Analyse von Kontingenztafeln

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Analyse von Kontingenztafeln"

Transkript

1 Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden. Die Einbeziehung zweier oder mehrerer evtl. nur nominalskalierter Merkmale in eine Analyse ist in den Sozialwissenschaften eine häufig auftretende Situation (z. B. Geschlecht, Art des Schulabschlusses, Parteienpräferenz). 1

2 In vielen Fällen z. B. bei Sekundäranalysen liegen nicht die Rohdaten, sondern bereits Häufigkeitstabellen vor. In SPSS können derartige Datensätze eingegeben und mit Hilfe von Gewichtungen analysiert werden. Vor der bi- oder multivariaten Analyse sind die beteiligten kategorialen Merkmale zunächst einzeln univariat zu untersuchen. 2

3 Univariate Analyse kategorialer Daten Deskriptiv werden Tabellen (z.b. Häufigkeitstabellen) und Grafiken (z.b. Balken- und Kreisdiagramme) eingesetzt. Als deskriptive Kenngröße für den Zentralwert der Verteilung kommt der Modalwert in Betracht. Als deskriptives Maß für die Variabilität einer kategorialen Verteilung wird beispielsweise die Devianz eingesetzt. Diese Kenngröße bewertet die Stärke der Konzentration einer kategorialen Verteilung. 3

4 Sei X ein kategoriales Merkmal mit den k möglichen Ausprägungen a 1,..., a k. Für eine Stichprobe vom Umfang n bezeichne h j die absoluten und f j = h j /n die relativen Häufigkeiten des Auftretens von a j. Dann heißt D X k = 2 ln(h j /n) h j j=1 k = 2 ln(f j ) h j j=1 Devianz. Dabei bezeichnet ln(f j ) den natürlichen Logarithmus (ln(0) 0 wird Null gesetzt! Nicht realisierte Ausprägungen liefern also keinen Beitrag!). 4

5 In die Berechnung der Devianz gehen also nur die Häufigkeiten der Ausprägungen und nicht die Ausprägungen selbst ein. Damit ist die Devianz ein Streuungsmaß, das bereits für nominalskalierte Merkmale berechnet werden kann. Da die Devianz D X bei sonst gleicher Verteilung mit wachsendem Stichprobenumfang wächst, wird häufig die relative Devianz verwendet. d X = D X n 5

6 Beispiel: In einer Umfrage unter n = 100 StudentInnen wurden die dichotomen Merkmale Geschlecht G und Motivation M für das Studium der Sozialwissenschaften erhoben. Dabei ergaben sich die Häufigkeitsverteilungen: Geschlecht G a G j h G j fj G weiblich männlich Motivation M a M j h M j fj M motiviert nicht motiviert 0 0 6

7 Für die Devianz D G ergibt sich 2 D G = 2 ln(fj G ) h G j j=1 ( ) = 2 ln(1/2) 50 + ln(1/2) 50 = ln(2) und für D M erhalten wir 2 D M = 2 ln(fj M j=1 ) h M j = 2(ln(1) ln(0) 0) = 0 7

8 Damit gilt für die relative Devianz d G = 2 ln(2) und d M = 0. Die Devianz ist in der Lage, die Fehlerwahrscheinlichkeit bei der Vorhersage einer kategorialen Variablen zu erfassen. Nimmt die Variable mit Sicherheit nur eine Ausprägung an, dann ist bei Verwendung dieser Ausprägung eine Voraussage ohne jeden Fehler möglich. Die Devianz für derartige entartete Verteilungen ist Null. Das Merkmal Motivation ist ein Beispiel dafür. 8

9 Die größte Unsicherheit besteht bei der Vorhersage dann, wenn jede der möglichen Ausprägungen die gleiche Häufigkeit (Wahrscheinlichkeit) besitzt (also keinerlei Konzentration vorliegt). In diesem Fall gilt d X = 2 ln(k). Das Merkmal Geschlecht (k = 2) ist ein Beispiel für diese Situation. Egal welche der beiden Ausprägungen als Vorhersage verwendet wird, ergeben sich stets 50% Fehlprognosen. 9

10 Zur Bewertung und zum Vergleich von Anteilswerten (Wahrscheinlichkeiten) werden speziell im englischen Sprachraum Odds verwendet. Odds beschreiben die Chancen des Eintretens eines Ereignisses in Relation zu seinem Nichteintreten. Befinden sich in einer Population z.b. 80% StudentInnen, die sich für Statistik interessieren, und 20%, die sich nicht für Statistik interessieren, dann betragen die Odds (Chancen), zufällig eine Studentin/einen Studenten aus dieser Population auszuwählen, die/der sich für Statistik zu interessiert, 80 : 20 = 4 (vier zu eins). 10

11 Ein Wert der Odds von 1 bedeutet also eine Chance von 50:50 (eins zu eins). Werte der Odds größer als 1 bedeuten, dass die Chance des Eintretens größer ist als die des Nichteintretens (z.b. 80:20). Werte der Odds kleiner als 1 bedeuten, dass die Chance des Eintretens kleiner ist als die des Nichteintretens (z.b. 40:60). 11

12 Als Basistechnik der schließenden Statistik kommt bei der Analyse nominalskalierter Daten der χ 2 Anpassungstest zum Einsatz. Er beschreibt und testet die Abweichung der empirischen Verteilung eines kategorialen Merkmals von einer hypothetisch unterstellten Verteilung. Die Testgröße t = k j=1 (h j np j ) 2 np j des χ 2 Anpassungstest stellt für eine vorliegende empirische Verteilung mit den beobachteten absoluten Häufigkeiten h j deren χ 2 Abstand zu der hypothetisch unterstellten Verteilung mit den Wahrscheinlichkeiten p j dar. 12

13 Hinweise: Da wir von kategorialen Merkmalen ausgehen, entfällt häufig eine Klasseneinteilung; diese ist in natürlicher Weise durch die Kategorien gegeben. Evtl. ist eine Vergröberung notwendig bzw. sinnvoll, wenn viele mögliche Ausprägungen vorliegen. In SPSS kann die hypothetisch unterstellte Verteilung mit Hilfe der Wahrscheinlichkeiten p j, der erwarteten absoluten Häufigkeiten np j oder der entsprechenden Prozentsätze vorgegeben werden. Bei kleineren Stichprobenumfängen sollte von der Möglichkeit der exakten Berechnung der Überschreitungswahrscheinlichkeit Gebrauch gemacht werden. 13

14 Im Spezialfall eines dichotomen Merkmals sollte als Anpassungstest der Binomialtest verwendet werden. Dieser ist für Merkmale mit nur zwei Ausprägungen äquivalent zum entsprechenden χ 2 Anpassungstest, wenn jeweils die exakten Überschreitungswahrscheinlichkeiten verwendet werden. 14

15 Nach Ablehnung der Nullhypothese beim χ 2 Anpassungstest interessiert häufig die Frage, für welche der möglichen Ausprägungen des untersuchten kategorialen Merkmals signifikante Unterschiede zwischen den beobachteten und den hypothetisch unterstellten (erwarteten) absoluten Häufigkeiten vorliegen. Dies kann durch Serien von post hoc Tests geklärt werden. Zum Einsatz kommen zwei eng verwandte Techniken: die Konfigurationsfrequenzanalyse (KFA), die die Summanden der χ 2 -Statistik einzeln untersucht und testet (vgl. z.b. Krauth/Lienert 1973) Tests der standardisierten Residuen 15

16 Unter der Nullhypothese sind die Summanden der Testgröße des χ 2 Anpassungstests asymptotisch χ 2 verteilt mit einem Freiheitsgrad. Für die Entscheidungsfindung können also Überschreitungswahrscheinlichkeiten, die gemäß dieser Verteilung berechnet wurden, oder entsprechende Quantile dieser Verteilung verwendet werden. Da in der Regel Serien von Tests evtl. für alle Ausprägungen des untersuchten Merkmals durchgeführt werden, stellt sich bei diesem multiplen Testverfahren das Problem der Einhaltung eines vorgegebenen Signifikanzniveaus für den Gesamttest (die gesamte Serie von Tests). 16

17 In der KFA werden dabei verschiedene konservative Strategien vorgeschlagen. Beispielsweise dividiert man das vorgegebene Signifikanzniveau α durch die Zahl der durchzuführenden einzelnen Tests (Bonferroni Korrektur) und vergleicht die Überschreitungswahrscheinlichkeiten für die einzelnen Tests jeweils mit diesem korrigierten Signifikanzniveau bzw. verwendet die Quantile mit diesem korrigierten Quantilsanteil. 17

18 Die standardisierten Residuen sind unter H 0 asymptotisch normalverteilt. Mit Hilfe der Normalverteilung und entsprechend korrigierten Werten für das Signifikanzniveau lassen sich zur KFA äquivalente Entscheidungsregeln formulieren. 18

19 Beispiel: In Statistik I untersuchten wir Daten über benutzte Verkehrsmittel. Der χ 2 Anpassungstest führte bei einem Signifikanzniveau α = 0.05 zur Ablehnung der Nullhypothese Die Wahrscheinlichkeit für die Benutzung jedes der fünf Verkehrsmittel ist p j = 1/5. Der Wert der χ 2 Statistik beträgt 89.2, und die zugehörige Überschreitungswahrscheinlichkeit p ist praktisch Null. Dabei wurde für die Berechnung der Überschreitungswahrscheinlichkeit p die χ 2 Verteilung mit 5 1 = 4 Freiheitsgraden verwendet. 19

20 Für die einzelnen Verkehrsmittel ergaben sich folgende absolute beobachtete (h j ) und erwartete (n p j ) Häufigkeiten sowie Residuen (h j n p j ): Verkehrsmittel h j n p j h j n p j Bahn Bus Flugzeug PKW Sonstige Summe:

21 Nach Ablehnung der (globalen) Nullhypothese sollen nun post hoc die Kategorien (Verkehrsmittel) lokalisiert werden, die einzeln signifikante Unterschiede zwischen der beobachteten und erwarteten Häufigkeit aufweisen und damit die (globale) Ablehnung wesentlich verursachen. Wir setzen dazu die KFA ein, die in SPSS in diesem Zusammenhang nicht angeboten wird. Wir wollen für den multiplen Test also für die Serie von Tests insgesamt mit einem Signifikanzniveau α = 0.05 arbeiten. Da 5 einzelne Tests für jedes Verkehrsmittel durchgeführt werden sollen, ergibt sich mit der Bonferroni Korrektur ein Signifikanzniveau α/5 = 0.01 für jeden einzelnen Test der Serie. 21

22 Jeder Kategorie hier jedem Verkehrsmittel entspricht ein Summand (h j n p j ) 2 n p j der Testgröße t des χ 2 Anpassungstest. Unter der (globalen) Nullhypothese ist für eine mathematische Stichprobe jede dieser Größen asymptotisch χ 2 verteilt mit einem Freiheitsgrad. Wir können daher für jede der 5 Kategorien die (lokale) Nullhypothese Es liegt kein signifikanter Unterschied zwischen der beobachteten und erwarteten Häufigkeit für diese Kategorie vor. mit Hilfe dieser Verteilung der Stichprobenfunktion testen. 22

23 Zur Entscheidungsfindung benötigen wir jeweils den Wert der Teststatistik, den wir dann mit dem 0.99 Quantil χ 2 1,0.99 = 6.64 (entnommen aus einer entsprechenden Tafel, siehe Umdruck) der χ 2 -Verteilung mit einem Freiheitsgrad vergleichen. Ist der Wert der Teststatistik größer als 6.64, und damit seine Überschreitungswahrscheinlichkeit kleiner als 0.01, lehnen wir die lokale Nullhypothese ab. Insgesamt ergibt sich das folgende Ergebnis: 23

24 Verkehrsmittel (h j n p j ) 2 /np j Abweichung signifikant Bahn 8.45 ja Bus 6.05 nein Flugzeug 4.05 nein PKW ja Sonstige 16.2 ja Summe: 89.2 Bei signifikanten Überbesetzungen von Zellen spricht man in der KFA von Typen und bei signifikanten Unterbesetzungen von Antitypen. Das Merkmal PKW ist demnach ein Typ, und die Merkmale Bahn und Sonstige stellen Antitypen dar. 24

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Bivariater Zusammenhang in der Vierfeldertafel PEΣO

Bivariater Zusammenhang in der Vierfeldertafel PEΣO Bivariater Zusammenhang in der Vierfeldertafel PEΣO 12. Oktober 2001 Zusammenhang zweier Variablen und bivariate Häufigkeitsverteilung Die Bivariate Häufigkeitsverteilung gibt Auskunft darüber, wie zwei

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Alternative Darstellung des 2-Stcihprobentests für Anteile

Alternative Darstellung des 2-Stcihprobentests für Anteile Alternative Darstellung des -Stcihprobentests für Anteile DCF CF Total n 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Bei Gültigkeit der Nullhypothese Beobachtete Response No Response Total absolut

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit Kapitel 17 Unabhängigkeit und Homogenität 17.1 Unabhängigkeit Im Rahmen der Wahrscheinlichkeitsrechnung ist das Konzept der Unabhängigkeit von zentraler Bedeutung. Die Ereignisse A und B sind genau dann

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 25. Januar 2013 1 Der χ 2 -Anpassungstest 2 Exakter Test nach Fisher Mendelsche Erbregeln als Beispiel für mehr

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile

Alternative Darstellung des 2-Stichprobentests für Anteile Alternative Darstellung des -Stichprobentests für Anteile DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Bei Gültigkeit der Nullhypothese Beobachtete Response No Response Total absolut

Mehr

Kategoriale Daten. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/17

Kategoriale Daten. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/17 Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/17 Übersicht Besitzen die Daten, die statistisch ausgewertet werden sollen, kategoriales Skalenniveau, unterscheidet man die folgenden Szenarien:

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

Tutorial:Unabhängigkeitstest

Tutorial:Unabhängigkeitstest Tutorial:Unabhängigkeitstest Mit Daten aus einer Befragung zur Einstellung gegenüber der wissenschaftlich-technischen Entwicklungen untersucht eine Soziologin den Zusammenhang zwischen der Einstellung

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 6 Alternativer Lösungsweg für SPSS Version 17 und älter 10 Alte Dialogfelder: Eindimensionaler Chi²-Test

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Juni 2014 Waldherr / Christodoulides Einführung in Quantitative Methoden 1/46 Anpassungstests allgemein Gegeben: Häufigkeitsverteilung

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 Statistik II für Betriebswirte Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 2. November 2016 Prof. Dr. Hans-Jörg Starkloff Statistik II für Betriebswirte Vorlesung

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

10. Die Normalverteilungsannahme

10. Die Normalverteilungsannahme 10. Die Normalverteilungsannahme Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann man

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

7 Kategoriale Daten. 7.1 Eine kategoriale Variable Der χ 2 -Anpassungstest

7 Kategoriale Daten. 7.1 Eine kategoriale Variable Der χ 2 -Anpassungstest 7 Kategoriale Daten Kategoriale Daten erhält man durch Klassifikation von auftretenden Beobachtungen in verschiedene Kategorien. Der Definition 6.1.3 folgend, sind dies also Daten, die nominalskaliert

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten:

erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten: Verfahren zur Analyse von Nominaldaten Chi-Quadrat-Tests Vier-Felder Kontingenztafel Mehrfach gestufte Merkmale Cramers V, Kontingenzkoeffizient, Phi-Koeffizient Muster aller Chi-Quadrat-Verfahren eine

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Name Vorname Matrikelnummer Unterschrift

Name Vorname Matrikelnummer Unterschrift Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden Klausur Statistik II (Sozialwissenschaft, Nach- und Wiederholer) am 26.10.2007 Gruppe

Mehr

Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1

Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1 2.1 Beispiele 2.2 Odds Ratio 2.3 Modell der logistischen Regression 2.3.1 Modellgleichung 2.3.2 Voraussetzungen 2.4 Schätzungen, Tests und Modellgüte 2.4.1 Schätzung der logistischen Regressionskoeffizienten

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 5. Juni 2013 Christodoulides / Waldherr Einführung in Quantitative Methoden- 11. VO 1/48 Anpassungstests allgemein Gegeben:

Mehr

Kapitel XIV - Anpassungstests

Kapitel XIV - Anpassungstests Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XIV - Anpassungstests Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh 2. Grundannahme:

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 4B a.) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit "Deskriptive Statistiken", "Kreuztabellen " wird die Dialogbox "Kreuztabellen" geöffnet. POL wird in das Eingabefeld von

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit 121 Zwei kategoriale Merkmale Homogenität Unabhängigkeit 122 Beispiel Gründe für die Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährige Schulkinder in Michigan, USA Grund für Beliebtheit weiblich

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Zusammenhangsanalyse in Kontingenztabellen

Zusammenhangsanalyse in Kontingenztabellen Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

6. Multivariate Verfahren Übersicht

6. Multivariate Verfahren Übersicht 6. Multivariate Verfahren 6. Multivariate Verfahren Übersicht 6.1 Korrelation und Unabhängigkeit 6.2 Lineare Regression 6.3 Nichtlineare Regression 6.4 Nichtparametrische Regression 6.5 Logistische Regression

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007

Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007 Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht

2. Formulieren von Hypothesen. Nullhypothese: H 0 : µ = 0 Gerät exakt geeicht 43 Signifikanztests Beispiel zum Gauß-Test Bei einer Serienfertigung eines bestimmten Typs von Messgeräten werden vor der Auslieferung eines jeden Gerätes 10 Kontrollmessungen durchgeführt um festzustellen,

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Klausur zu Statistik II

Klausur zu Statistik II GOETHE-UNIVERSITÄT FRANKFURT FB Wirtschaftswissenschaften Statistik und Methoden der Ökonometrie Prof. Dr. Uwe Hassler Wintersemester 03/04 Klausur zu Statistik II Matrikelnummer: Hinweise Hilfsmittel

Mehr

12 Rangtests zum Vergleich zentraler Tendenzen

12 Rangtests zum Vergleich zentraler Tendenzen 12 Rangtests zum Vergleich zentraler Tendenzen 12.1 Allgemeine Bemerkungen 12.2 Gepaarte Stichproben: Der Wilcoxon Vorzeichen- Rangtest 12.3 Unabhängige Stichproben: Der Wilcoxon Rangsummentest und der

Mehr

Grundidee. χ 2 Tests. Ausgangspunkt: Klasseneinteilung der Beobachtungen in k Klassen. Grundidee. Annahme: Einfache Zufallsstichprobe (X 1,..., X n ).

Grundidee. χ 2 Tests. Ausgangspunkt: Klasseneinteilung der Beobachtungen in k Klassen. Grundidee. Annahme: Einfache Zufallsstichprobe (X 1,..., X n ). Grundidee χ 2 -Anpassungstest χ 2 -Unabhängigkeitstest χ 2 -Homogenitätstest χ 2 Tests Grundidee Ausgangspunkt: Klasseneinteilung der Beobachtungen in k Klassen Annahme: Einfache Zufallsstichprobe (X 1,,

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Ergebnisse VitA und VitVM

Ergebnisse VitA und VitVM Ergebnisse VitA und VitVM 1 Basisparameter... 2 1.1 n... 2 1.2 Alter... 2 1.3 Geschlecht... 5 1.4 Beobachtungszeitraum (von 1. Datum bis letzte in situ)... 9 2 Extraktion... 11 3 Extraktionsgründe... 15

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/57 Die Deskriptivstatistik

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 1 x.

Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 1 x. Aufgabe 1. (5 Punkte) Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 k=0 1 x. Aufgabe 2. (7 Punkte) Bestimmen Sie das folgende Integral

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen ob die in diesem Datensatz untersuchte

Mehr

5. Kolmogorov-Smirnov-Test und χ 2 -Anpassungstest

5. Kolmogorov-Smirnov-Test und χ 2 -Anpassungstest Empirische Wirtschaftsforschung Prof. Dr. Ralf Runde 5. Kolmogorov-Smirnov-Test und χ 2 -Anpassungstest Ein wesentliches Merkmal nichtparametrischer Testverfahren ist, dass diese im Allgemeinen weniger

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Klausur zu Statistik II

Klausur zu Statistik II Goethe-Universität Frankfurt Prof. Dr. Uwe Hassler FB Wirtschaftswissenschaften Sommersemester 2005 Klausur zu Statistik II Version B Bitte tragen Sie hier und auf den Lösungsblättern (oben links) Ihre

Mehr

Übung 5 im Fach "Biometrie / Q1" Thema: Wilcoxon, Chi-Quadrat, multiples Testen

Übung 5 im Fach Biometrie / Q1 Thema: Wilcoxon, Chi-Quadrat, multiples Testen Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr