehr

Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019 H.-J. Stoppel, Beliefs und selbstreguliertes Lernen, Studien zur theoretischen

Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019 H.-J. Stoppel, Beliefs und selbstreguliertes Lernen, Studien zur theoretischen Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019 H.-J. Stoppel, Beliefs und selbstreguliertes Lernen, Studien zur theoretischen und empirischen Forschung in der Mathematikdidaktik,

Mehr

Der Energiefluss geschieht durch natürlichen Zufluss, durch nächtliches Pumpen und Energiegewinn am Tag. E pot = E Zufluss + E Pumpen

Der Energiefluss geschieht durch natürlichen Zufluss, durch nächtliches Pumpen und Energiegewinn am Tag. E pot = E Zufluss + E Pumpen 1 Pumpspeicherkraftwerk Der Energiefluss geschieht durch natürlichen Zufluss, durch nächtliches Pumpen und Energiegewinn am Tag. natürlicher Zufluss E Zufluss pro Tag = Q ρ g H t t in Stunden Pumpen E

Mehr

Oberstufe: Ergebnisse und ausführliche Lösungen zu den Aufgaben zu Arbeit, Leistung und dem Wirkungsgrad I

Oberstufe: Ergebnisse und ausführliche Lösungen zu den Aufgaben zu Arbeit, Leistung und dem Wirkungsgrad I R. Brinkann http://brinkann-du.de Seite 1 5.11.013 Obertufe: Ergebnie und auführliche Löungen zu den n zu Arbeit, Leitung und de Wirkunggrad I Ergebnie E1 E E3 E4 E5 E6 E7 Ein Wagen wird it einer kontanten

Mehr

Wie man versteht, wie ein Stromgenerator funktioniert

Wie man versteht, wie ein Stromgenerator funktioniert Perrinröre... Fertige eine aufürlie und gegliederte Verubereibung an. Dazu geört ebenfall eine Saltkizze, die zu erläutern it.... Deute den Veru qualitati. Erläutere au, wie da Magnetfeld geritet ein uß,

Mehr

Kompakte Mengen und Räume

Kompakte Mengen und Räume 1 Analysis I für Physiker WS 2005/06 Kompakte Mengen und Räume Seien (M, d) ein metrischer Raum und K M. Definition (i) K heißt kompakt, falls {x k } K = TF {x kj } {x k } : x kj x K. (ii) K heißt relativ

Mehr

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik Institut für Analysis SS 4 Prof. Dr. Roland Scnaubelt 8.7.4 Dipl.-Mat. Leonid Caicenets Höere Matematik II für die Facrictung Pysik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 68: Wir arbeiten den Folgenden

Mehr

Institut für Energietechnik, Professur Verbrennung, Wärme- und Stoffübertragung. Energietechnik. Kondensation, Rückkühlung Kraft-Wärme-Kopplung

Institut für Energietechnik, Professur Verbrennung, Wärme- und Stoffübertragung. Energietechnik. Kondensation, Rückkühlung Kraft-Wärme-Kopplung Institut für Energietechnik, Professur Verbrennung, Wärme- und Stoffübertragung Energietechnik Kondensation, Rückkühlung Kraft-Wärme-Kopplung - Kondensator / Kondensation - Dr.-Ing. Marco Klemm Professur

Mehr

1. Beispiel - Druckluftspeicher

1. Beispiel - Druckluftspeicher 1. Beispiel - Druckluftspeicher Gewebefilter mit Druckstoßabreinigung (für 180000 Nm³/h Abgas)- Druckluftspeicher Druckluftdruck Betrieb (max) p 0,6 MPa Erforderliches Speichervolumen V s 2 m³ Gesucht:

Mehr

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung Mecanice nergieforen (Kurzüberblick) nergie it augeprocen cwierig, den Begriff nergie in allgeeiner For zu erklären. Tatäclic it e ein Kuntbegriff, den ic die Pyiker augedact aben, u ein Syte in die unübercaubare

Mehr

Aufgaben zur Physikschulaufgabe ==================================================================

Aufgaben zur Physikschulaufgabe ================================================================== Aufgaben zur Pyikculaufgabe ================================================================== 1. Ein LKW-Farer bremt von 108 km gleicmäßig über eine Entfernung von 10m auf Null erunter. a) Berecne die

Mehr

tgt HP 2007/08-2: Heizungsanlage

tgt HP 2007/08-2: Heizungsanlage tgt HP 007/08-: Heizungsanlage Ein Wohngebäude wird durch eine Warmwasserheizung beheizt und erfordert eine maximale Wärmeleistung von 50 kw. Wärmepumpe Anlagenschema Stoffwerte für leichtes Heizöl: Dichte:

Mehr

Funktionsbeschreibung

Funktionsbeschreibung Funktionsbeschreibung Die vorliegende Baugruppe dient zur Erregung eines Schwingsiebes. Wird die vorgesehene Drehzahl und das Drehmoment auf die Antriebswelle übertragen, erzeugt die exzentrisch angeordnete

Mehr

Skalierung von Gasturbinenbrennkammern

Skalierung von Gasturbinenbrennkammern Skalierung von Gasturbinenbrennkammern Antrittsvorlesung Prof. Dr.-Ing. Nikolaos Zarzalis Engler-Bunte-Institut/Verbrennungstechnik Universität Karlsruhe (TH) Prof. Dr.-Ing. N. Zarzalis Gliederung: 1.

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V 2 = V 3 = 0,3 Liter. V 1 = V 4 = 1,7 Liter

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V 2 = V 3 = 0,3 Liter. V 1 = V 4 = 1,7 Liter Schriftliche Prüfung aus VO Kraftwerke am 08.03.2017 KW 03/2017 Name/Vorname: / Matr.-Nr./Knz.: / 1. Stirlingmotor (25 Punkte) Ein Stirlingmotor soll zur Stromerzeugung eingesetzt werden. Es wird ein 4-poliger

Mehr

KOBER'SCHE VERLAGSBUCHHANDLUNG BASEL LEIPZIG 1929

KOBER'SCHE VERLAGSBUCHHANDLUNG BASEL LEIPZIG 1929 03. DAS BUCH VOM JENSEITS DAS BUCH vom JENSEITS KOBER'SCHE VERLAGSBUCHHANDLUNG BASEL LEIPZIG 1929 COPYRIGHT BY KOBER'SCHE VERLAGSBUCHHANDLUNG BASLE 1929 BUCHDRUCKEREI WERNER RIEHM IN BASEL DAS BUCH VOM

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

1.4 Die Dirac-Gleichung

1.4 Die Dirac-Gleichung .4 Die Dirac-Gleichung Suche Differentialgleichung. Ordnung in der Zeit, relativistische Kovarianz. Ordnung auch in Ortskoordinaten 2. Vorlesung, 9.4.2 H rel Ψ = i Ψ t (ħ = c = ) zu bestimmen Ansatz: H

Mehr

Kamin. Saugzug. Luvo. Kessel. Luft Frischlüfter. Kohle. Berechnungen

Kamin. Saugzug. Luvo. Kessel. Luft Frischlüfter. Kohle. Berechnungen 1 Berechnungen Bei dem zu berechnenden Kraftwerk handelt es sich um ein konventionelles überkritisches Kohlekraftwerk. In einem Kessel wird Steinkohle verbrannt und damit heißes Rauchgas erzeugt, welches

Mehr

TECHNISCHE ANLEITUNG. Technische Daten TYP Modelle: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL

TECHNISCHE ANLEITUNG. Technische Daten TYP Modelle: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL .09.259D 3.0.2008 Y 350 VAOX Y 350 Modelle: VAOX 75 VAOX 75 V VAOX 95 VAOX 95 V Für den uftautauch in Wohnungen von Einfailienhäuern, Reihenhäuern und Mehrfailienhäuern Autauch der Zuluft/Abluft it Wärerückgewinnung

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Intitut für Thermodynamik 11. Augut 2010 Techniche Univerität Braunchweig Prof. Dr. Jürgen Köhler Klauur zur Vorleung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang mu

Mehr

Lösung Übungsserie 1

Lösung Übungsserie 1 Institut für Energietecnik Laboratorium für Aerotermocemie und Verbrennungssysteme Prof. Dr. Konstantinos Bouloucos Lösung Übungsserie 1 Aufgabe 1 Die folgende Aufgabe beandelt den Vergleic zwiscen zwei

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Praxisbuch Fernwärmeversorung

Praxisbuch Fernwärmeversorung Praxisbuch Fernwärmeversorung Fallstudie 10.3 Integriertes Modell Fernwärme Erzeugungskosten Grundlast-Auskopplung aus Großkraftwerken Dampf BK, Dampf SK, Gas GuD und Spitzenlast aus Kesseln Disclaimer:

Mehr

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple Übungssunterlagen Energiesysteme I Prof. Dr.-Ing. Bernd Epple 1 1. Allgemeine Informationen Zum Bearbeiten der Übungen können die Formelsammlungen aus den Fächern Technische Thermodynamik 1, Technische

Mehr

Chapter 1 : þÿ b e t a t h o m e K o n t a k t n u m m e r u k c h a p t e r

Chapter 1 : þÿ b e t a t h o m e K o n t a k t n u m m e r u k c h a p t e r Chapter 1 : þÿ b e t a t h o m e K o n t a k t n u m m e r u k c h a p t e r þÿ d a s b e s t e L i v e w e t t e n A n g e b o t? B e t - a t - h o m e L o g o, 7 6 %, g u t e r D u r c h s c h n i t

Mehr

12 Reihen mit beliebigen abzählbaren Indexmengen

12 Reihen mit beliebigen abzählbaren Indexmengen 12 Reihen mit beliebigen abzählbaren Indexmengen 12.2 Großer Umordnungssatz 12.3 Umordnungssatz für Doppelreihen 12.4 Produktreihe In 3 waren endliche Summen j J a j mit Hilfe einer Bijektion ϕ zwischen

Mehr

Klausur Fluidenergiemaschinen Fragen H Lösung:

Klausur Fluidenergiemaschinen Fragen H Lösung: Klausur Fluidenergiemaschinen (mit Lösungen).0.00 Fragen. Wasser soll mit einer Pumpe von einem unteren Becken in ein oberes Becken gefördert werden. Beide Becken sind offen. a) Stellen Sie qualitativ

Mehr

Einführung in HTML. Hui Dai. WS05/ Hui Dai 1

Einführung in HTML. Hui Dai. WS05/ Hui Dai 1 Einführung in HTML Hui Dai Hui Dai dai@in.tum.de 1 Elemente einer Internetseite: Textabsätze Farben Layout, d.h. Anordnung und Ausrichtung der einzelnen Elemente Überschriften Listen Tabellen Links Grafiken

Mehr

Stochastische Trends und Unit root-tests

Stochastische Trends und Unit root-tests Stochastische Trends und Unit root-tests Stichwörter: Random walk stochastischer Trend unit root Trend-Stationarität Differenz-Stationarität Dickey-Fuller (DF-)Test Augmented Dickey-Fuller (ADF-)Test o1-15.tex/0

Mehr

FORUM BRAUEREI. Jahresinhaltsverzeichnis Jahrgang. Fachzeitschrift für Brauereien, Mälzereien, Getränkeindustrie und deren Partner

FORUM BRAUEREI. Jahresinhaltsverzeichnis Jahrgang. Fachzeitschrift für Brauereien, Mälzereien, Getränkeindustrie und deren Partner RURI ORU ü G P 1-1 16 1 J IN 179-466 J 16 1 J ü G P I L j 1 J J J j I N I I 9 9 ü P) J ü j J H - L ü L) R R ß 1-1 T ) 4 8-4 Tx ) 4 8-1 -: @- R -I J H-J R O H ) J R P N G R Q I - L ü - RURI ORU J 16 1 J

Mehr

Rechnung wurde das gerundete Ergebnis verwendet. Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

Rechnung wurde das gerundete Ergebnis verwendet. Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen! Lösungen zur schriftlichen Prüfung aus VO Kraftwerke am 10.10.2016 Hinweis: Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation 1 (Format ENG) dargestellt und auf drei Nachkommastellen

Mehr

Verluste und Wirkungsgrad bei Dampfturbinen

Verluste und Wirkungsgrad bei Dampfturbinen Reier J. Verlte n Wirknggrae bei Dampftrbinen 000/001 Verlte n Wirknggra bei Dampftrbinen Wirknggrae, Entalpieifferenzen, Dampfrcatz, Leitng Die Leitng erält man a em gegebenen Entalpiegefälle n em Dampfrcatz,

Mehr

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I Leibniz Univerität Hannover Intitut für urboahinen und Fluid-Dynaik Prof. Dr.-Ing. J. Seue lauur Herbt 7 Ströungehanik I Bearbeitungdauer 9 in zugelaene Hilfittel: - ahenrehner (niht rograierbar) - FD-Forelalung

Mehr

Rechnung wurde das gerundete Ergebnis verwendet. Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

Rechnung wurde das gerundete Ergebnis verwendet. Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen! Prüfung vom 05.03.04 KW - 04 Lösungen zur schriftlichen Prüfung aus VO Kraftwerke am 05.03.04 Hinweis: Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation (Format ENG) dargestellt

Mehr

11. Physikolympiade des Landes Sachsen-Anhalt Schuljahr 2014/ Endrunde Lösungen Klasse 10

11. Physikolympiade des Landes Sachsen-Anhalt Schuljahr 2014/ Endrunde Lösungen Klasse 10 . Phyikolypiade de Lande Sachen-Anhalt Schuljahr 04/05 - Endrunde Löungen Klae 0 inweie für die Korrektoren: - Kot eine Schülerin oder ein Schüler bei der Bearbeitung der Aufgaben auf eine anderen al de

Mehr

Becker: Thermodynamik (WS14/15) Zammefassung von Thomas Welter Stand:

Becker: Thermodynamik (WS14/15) Zammefassung von Thomas Welter Stand: Becker: Thermdynamik (WS4/5 Zammefassung vn Thmas Welter Stand: 9.0.5 Arten vn thermdynamischen Systemen ffen Austausch vn Masse und Wärme/Arbeit geschlssen Austausch vn Wärme/Arbeit, kein Masseaustausch

Mehr

Besprechung am

Besprechung am PN2 Einführung in die Phyik für Chemiker 2 Prof. T. Weitz SS 2017 Übungblatt 8 Übungblatt 8 Beprechung am 03.07.2017 Aufgabe 1 Elektromotor. Ein Elektromotor wandelt elektriche Energie in mechaniche Energie

Mehr

km km km m h h h s = 20 = 5, 56 Sie fliegen in einem Flugzeug in 2000 m Höhe. Unglücklicherweise fallen Sie heraus.

km km km m h h h s = 20 = 5, 56 Sie fliegen in einem Flugzeug in 2000 m Höhe. Unglücklicherweise fallen Sie heraus. Aufgabe ME: Aufgaben Mechanik Sie itzen in Ihre Auto (Länge 5) und fahren it 00 k/h. 0 vor Ihnen fährt ein LKW (Länge 0 ) it 80 k/h. Sie wollen den LKW überholen und 50 vor ih wieder eincheren. Wie lange

Mehr

Einführung. 2 Hydrostatik der Gase. 1 Hydrostatik der Flüssigkeiten. Sieben physikalische Basis-Größen. 2.1 Gesetz von Boyle-Mariotte.

Einführung. 2 Hydrostatik der Gase. 1 Hydrostatik der Flüssigkeiten. Sieben physikalische Basis-Größen. 2.1 Gesetz von Boyle-Mariotte. Foresaun Physik / Fakutät II / c Hochschue Hannover Version 1. uni 016 Einführun Hydrostatik der Gase. Sieen physikaische Basis-Größen. t [s] Zeit in Sekunden s [] Strecke in Metern [k] Masse in Kiora

Mehr

2 Stationarität. Strikte Stationarität

2 Stationarität. Strikte Stationarität 2 Stationarität. Strikte Stationarität Die in 1 benutzten Begriffe sind noch zu präzisieren : Definition 2.1. a) Ein stochastischer Prozess {X t } t T heißt strikt stationär, falls für je endlich viele

Mehr

Musterlösung Aufgabe 1: Wärmepumpe / Klimaanlage

Musterlösung Aufgabe 1: Wärmepumpe / Klimaanlage Klauur Thermodynamik II (16.03.2017) 1 Muterlöung Aufgabe 1: Wärmepumpe / Klimaanlage Teilaufgabe a) 3 Punkte Wärmeübertrager 2 bendet ich auerhalb und Wärmeübertrager 1 innerhalb de Haue. Der WÜ, der

Mehr

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad R. Brinkann http://brinkann-du.de Seite 5..03 FOS: Löungen Aufgaben zu Arbeit, Energie, Leitung und de Wirkunggrad. Welche Größen betien die Arbeit in der Phyik? Wie wird die Arbeit berechnet und in welchen

Mehr

Kapitel 5 Musterlösungen

Kapitel 5 Musterlösungen aitel Muterlöungen Üb. -: Rohrkrüer it eitblehen ge.:.. H. geg.: D 00 D 00 z z 00 V 0 0 (rüervoluen) 0 gra gra V 0 H O 0 kg bar (Druk in Eintrittebene) a 0bar (ußenruk) örerkraft auf en rüer it Einbauten

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkann http://brinkann-du.de Seite 1 5.11.013 Obertufe: Ergebnie und auführliche Löungen zu Arbeit, Leitung und de Wirkunggrad III Ergebnie: E1 E E3 E4 E5 E6 Ein Pingpongball wird auf eine harte Tichplatte

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter Schriftliche Prüfung aus VO Kraftwerke am 19.04.2016 KW 04/2016 Name/Vorname: / Matr.-Nr./Knz.: / 1. Stirlingmotor (25 Punkte) Ein Stirlingmotor soll zur Stromerzeugung in einem 50 Hz Netz eingesetzt werden.

Mehr

Normzylinder und Leichtlaufzylinder Profilzylinder nach DIN ISO Technische Kenngrößen. Typenbezeichnung Zylinder DVP M B / LK

Normzylinder und Leichtlaufzylinder Profilzylinder nach DIN ISO Technische Kenngrößen. Typenbezeichnung Zylinder DVP M B / LK Änderungen vorbehalten Ausgabe 02/14 Normzylinder und Leichtlaufzylinder Profilzylinder nach DIN ISO 15552 Universeller Einsatz durch Anpassung an DIN ISO 15552. Vier Nuten am Zylinderrohr ermöglichen

Mehr

Finanzzeitreihen Teil 2

Finanzzeitreihen Teil 2 Teil 2 Mathematisches Institut der Universität zu Köln Wintersemester 09/10 Betreuung: Prof. Schmidli, J. Eisenberg Literatur : Quantitative Risk Management Wu Jui Sun Contents 1 Wiederholung 2 1.1 Value

Mehr

Splitaggregate TH mit hermetischen Verdichtern

Splitaggregate TH mit hermetischen Verdichtern Splitaggregate TH mit hermetischen Verdichtern Die Splitaggregate der Serie TH bestehen aus kompakten Verflüssigungseinheiten mit Wetterschutzgehäuse, elektronischer Temperatursteuerung und seperaten Verdampfern.

Mehr

Wärmelehre Teil 2.

Wärmelehre Teil 2. Wärmelehre Teil 2 www.physikdidaktik.uni-karlsruhe.de 1.9 Entropie als Energieträger 1.10 Der Zusammenhang zwischen Energie- und Entropiestrom 1.11 Entropieerzeugung durch Entropieströme 1.12 Wärmemotoren

Mehr

Willkommen. welcome. bienvenu. Raumlufttechnik hx-diagramm Energierückgewinnung und Energieeffizienztechnologien. Dipl.-Ing.

Willkommen. welcome. bienvenu. Raumlufttechnik hx-diagramm Energierückgewinnung und Energieeffizienztechnologien. Dipl.-Ing. Willkommen bienvenu welcome Raumlufttechnik hx-diagramm Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik Dipl.-Ing. Christian Backes backes@howatherm.de Prof. Dr.-Ing. Christoph

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkann http://brinkann-du.de Seite 1 5.11.013 Obertufe: Ergebnie und auführliche Löungen zu Arbeit, Leitung und de Wirkunggrad V Ergebnie E1 E E3 E4 E5 E6 E7 Wie chnell fuhr der Autofahrer, der bei

Mehr

Welche Informationen N e w s K o mpa s s G mb H s a m melt und wie wir die D aten verwenden

Welche Informationen N e w s K o mpa s s G mb H s a m melt und wie wir die D aten verwenden Daten s chutzinformation V i el e n D a n k f ür I hr I nt e r e s s e a n u n s e r e r W e b s it e u n d u n s e r e A n g e b o t e s o w i e I hr V e rtr a u e n i n u n - s e r U n t e r n e h m

Mehr

( ) ( ) Steigungswiderstand. m car2 := 2250kg v 80 := 80kmh v 120 := 120kmh. α 1 atan( St 1 ) := α 2 := atan St 2 α 3 := atan St 3.

( ) ( ) Steigungswiderstand. m car2 := 2250kg v 80 := 80kmh v 120 := 120kmh. α 1 atan( St 1 ) := α 2 := atan St 2 α 3 := atan St 3. Fahrwidersdtände 1, a Rollreibung f R := 0.01 m car := 1500kg F Z := m car g v 1 := 90 kmh v 2 := 130 kmh F R := f R F Z F R = 147.1 N P roll1 := F R v 1 P roll1 = 3.677 kw P roll2 := F R v 2 P roll2 =

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Betriebsfeld und Energiebilanz eines Ottomotors

Betriebsfeld und Energiebilanz eines Ottomotors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 2016 Praktikum Kraft- und Arbeitsmaschinen Versuch 2 Betriebsfeld und Energiebilanz eines

Mehr