Der Energiefluss geschieht durch natürlichen Zufluss, durch nächtliches Pumpen und Energiegewinn am Tag. E pot = E Zufluss + E Pumpen

Größe: px
Ab Seite anzeigen:

Download "Der Energiefluss geschieht durch natürlichen Zufluss, durch nächtliches Pumpen und Energiegewinn am Tag. E pot = E Zufluss + E Pumpen"

Transkript

1 1 Pumpspeicherkraftwerk Der Energiefluss geschieht durch natürlichen Zufluss, durch nächtliches Pumpen und Energiegewinn am Tag. natürlicher Zufluss E Zufluss pro Tag = Q ρ g H t t in Stunden Pumpen E Pumpen = P Pumpen t = P elektrisch η el η Rohr t potentielle Energie Generation pro Jahr 1.1 Gestehungskosten E pot = E Zufluss + E Pumpen E gen = E pot η gen ( ) h k gesamt = k fest + k bew k fest = p a P el η E gen k bew = k b E Pumpen E gen Kostenrechnung P max Höchstlast (max. geford. Leistung) P E Engpassleistung (max abgebb. Leistung) r Reservefaktor P inst installierte Leistung e Eigenbedarfsfaktor b Ausbaufaktor E gelieferte Energiemenge P mittel mittlere Leistung t b Benutzungsdauer der Höchstlast m Belastungsfaktor Anschlusswert P An r = P E P max 1 b = P inst = r P max 1 e 1 E = P mittel = E T m = P mittel E = P max P max T = t b T < 1 t b = e = P inst P E 1 P inst T 0 P (t) dt E P max = m 8760 h 1

2 .1 Kostengleichungen Gesammtkosten G = Feste }{{ Kosten } F + Bewegliche Kosten B F = Jahreskostenfaktor spez. Anlagekosten p a B = Betriebskostenfaktor E = k b P max t b k b Laufwasser-KW Atom-KW Kohle-KW F groß groß klein B klein klein groß G = p a P inst + k b P max t b E Kosten der inst. Leistung K i = G = p a + k b P max t b P inst P inst = p a + k b t b = p a + k b m T b b Kosten der Höchstlast K h = G = p a b + k b t b P max Gestehungskosten einer kwh P inst [ DM ] Jahr k = G E = K h = p a b [ DM ] + k b t b t b kwh k b = k p + b 0 K (Kohle) [ DM ] kw Jahr

3 3 Dampfkraftwerk 3.1 Ablaufsbeschreibung 4-5: Wasser im Kessel auf Siedetemperatur bringen 5-6: Wasser im Kessel verdampfen 6-1: Dampf überhitzen 1-: Mechanische Arbeit in den Turbinen -3: Wärmeabfuhr im Kondensator 3-4: Kompression in der Speisewasserpumpe innerer Wirkungsgrad Turbine: η i = h 1 h h 1 h ad theoretischer Wirkungsgrad: thermischer Wirkungsgrad: η th = h 1 h,ideal h 1 h 4 = η th = h 1 h,real h 1 h 4 in der Turbine umgesetzte Energie dem Dampf zugeführte Energie = η th η i 3

4 3. Tipps zu einer der Prüfungsaufgaben Die Entspannung des Gases in den Turbinen geschieht idealerweise senkrecht nach unten (η = 100%). In der Wirklichkeit durch leichte Schrägen. Die Erhitzung Die Enthalpie läuft ausschließlich auf den Kurvenbögen ab. wird einfach links an der Koordinatenachse abgelesen. Im Zwischenüberhitzer wird nur erhitzt. Der Druck bleibt vom Ausgang der letzten Turbine bis zur nächsten gleich. Dampfwirkungsgrad ist der Quotient aus den erzielten Enthalpiedifferenzen und den idealen (runter bis auf Restwärmeinhalt) η Dampf = (h 1.Turbine rein h 1.Turbine raus ) + (h.turbine rein h.turbine raus ) h 1.Turbine rein h 1.Turbine raus + h.turbine rein h aus dem Kraftwerk raus Carnot-Wirkungsgrad bestimmt den maximal möglichen Wirkungsgrad bei einer Eingangstemperatur von T rein und einer Ausgangstemperatur von T raus : 4 Netzberechnungen 4.1 Impedanzen η Carnot = 1 T raus T rein Meist sind die Impedanzen der Ersatzschaltbilder nicht ausdrücklich gegeben und wollen erst berechnet werden: Z Verbraucher = U N S N,V Z Transformator = u K,T Z Leitung = = U N ( cos ϕ + j 1 (cos ϕ) ) S N,V UN S N,T 1 Anzahl der Leitungen (R + jωl ) Länge mit u K,T als bezogener Kurzschlußspannung. Sind die Impedanzen in einer falschen Spannungsebene, dann muss man sie umrechnen. Hat man sie in 380KV berechnet und sollte eigentlich in 110kV rechnen, dann muss man die Impedanz mit ( ) multiplizieren. 4

5 4. Leistungsdiagramm Eine Übertragungsstrecke ist eine Hintereinanderschaltung mehrerer Leitungen und deshalb sieht ihr ESB auch wie das einer Leitung aus. S = S e j ϕ = P + j Q U ( 1 P Q ) = 1 + j e j ϕ U S B S B wobei die Bezugsleistung S B = 3 U Z = U Z ist Übertragungsimpedanz Z = R + j X = Z e j ψ mit ψ = arctan X R Konstruktion des Diagramms willkürlich Maßstab festlegen (meist 1 =10cm) = auf die Spannung am Leitungsende normieren (die wird mit den 10cm eingezeichnet) ψ aus der Übertragungsimpedanz berechnen Koordinatensystem mit den Achsen P S B und Q S B zeichnen wichtig ist hierbei nur die Orientierung zur vorher eingezeichneten Spannung (ψ zwischen negativer P S B -Achse und Spannung). S B berechnen alle Leistungen auf S B beziehen und einzeichnen den Anfang des Spannungszeiger mit Strecke U1 U e j β ablesen. S S B e j (ψ ϕ) verbinden und die 5

6 4.3 Kurzschlußrechnung Zusätzlich zu berechnende Impedanzen: Z Generator = j e S U N S N Z Netz = j 1, 1 U N S N Kurzschlußimpedanz Z K : Impedanz zwischen Quelle und Fehlerstelle. Hinter den Netz- und Generatorimpedanzen ist eine Quelle U 0 einzuzeichnen. Quellspannung: U 0 = 1, 1 UN 3 Kurzschlußstrom: I K = U 0 Z KS = 1, 1 U N 3 ZKS Stoßkurzschlußstrom: I S = κ I k Einschaltwinkel γ : Phasenlage der Spannung bei Kurzschlußeintritt. 6

7 4.4 Lei(s)tungsverluste Da mit Drehstrom gerechnet wird muss man die Verluste in allen 3 Leitungen berechnen. P ohm = 3 I R 1 Phase 4.5 einzuspeissende Spannung Meißtens ist zwar bekannt, was Herr Verbraucher gerne für eine Spannung hätte, aber mehr auch nicht... Um die Spannung herauszufinden, die das Kraftwerk einspeisen muss Spannungsteiler. Meist hängt dann noch direkt hinter dem Kraftwerk ein Transformator und man muss das ganze auf eine andere Spannungsebene herunterrechnen. 5 Netzregelung 5.1 Regelgrößen 5. Parallelbetrieb Leistungszahl: K = P f Statik: S = Leistungszahl aus Statik: K = 1 K Zwei Netze N 1 und N sind gekoppelt, bei Lastsprüngen kann zwischen Ihnen die Austauschleistung P A fließen. n n P i = K i f i=1 i=1 f f N P P N P N f N Primärregelung: P = P 1 + P P < P, f f N und P A > 0 Sekundärregelung: f = f N und P A = 0 Berechnung bei Lastanstieg um P an N : Primärregelung: P A = P 1 N Sekundärregelung: N ändert Leistung zu P,neu = P,N + P 7

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter Schriftliche Prüfung aus VO Kraftwerke am 19.04.2016 KW 04/2016 Name/Vorname: / Matr.-Nr./Knz.: / 1. Stirlingmotor (25 Punkte) Ein Stirlingmotor soll zur Stromerzeugung in einem 50 Hz Netz eingesetzt werden.

Mehr

HP 2003/04-3: Blockschaltbild eines Dampfkraftwerks:

HP 2003/04-3: Blockschaltbild eines Dampfkraftwerks: HP 003/04-3: Blockschaltbild eines Dampfkraftwerks: HP 003/04-3: Blockschaltbild eines Dampfkraftwerks: Teilaufgaben: 1 Welche Energieformen werden den Bauteilen Dampferzeuger, Turbine, Generator und Verbraucher

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

tgt HP 2007/08-2: Heizungsanlage

tgt HP 2007/08-2: Heizungsanlage tgt HP 007/08-: Heizungsanlage Ein Wohngebäude wird durch eine Warmwasserheizung beheizt und erfordert eine maximale Wärmeleistung von 50 kw. Wärmepumpe Anlagenschema Stoffwerte für leichtes Heizöl: Dichte:

Mehr

Elektrotechnik 3 Übung 1

Elektrotechnik 3 Übung 1 Elektrotechnik 3 Übung 1 2 Drehstrom 2.1 Gegeben sei ein Heizofen mit U n = 400 V, R = 25 pro Strang. Berechnen Sie Außenleiterströme, Strangströme, Nullpunktspannung, Nullleiterstrom sowie Leistung und

Mehr

Klausur Thermische Kraftwerke (Energieanlagentechnik I)

Klausur Thermische Kraftwerke (Energieanlagentechnik I) Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3

Mehr

Schriftliche Prüfung aus VO Kraftwerke am 01.10.2015. Name/Vorname: / Matr.-Nr./Knz.: /

Schriftliche Prüfung aus VO Kraftwerke am 01.10.2015. Name/Vorname: / Matr.-Nr./Knz.: / Schriftliche Prüfung aus VO Kraftwerke am 01.10.2015 Name/Vorname: / Matr.-Nr./Knz.: / 1. Gasturbine mit geschlossenem Kreislauf (25 Punkte) Ein Joule-Prozess soll berechnet werden. Eine Gasturbine mit

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter

Schriftliche Prüfung aus VO Kraftwerke am Name/Vorname: / Matr.-Nr./Knz.: / V1 = 2,7 Liter Schriftliche Prüfung aus VO Kraftwerke am 10.11.2015 Name/Vorname: / Matr.-Nr./Knz.: / 1. Stirlingmotor (25 Punkte) Ein Stirlingmotor soll zur Stromerzeugung in einem 50 Hz Netz eingesetzt werden. Es wird

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

Berechnung von Kurzschlussströmen - Teil 6

Berechnung von Kurzschlussströmen - Teil 6 Berechnung von Kurzschlussströmen - Teil 6 Beziehungen zwischen den Impedanzen der einzelnen Spannungsebenen einer Anlage Impedanzen in Abhängigkeit von der Spannung Die Kurzschlussleistung Scc an einer

Mehr

Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin

Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin Serie 2006 Berufskunde schriftlich Elektrotechnik / Elektronik Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung

Mehr

Berechnung von Kurzschlussströmen mithilfe des Ersatzspannungsquellenverfahrens

Berechnung von Kurzschlussströmen mithilfe des Ersatzspannungsquellenverfahrens Berechnung von Kurzschlussströmen mithilfe des Ersatzspannungsquellenverfahrens nach DIN VDE 0102 mit ausführlichem Lösungsweg Aufgabe 6.4: In dem Bild ist ein Hochspannungsnetz dargestellt; darin sind

Mehr

Wärmepumpe. Mag. Dipl.-Ing. Katharina Danzberger

Wärmepumpe. Mag. Dipl.-Ing. Katharina Danzberger Mag. Dipl.-Ing. Katharina Danzberger 1. Zielsetzung Im Rahmen der Übung sollen die Wärmebilanz und die Leistungszahl bzw. der COP (Coefficient Of Performance) der installierten n bestimmt und diskutiert

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 37 STÜTZKURS 2 AUFGABENSAMMLUNG 3 DRITTES LEHRJAHR. Kapitel 5

TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 37 STÜTZKURS 2 AUFGABENSAMMLUNG 3 DRITTES LEHRJAHR. Kapitel 5 TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 1 Eine Glühbirne soll bei 6V und 300mA brennen. Sie haben aber nur ein Netzgerät mit 15V zur Verfügung. Wie gross muss der Vorwiderstand sein und welche Leistung verbraucht

Mehr

Drehstromasynchronmaschine

Drehstromasynchronmaschine Trafo Fachhochschule Bielefeld Praktikum Versuch 3 Drehstromasynchronmaschine Versuchsaufgabe: Die zu untersuchende Drehstromasynchronmaschine (DAM) wird im Verbund mit einer fremderregten Gleichstrommaschine

Mehr

Berechnung von Kurzschlussströmen mit dem Überlagerungsverfahren

Berechnung von Kurzschlussströmen mit dem Überlagerungsverfahren Berechnung von Kurzschlussströmen mit dem Überlagerungsverfahren und ausführlichem Lösungsweg Aufgabe 6.: In dem Bild ist ein Hochspannungsnetz dargestellt; darin sind die Abzweige zu den 110/10-kV-Umspannstationen

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

tgt HP 2008/09-2: Aluminiumerzeugung

tgt HP 2008/09-2: Aluminiumerzeugung tgt HP 008/09-: Aluminiumerzeugung 1 Aluminium wird durch Elektrolyse aus geschmolzener Tonerde (Al O 3 ) gewonnen. Tonerde bildet mit dem Aluminiumsalz Kryolith ein Kristallgemisch. Dies nutzt man bei

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

Übungsblatt: Arbeit oder Energie und Leistung

Übungsblatt: Arbeit oder Energie und Leistung Übungsblatt: Arbeit oder Energie und Leistung 1.) Zeichnen Sie das Schema der Messschaltung, mit der Sie die elektrische Leistung eines Gleichstrommotors (24V) mit Hilfe eines Wattmeters messen. 2.) 3

Mehr

Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung

Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung Klausuraufgaben Thermodynamik (F 0 A) BRAUNKOHLE-KRAFTWERK Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung und Anzapf-Vorwärmung. Dabei wird der Wassermassenstrom

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

3. Übungen zum Kapitel Der Wechselstromkreis

3. Übungen zum Kapitel Der Wechselstromkreis n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Übungen. Vorlesung. Energietechnik

Übungen. Vorlesung. Energietechnik Fachhochschule Münster Fachbereich Maschinenbau Motoren- und Energietechnik-Labor Prof. Dr. R. Ullrich Übungen zur Vorlesung Energietechnik Version 1/99 - 2 - Übung 1 1.) Die wirtschaftlich gewinnbaren

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 4

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 4 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 4 Wechselstromtransformator

Mehr

Seminar Thermische Abfallbehandlung - Veranstaltung 5 - Dampfkraftanlagen - Wirkungsgradberechnung

Seminar Thermische Abfallbehandlung - Veranstaltung 5 - Dampfkraftanlagen - Wirkungsgradberechnung Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 5 - Dampfkraftanlagen - Wirkungsgradberechnung Dresden, 30. Juni 2008 Dipl.- Ing. Christoph Wünsch,

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple Übungssunterlagen Energiesysteme I Prof. Dr.-Ing. Bernd Epple 1 1. Allgemeine Informationen Zum Bearbeiten der Übungen können die Formelsammlungen aus den Fächern Technische Thermodynamik 1, Technische

Mehr

180. BLOCKHEIZ-KRAFTWERKE

180. BLOCKHEIZ-KRAFTWERKE 180. BLOCKHEIZ-KRAFTWERKE Centre de Ressources des Technologies et de l'innovation pour le Bâtiment Erstellung von Wärmepreisanpassungsformeln Version 2.0 / 17.12.2009 Dezember 2009 Dokument ausgearbeitet

Mehr

Schaltung von Messgeräten

Schaltung von Messgeräten Einführung in die Physik für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #18 am 25.05.2007 Vladimir Dyakonov Schaltung von Messgeräten Wie schließt man ein Strom- bzw.

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. August 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Zum Beispiel: Außenluft: 1500 m³/h Umluft: 3000 m³/h Daraus ergibt sich eine Gesamtluftmenge von 4500 m³/h.

Zum Beispiel: Außenluft: 1500 m³/h Umluft: 3000 m³/h Daraus ergibt sich eine Gesamtluftmenge von 4500 m³/h. Klimatechnik Umrechnungen 1 kj/s 1 KW 3600 kj/h 1 KW (3600) Mischung von Luft C C kj/kg kj/kg g/kg g/kg Im h, x Diagramm werden die zwei Luftzustände mit einer Linie verbunden. Der Mischpunkt liegt auf

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Asynchronmaschine: Heylandkreis für

Asynchronmaschine: Heylandkreis für Aufgabe 1: Asynchronmaschine: Heylandkreis für R 1 =0Ω Ausgangspunkt für die Konstruktion des Heylandkreises in Aufgabe 1.1 bildet der Nennstrom mit seiner Phasenlage. Abbildung 1: Nennstrom Da der Leistungsfaktor

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

RLC-Schaltungen Kompensation

RLC-Schaltungen Kompensation EST ELEKTRISCHE SYSTEMTECHNIK Kapitel 16 RLC-Schaltungen Kompensation Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 Ich bin das

Mehr

Elektrotechnik 3. Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe. Studium Plus // WI-ET. SS 2016 Prof. Dr.

Elektrotechnik 3. Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe. Studium Plus // WI-ET. SS 2016 Prof. Dr. Elektrotechnik 3 Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe Studium Plus // WI-ET SS 06 Prof. Dr. Sergej Kovalev Drehstromsystems Themen: Einführung Zeitverläufe Mathematische

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Aufgabe 1: Rotierende Leiterschleife Betrachtet wird die im folgenden Bild dargestellte, in einem homogenen Magnetfeld rotierende Leiterschleife. Es seien folgende

Mehr

Übungsaufgaben Elektrotechnik

Übungsaufgaben Elektrotechnik Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

1 Begriffe und Definitionen

1 Begriffe und Definitionen 1 Begriffe und Definitionen Die nachstehenden Begriffe und Definitionen entsprechen im wesentlichen DIN EN 60909-0. Alle hier nicht aufgeführten Begriffe sind in dieser Norm nachzuschlagen. Mit Kurzschluss

Mehr

II. Thermodynamische Energiebilanzen

II. Thermodynamische Energiebilanzen II. Thermodynamische Energiebilanzen 1. Allgemeine Energiebilanz Beispiel: gekühlter Verdichter stationärer Betrieb über Systemgrenzen Alle Energieströme werden bezogen auf Massenstrom 1 Energieformen:

Mehr

Umrechnung und Berechnung: Rundes Kabel, Draht und Leitung Durchmesser in Kreis-Querschnitt und Querschnitt in Durchmesser

Umrechnung und Berechnung: Rundes Kabel, Draht und Leitung Durchmesser in Kreis-Querschnitt und Querschnitt in Durchmesser Umrechnung und Berechnung: Rundes Kabel, Draht und Leitung Durchmesser in Kreis-Querschnitt und Querschnitt in Durchmesser Der Querschnitt ist einfach eine zwei-dimensionale Sicht als Schnittdarstellung

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #9 am 30.05.007 Vladimir Dyakonov Leistungsbeträge 00 W menschlicher Grundumsatz 00 kw PKW-Leistung

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Schriftliche Abschlussprüfung Physik 2000/2001

Schriftliche Abschlussprüfung Physik 2000/2001 Schriftliche Abschlussprüfung Physik 2000/2001 Lösungen Hinweise: 1. Die vorliegenden Lösungen sind Musterlösungen von Henri Schönbach, 83. Mittelschule, und Uwe Hempel, Georg-Schumann-Schule in Leipzig,

Mehr

3. Transformator. EM1, Kovalev/Novender/Kern (Fachbereich IEM)

3. Transformator. EM1, Kovalev/Novender/Kern (Fachbereich IEM) 1 Grundgesetze 2 Idealer Transformator Ideal: Streufluss bleibt unberücksichtigt, Keine Verluste. 3 Leerlauf 4 Lastfall 5 Kernausführungen Kerntransformator Manteltransformator 6 Kernschichtung Normal-Schichtung

Mehr

Formelsammlung Energietechnik

Formelsammlung Energietechnik Formelsammlung Energietechnik Kontinuitätsgleichung: A c A c A c konst. v u D n Bernoulligleichung: Energieform: p p c g h c g h Druckform: p c g h p c g h Höhenform: p c p c h h g g g g Höhendifferenz

Mehr

3. Grundlagen des Drehstromsystems

3. Grundlagen des Drehstromsystems Themen: Einführung Zeitverläufe Mathematische Beschreibung Drehstromschaltkreise Anwendungen Symmetrische und unsymmetrische Belastung Einführung Drehstrom - Dreiphasenwechselstrom: Wechselstrom und Drehstrom

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Praktikum II ST: Stirling-Motor

Praktikum II ST: Stirling-Motor Praktikum II ST: Stirling-Motor Betreuer: Norbert Lages Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 14. April 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

Erneuerbare Energien 1 Posten 4, 1. Obergeschoss 5 Lehrerinformation

Erneuerbare Energien 1 Posten 4, 1. Obergeschoss 5 Lehrerinformation Lehrerinformation 1/6 Arbeitsauftrag Die SuS spüren Energie am eigenen Körper: Sie rutschen die Energie-Rutschbahn herunter und produzieren so Strom. Ziel Die SuS lösen neben den theoretischen Aufgaben

Mehr

UNIVERSITÄT BIELEFELD -

UNIVERSITÄT BIELEFELD - UNIVERSITÄT BIELEFELD - FAKULTÄT FÜR PHYSIK LEHRSTUHL FÜR SUPRAMOLEKULARE SYSTEME, ATOME UND CLUSTER PROF. DR. ARMIN GÖLZHÄUSER Versuch 2.9 Thermodynamik Die Wärmepumpe Durchgeführt am 12.04.06 BetreuerIn:

Mehr

Ölkraftwerk Ingolstadt. Sauberer Strom vom Ufer der Donau

Ölkraftwerk Ingolstadt. Sauberer Strom vom Ufer der Donau Ölkraftwerk Ingolstadt Sauberer Strom vom Ufer der Donau b 2 Neue Energie für eine neue Zeit Neue Energie heißt, Millionen von Menschen jederzeit mit Strom zu versorgen zuverlässig, effizient und verantwortungsvoll.

Mehr

9 Kurzschlussstromberechnung nach DIN EN (VDE 0102) einfach gespeiste drei- und zweipolige Kurzschlussströme ohne Erdberührung

9 Kurzschlussstromberechnung nach DIN EN (VDE 0102) einfach gespeiste drei- und zweipolige Kurzschlussströme ohne Erdberührung 9 Kurzschlussstromberechnung nach DIN EN 60909-0 (VDE 0102) einfach gespeiste drei- und zweipolige Kurzschlussströme ohne Erdberührung 9.1 Allgemeines Die Kurzschlussstelle auf der Niederspannungsseite

Mehr

Grundlastkraftwerk x Mittellastkraftwerk x Spitzenlastkraftwerk

Grundlastkraftwerk x Mittellastkraftwerk x Spitzenlastkraftwerk Seite 1 von 6 Datum... Name... Klasse... A. Allgemeine Fragen zum Kraftwerk 1. Wann nahm das Kraftwerk Rostock den Dauerbetrieb auf? 01. Oktober 1994... 2. Kreuze den zutreffenden Begriff an und erläutere

Mehr

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN BERUFSMATURITÄTSSCHULE BMS Gesundheit und Soziales GESO Formelsammlung Physik David Kamber, Ruben Mäder Stand 7.5.016 Inhalte gemäss Rahmenlehrplan 01 GESO Mechanik:

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 60 Minuten Fach: Mathematik Wahlaufgaben

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Prüfungsvorbereitung 2015: Elektrotechnik

Prüfungsvorbereitung 2015: Elektrotechnik Prüfungsvorbereitung 2015: Elektrotechnik!Energieformen 1.) Schreiben Sie die entsprechende Energieform hinein. elektrische Energie Glühbirne Strahlungsenergie Wärmeenergie Elektromotor Generator Turbine

Mehr

Thermodynamik I - Übung 6. Nicolas Lanzetti

Thermodynamik I - Übung 6. Nicolas Lanzetti Thermodynamik I - Übung 6 Nicolas Lanzetti Nicolas Lanzetti 06.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Zweiter Hauptsatz der Thermodynamik; Halboffene Systeme; Reversible und irreversible

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen Prüfung in "Technische Thermodynamik 1/2" 23. Februar 2007 Zeit: 3 Stunden zugelassen:

Mehr

1 1. Hausaufgabe Hausaufgabe. 1.1 Buch Seite 45, Aufgabe Buch Seite 49, Aufgabe HAUSAUFGABE 1

1 1. Hausaufgabe Hausaufgabe. 1.1 Buch Seite 45, Aufgabe Buch Seite 49, Aufgabe HAUSAUFGABE 1 1 1. HAUSAUFGABE 1 1 1. Hausaufgabe 1.1 Buch Seite 45, Aufgabe 1 Zwei Widerstände von 10Ω und 30Ω werden in eihe geschaltet und die Spannung 10V angelegt. a) Wie verhalten sich die Teilspannungen an den

Mehr

Thermodynamik 1 Klausur 01. August 2011

Thermodynamik 1 Klausur 01. August 2011 Thermodynamik 1 Klausur 01. August 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 5 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

1.1.3 Bruchrechnung. Sätze: Produkte: a n b n = (a b) n n a n. b = n. a b Quotienten: a n : a m = a n m a n : b n = ( a _ b) n a :

1.1.3 Bruchrechnung. Sätze: Produkte: a n b n = (a b) n n a n. b = n. a b Quotienten: a n : a m = a n m a n : b n = ( a _ b) n a : Sätze: Produkte: a n a m = an + m a n n = (a ) n n a n = n a Quotienten: a n : a m = a n m a n : n = ( a _ ) n n n a : = n Klammern: (a n ) m = a nm = (a m ) n ( n a ) m = n a m = kn a km rationaler Eponent:

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Der DKW-Vergleichsprozess

Der DKW-Vergleichsprozess TU-Graz Der DKW-Vergleichsprozess Seite 1 von 8 Florian Grabner florian.grabner@gmx.at Der DKW-Vergleichsprozess Mathematische / Fachliche Inhalte in Stichworten: Wasserdampf als Medium, Kreisprozesse,

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Elektrotechnik für Studium und Praxis: Lösungen Lösungen zu Kapitel Aufgabe.1 Aus der Maschengleichung ergibt sich: I 4 = U q1 + U q R 1 I 1 R I R I R 4 I 4 = 4 V + 1 V Ω 5 A Ω, A 5 Ω 4 A Ω I 4 = (4 +

Mehr

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K:

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K: 3.3.5 Energiebilanz bei der Mischung feuchter Luft Bezugsgröße: Masse der trockenen Luft m L Beladung: Auf die Masse der Luft bezogene Enthalpie Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Ein geschenktes Solarmodul - Was damit tun?

Ein geschenktes Solarmodul - Was damit tun? Ein geschenktes Solarmodul - Was damit tun? Die ersten Schritte Nähere Betrachtung des Modul -> Was ist das für ein Modul? Das Datenblatt -> Was ist eine Kennlinie? -> Was hat es mit dem Wirkungsgrad auf

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

Kleines Stromlexikon Abgaben/Steuern/Förderbeiträge/Zuschläge AGB: Allgemeine Geschäftsbedingungen Ampere Arbeit Blitz Dampfkraftwerk

Kleines Stromlexikon Abgaben/Steuern/Förderbeiträge/Zuschläge AGB: Allgemeine Geschäftsbedingungen Ampere Arbeit Blitz Dampfkraftwerk Kleines Stromlexikon A Abgaben/Steuern/Förderbeiträge/Zuschläge Neben den Stromkosten sind mit der Stromrechnung gesetzliche Abgaben, Beihilfen, Förderbeiträge, Zuschläge und die Umsatzsteuer zu entrichten.

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen.

Perpetuum Mobile I. Ein Perpetuum mobile erster Art wird durch den ersten Hauptsatz der Thermodynamik ausgeschlossen. Perpetuum Mobile I Perpetuum mobile erster Art: Unter einem perpetuum mobile erster Art versteht man eine Vorrichtung, deren Teile, einmal angeregt, nicht nur dauernd in Bewegung bleiben, sondern dabei

Mehr

Probe zur Lösung der Berechnungsbeispiele BB_14.x: - Fortsetzung -

Probe zur Lösung der Berechnungsbeispiele BB_14.x: - Fortsetzung - Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure Grundlagen. Auflage, 2008 Fachhochschule Braunschweig/Wolfenbüttel -niversity of Applied Sciences- Probe zur Lösung der Berechnungsbeispiele BB_1.x:

Mehr

Prüfung: Thermodynamik II (Prof. Adam)

Prüfung: Thermodynamik II (Prof. Adam) Prüfung: Thermodynamik II (Prof. Adam) 18.09.2008 Erreichbare Gesamtpunktzahl: 48 Punkte Aufgabe 1 (30 Punkte): In einem Heizkraftwerk (siehe Skizze) wird dem Arbeitsmedium Wasser im Dampferzeuger 75 MW

Mehr

Kreisfrequenz: Komplexe Strom und Spannungszeiger. Zusammenhang: Wechselstromrechnung

Kreisfrequenz: Komplexe Strom und Spannungszeiger. Zusammenhang: Wechselstromrechnung Imaginäre Einheit j - 1 Formelsammlung elektrische Energietechnik Grundlagen & Wechselstromlehre Kartesische Darstellung komplexer Zahlen: Komplexe Zahlen haben die Form z x + jy, wobei x und y reele Zahlen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben Physiker

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Haupttermin lektrizitätslehre I A1 1.1.1 Schaltskizze: 1.1.2 aus dem Diagramm entnommene Werte, z. B.: U = 2,5 V; I = 3,1 A R = U I l = R A ϱ R = 2,5 V 3,1 A l = 2 mm 0,81 Ω (0,70 ) π 2 0,50 Ω mm2 m R

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Grundlagen der Elektrotechnik 1&2

Grundlagen der Elektrotechnik 1&2 Organisation der E-Technik Klausuren WS 15/16 Musterlösung Grundlagen der Elektrotechnik 1&2 BS Stand: 2016-02-04 Technische Universität Clausthal Klausur im Wintersemester 2015/2016 Grundlagen der Elektrotechnik

Mehr

Kernlehrplan (KLP) für die Klasse 9 des Konrad Adenauer Gymnasiums

Kernlehrplan (KLP) für die Klasse 9 des Konrad Adenauer Gymnasiums Kernlehrplan (KLP) für die Klasse 9 des Konrad Adenauer Gymnasiums Zentrale Inhalte in Klasse 9 1. Inhaltsfeld: Elektrizität Schwerpunkte: Elektrische Quelle und elektrischer Verbraucher Einführung von

Mehr

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen Technische Thermodynamik II. University of Applied Sciences

Technische Thermodynamik. FB Maschinenwesen. Übungsfragen Technische Thermodynamik II. University of Applied Sciences University of Applied Sciences Übungsfragen Technische Thermodynamik II Prof. Dr.-Ing. habil. H.-J. Kretzschmar FB Maschinenwesen Technische Thermodynamik HOCHSCHULE ZITTAU/GÖRLITZ (FH) - University of

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

PowerTherm. PowerTherm Das modulierende BHKW

PowerTherm. PowerTherm Das modulierende BHKW PowerTherm Das modulierende BHKW Inhalt Vorstellung der Firma Spilling Vorstellung des PowerTherm BHKW Vorteile der Drehzahlmodulation Anlagendynamik Spilling Energie Systeme GmbH Daten & Fakten Eigentümer

Mehr

Elektrische Leistung und Energie berechnen

Elektrische Leistung und Energie berechnen Elektrische Leistung und Energie berechnen 1.) 2.) 3.) 4 P. 4.) 5.) 6.) 7.) 8.) Ein Heizkörper für 230 V nimmt 4 A auf. Berechnen Sie seine Leistungsaufnahme. Ein Leuchtkörper für 230 V hat eine Leistungsaufnahme

Mehr