Analyse bivariater Kontingenztafeln

Größe: px
Ab Seite anzeigen:

Download "Analyse bivariater Kontingenztafeln"

Transkript

1 Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen Kontingenztafeln (Kreuztabellen) zum Einsatz. 1

2 Dargestellt werden die absoluten Häufigkeiten h ij für Ausprägungen der gemeinsamen Verteilung der beiden kategorialen Merkmale. Die möglichen Werte sind Kombinationen von Ausprägungen der beteiligten Merkmale. Ergänzt werden diese Tabellen durch die Randhäufigkeiten (Zeilen- und Spaltensummen), die die univariaten Verteilungen der beiden Merkmale beschreiben. 2

3 Für ein kategoriales Merkmal X (Zeilen) mit den Ausprägungen a 1,..., a k und Y (Spalten) mit den Ausprägungen b 1,..., b l hat die Tabelle die Gestalt: X Y b 1... b j... b l a 1 h h 1j... h 1l h a i h i1... h ij... h il h i..... a k h k1... h kj... h kl h k h 1... h j... h l h 3

4 mit und l k h i = h ij, h j = j=1 i=1 h ij k l k l h = h i = h j = i=1 j=1 i=1 j=1 h ij 4

5 Zur grafischen Darstellung der Verteilung in den Zeilen oder Spalten also z.b. zur Darstellung der Abhängigkeit der Verteilung in den Zeilen von den Ausprägungen des Merkmals in den Spalten bieten sich gestapelte Balkendiagramme an. 5

6 Basistechnik bei der Analyse von Kontingenztafeln ist die χ 2 Statistik, die sowohl in der beschreibenden als auch in der schließenden Statistik verwendet wird. χ 2 beschreibt dabei im Sinne des χ 2 Anpassungstests den Abstand zwischen der beobachteten Kontingenztafel und der hypothetisch unterstellten Indifferenztabelle. 6

7 Die Indifferenztabelle wird dabei aus den beiden eindimensionalen Randverteilungen ermittelt, die den beobachteten univariaten Verteilungen der beiden untersuchten Merkmale X und Y entsprechen. In der Indifferenztabelle werden für jede Zelle die bei Unabhängigkeit der beiden Merkmale erwarteten Häufigkeiten h ij aus den vorliegenden Randhäufigkeiten ermittelt h ij = h i h j n = h i n h j n n 7

8 Damit sind die Zeilen und Spalten einer Indifferenztabelle proportional. Die Unabhängigkeit der Merkmale und die Homogenität (Gleichheit) der Verteilungen in den Zeilen oder in den Spalten sind damit äquivalent. χ 2 beschreibt also den Abstand der beobachteten Kreuztabelle zu der bei Unabhängigkeit der beiden Merkmale bzw. der bei Homogenität der Verteilungen in den Zeilen und Spalten zu erwartenden Tabelle. 8

9 Kenngrößen zur Beschreibung von Abhängigkeiten in Kontingenztafeln Für die Erfassung von Abhängigkeiten in Kontingenztafeln wurde eine Vielzahl von Kenngrößen entwickelt. Den Kenngrößen liegen z.t. unterschiedliche konzeptionelle Vorstellungen zu Grunde. Bei der Auswahl von geeigneten Kenngrößen spielen auch die Dimension der Tafel und das Skalenniveau der beteiligten Merkmale eine Rolle. Es existiert kein optimales Abhängigkeitsmaß für Kontingenztafeln. 9

10 Werden zwei dichotome Merkmale X und Y beobachtet, so wird ihre gemeinsame Verteilung durch eine 4 Felder Tafel beschrieben. Wir verwenden für derartige Tafeln die folgenden Bezeichnungen: X \ Y y 1 y 2 Gesamt x 1 a b a + b x 2 c d c + d Gesamt a + c b + d a + b + c + d 10

11 Bei asymmetrischen Fragestellungen, wenn also von einer Richtung der Abhängigkeit (z.b. Kausalität) ausgegangen werden kann, verwendet man häufig Tafeln mit Zeilen- oder Spaltenprozenten. Prozentuiert wird in Richtung auf die vermutete unabhängige Einflussgröße, um die (bedingten) Verteilungen der vermuteten abhängigen Größe für die verschiedenen Ausprägungen der Einflussgröße vergleichen zu können. Ungleichheit (Inhomogenität) dieser Verteilungen ist ein Indiz für vorhandene Abhängigkeiten, also für den Zusammenhang zwischen den beobachteten Merkmalen. Das einfachste Zusammenhangmaß in einer 4 Felder Tafel ist die zeilen- oder spaltenbezogene Prozentsatzdifferenz. 11

12 Beispiel: ALLBUS 1996 Geschlechtszugehörigkeit (Spaltenvariable) und Einstellung zum Schwangerschaftsabbruch (Zeilenvariable) bei finanzieller Notlage. Absolute Häufigkeiten männlich weiblich Gesamt dafür a = 908 b = 962 a + b = 1870 dagegen c = 624 d = 606 c + d = 1230 Gesamt a + c = 1532 b + d = 1568 a + b + c + d = 3100 Die Einflussgröße ist das Geschlecht, daher verwenden wir Spaltenprozente. 12

13 Spaltenprozente männlich weiblich Gesamt dafür (a/(a + c)) 100% = 59.3% 61.4% 60.3% dagegen (c/(a + c)) 100% = 40.7% 38.6% 39.7% Gesamt ((a + c)/(a + c)) 100% = 100% 100% 100% Die Prozentsatzdifferenz bei Verwendung von Spaltenprozenten beträgt also a a + c 100% b b + d 100% = 59.3% 61.4% = 2.1% Die geschlechtsspezifischen Unterschiede bei der Einstellung zum Schwangerschaftsabbruch sind also nicht besonders stark ausgeprägt. 13

14 Als Maß für den Unterschied zwischen zwei Gruppen kann auch das Odds Ratio eingesetzt werden. Das Odds Ratio setzt die Odds zweier Gruppen zueinander ins Verhältnis. Im Beispiel sind die Odds (Chancen) unter den Frauen eine Befürworterin für den Schwangerschaftsabbruch zu finden b/d = 962/606 und unter Männern a/c = 908/624. Das Odds Ratio das Verhältnis der Odds von Frauen und Männern ist demnach b d : a c = bc ad = = Die Chancen, unter Frauen eine Befürworterin des Schwangerschaftsabbruches zu finden, sind also in Relation zu den Männern etwas größer. 14

15 Sowohl für asymmetrische als auch für symmetrische Zusammenhänge kann χ 2 zur Beschreibung verwendet werden. Für vorgegebene Randverteilungen a + b und c + d bzw. a + c und b + d hat die Indifferenztabelle die Gestalt X \ Y y 1 y 2 Gesamt x 1 x 2 (a+b)(a+c) (a+b+c+d) (c+d)(a+c) (a+b+c+d) (a+b)(b+d) (a+b+c+d) (c+d)(b+d) (a+b+c+d) a + b c + d Gesamt a + c b + d a + b + c + d Mit n = a + b + c + d lässt sich der Abstand χ 2 für eine 4 Felder Tafel in der folgenden Form darstellen: χ 2 = n (ad bc) 2 (a + b)(c + d)(a + c)(b + d) 15

16 Der maximal mögliche Wert von χ 2 für eine 4 Felder Tafel ist damit gleich n (Stichprobenumfang). Er wird erreicht, wenn in der Tabelle nur eine der Diagonalen besetzt ist, d.h. wenn entweder nur a und d oder nur c und b von Null verschieden sind (perfekter, eineindeutiger Zusammenhang). χ 2 selbst ist als Abhängigkeitsmaß ungeeignet, da es sich mit dem Stichprobenumfang verändert. Abhängigkeitsmaße für 4 Felder Tafeln, die auf χ 2 basieren, sind Φ 2 = χ2 n = (ad bc) 2 (a + b)(c + d)(a + c)(b + d) und Φ = ad bc (a + b)(c + d)(a + c)(b + d) 16

17 Φ 2 gibt mit Werten zwischen 0 und 1 die Stärke eines Zusammenhanges in einer 4 Felder Tafel an. Φ ist vorzeichenbehaftet. Das Vorzeichen ergibt sich dabei aus den Häufigkeiten auf den Diagonalen. Überwiegen die Häufigkeiten a und d, so ergibt sich ein positives Vorzeichen. Eine Deutung des Vorzeichens ist nur bei ordinalskalierten Merkmalen X und Y sinnvoll. Sind die Merkmale intervallskaliert, so stimmt Φ mit dem Korrelationskoeffizient nach Pearson überein. Im Beispiel ergeben sich χ 2 = , Φ 2 = und Φ =

18 Werden Merkmale X und Y beobachtet, die nicht nur jeweils zwei, sondern k bzw. l mögliche Ausprägungen besitzen, so ist die Kontingenztafel eine Mehrfeldertafel mit k Zeilen, l Spalten und k l Zellen. Bei asymmetrischen Fragestellungen werden wieder Zeilenoder Spaltenprozente zum Vergleich von Verteilungen eingesetzt. Prozentsatzdifferenzen dienen dazu, die Unterschiede zwischen Verteilungen für einzelne Kategorien der vermuteten abhängigen Größe zu beschreiben. Evtl. sind mehrere Prozentsatzdifferenzen zum Vergleich heranzuziehen. Analog kann man mehrere Odds Ratios einsetzen. 18

19 Beispiel: Wahlabsicht und Konfession (ALLBUS 1996) Als Einflussgröße wird die Konfessionzugehörigkeit vermutet. Prozentuiert wird also bezüglich der Kategorien dieses Merkmals. Deutliche Prozentsatzdifferenzen sind u.a. bei der CDU erkennbar. Die Odds (Chancen) unter KatholikInnen eine/n CDU WählerIn anzutreffen sind 327/349 = und unter ProtestantInnen 306/554 = Das Odds Ratio von KatholikInnen zu ProtestantInnen CDU zu wählen, beträgt demnach : = = Die Chancen aus den KatholikInnen, eine/n CDU WählerIn auszuwählen, sind also etwa 1.7 mal so groß wie eine derartige Auswahl unter ProtestantInnen. 19

20 katholisch evangelisch keine Σ CDU % 35.6% 22.3% 35.7% SPD % 34.9% 34.2% 32.9% F.D.P % 12.7% 6.5% 9.2% B 90/Gr % 15.0% 21.2% 16.4% PDS % 1.9% 15.8% 5.8% Σ 676 (100%) 860 (100%) 632 (100%) 2168 (100%) 20

21 Auch für Mehrfeldertafeln kann χ 2 zur Beschreibung sowohl von asymmetrischen als auch von symmetrischen Zusammenhängen eingesetzt werden. Der größte Wert, den χ 2 für eine Mehrfeldertafel annehmen kann, ergibt sich im Fall perfekter (funktioneller) Zusammenhänge. Im Fall einer Mehrfeldertafel mit k l Zellen ist der Maximalwert gleich n min (k 1, l 1) Im Beispiel ist der maximal mögliche Werte von χ 2 also 2168 min (5 1, 3 1) =

22 Eine Verallgemeinerung von Φ auf beliebige Mehrfeldertafeln ist Cramérs V. Es ist definiert als χ V = 2 n min(k 1, l 1) V gibt mit Werten zwischen 0 und 1 die Stärke eines Zusammenhanges in einer Mehrfeldertafel an. V ist nicht vorzeichenbehaftet. 22

23 Als weiteres Zusammenhangsmaß in beliebigen Kontingenztafeln wird der Kontingenzkoeffizient χ C = 2 χ 2 + n verwendet (siehe Statistik I). 23

24 Eine andere Betrachtungsweise der Abhängigkeit kategorialer Merkmale ist die der prädikativen Assoziation. Ihr entsprechen als Maßzahlen die PRE Maße (Proportional Reduction in Error). Das Konzept besteht darin, dass untersucht wird, wie sich die Schätzung oder Vorhersage der abhängigen Variablen ändert, wenn als zusätzliche Information die bekannte Ausprägung der unabhängigen Variablen verwendet wird, gegenüber der Situation, dass diese Information nicht vorliegt. Die PRE Maße spiegeln also den Grad wider, in dem uns die Kenntnis der Ausprägungen einer Einflussgröße hilft, die andere (abhängige) Größe vorher zusagen. 24

25 Als Beispiel für ein PRE Maß betrachten wir λ (Lambda) nach Goodman und Kruskal. λ ist ein asymmetrisches Maß für Zusammenhänge in beliebigen Mehrfeldertafeln. Je nach dem welches Merkmal als abhängig angesehen wird, werden zwei verschiedene λ Werte berechnet. Aus den beiden Werten kann noch ein dritter, symmetrischer Wert berechnet werden. λ nimmt Werte zwischen 0 und 1 an und lässt sich im Sinne der Fehlerreduktion bei der Vorhersage des abhängigen Merkmals im Gegensatz zu χ 2 einfach interpretieren. 25

26 Allen PRE Maßen nicht nur λ liegt die gleiche Konzeption zu Grunde: Verglichen werden die Fehler bei der Vorhersage der abhängigen Größe ohne Kenntnis der Ausprägungen der unabhängigen Größe (Fehler(OK)) mit den Fehlern bei Kenntnis der Ausprägungen der abhängigen Größe (Fehler(MK)). Jedes PRE Maß hat die Gestalt PRE Maß = Fehler(OK) Fehler(MK) Fehler(OK) PRE Maße unterscheiden sich nur hinsichtlich der Regeln (Modelle), die für die Vorhersage verwendet werden und die zugehörige Fehlerdefinition. Die uns bereits bekannten Kenngrößen η 2 und r 2 sind spezielle PRE Maße. 26

27 Bei der Berechnung von λ wird für die Vorhersage stets die modale Kategorie der Verteilung verwendet. Ohne Kenntnis der Ausprägungen der Einflussgröße verwendet man die modale Kategorie der univariaten Verteilung der abhängigen Größe, d.h. die häufigste Kategorie der entsprechenden Randverteilung, zur Vorhersage. Mit Kenntnis der Ausprägung der Einflussgröße verwendet man die modale Kategorie der entsprechenden bedingten Verteilung, d.h. der Verteilung in der entsprechenden Spalte oder Zeile der Kontingenztafel. Sind die Modalwerte dieser Verteilungen alle gleich dem Modalwert der Randverteilung, so kommt es zu keiner Fehlerreduktion. 27

28 In unserem Beispiel würden wir ohne Kenntnis der Konfessionszugehörigkeit die Prognose CDU WählerIn verwenden. Ist bekannt, dass die Konfessionszugehörigkeit KatholikIn oder ProtestantIn ist, so verwenden wir wieder die Prognose CDU WählerIn, auch wenn sich die Anteile der CDU WählerInnen in beiden Gruppen stark unterscheiden. Nicht konfessionsgebundene WählerInnen entscheiden sich aber mehrheitlich für die SPD. Bei Kenntnis und Verwendung der Konfessionszugehörigkeit reduziert sich also der Fehlerprozentsatz bei der Vorhersage des Wahlverhaltens. 28

29 Neben λ werden auch andere PRE Maße für nominalskalierte Merkmale verwendet, die andere Regeln (Modelle) für die Vorhersage oder Fehlerdefinition verwenden. Ein Beispiel ist der Unsicherheitskoeffizient, der die Devianz als Maß für den Vorhersagefehler benutzt. 29

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Kreuztabellenanalyse -Zusammenhangsmaße

Kreuztabellenanalyse -Zusammenhangsmaße Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Kreuztabellenanalyse -Zusammenhangsmaße 14. Dezember 2007 Anja Hall, Bundesinstitut für Berufsbildung, AB 2.2:

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Beeinflusst das Geschlecht das Erwerbseinkommen?

Beeinflusst das Geschlecht das Erwerbseinkommen? 74 Kapitel 5 Analyse von Zusammenhängen 5.1 Multivariate Merkmale Gerade in der Soziologie ist die Analyse eindimensionaler Merkmale nur der allererste Schritt. Letztendlich kommt es auf die Analyse von

Mehr

Log-lineare Analyse I

Log-lineare Analyse I 1 Log-lineare Analyse I Einleitung Die log-lineare Analysemethode wurde von L.A. Goodman in den 60er und 70er Jahren entwickelt. Sie dient zur Analyse von Zusammenhängen in mehrdimensionalen Kontingenztafeln

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

3 Zusammenhangsmaße Zusammenhangshypothesen

3 Zusammenhangsmaße Zusammenhangshypothesen 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Bivariate Chi-Quadrat-Verfahren

Bivariate Chi-Quadrat-Verfahren Inhaltsverzeichnis Bivariate Chi-Quadrat-Verfahren... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-3)... 3 1. Kontingenztafeln... 3 2. Vergleich einer bivariaten mit einer theoretisch erwarteten Verteilung...

Mehr

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation Einführung in die Logistische Regression Fortbildung zur 9.Informationstagung Tumordokumentation Bernd Schicke, Tumorzentrum Berlin FB Bayreuth, 29.März 20 Gliederung Einleitung Schätzen von Maßzahlen

Mehr

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung Der Internetdienst für Ihre Online-Umfragen Leitfaden statistische Auswertung Weitere in dieser Reihe bei 2ask erschienene Leitfäden Allgemeiner Leitfaden zur Fragebogenerstellung Sie möchten einen Fragebogen

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Cohen s Kappa Felix-Nicolai Müller Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Felix-Nicolai Müller Cohen s Kappa 24.11.2009 1 / 21 Inhaltsverzeichnis 1 2 3 4

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Kapitel 27 Distanz- und Ähnlichkeitsmaße

Kapitel 27 Distanz- und Ähnlichkeitsmaße Kapitel 7 Distanz- und Ähnlichkeitsmaße 7.1 Einführung Sowohl Distanz- als auch Ähnlichkeitsmaße dienen dazu, die Ähnlichkeit verschiedener Fälle oder Variablen zu quantifizieren. Beide Maße untersuchen,

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr

Deskriptive Statistik Angabe statistischer Maßzahlen und ihre Darstellung in Tabellen und Grafiken

Deskriptive Statistik Angabe statistischer Maßzahlen und ihre Darstellung in Tabellen und Grafiken ÜBERSICHTSARBEIT Deskriptive Statistik Angabe statistischer Maßzahlen und ihre Darstellung in Tabellen und Grafiken Teil 7 der Serie zur Bewertung wissenschaftlicher Publikationen Albert Spriestersbach,

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de IBE,

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Logistische Regression

Logistische Regression TU Chemnitz SoSe 2012 Seminar: Multivariate Analysemethoden 26.06.2012 Dozent: Dr. Thomas Schäfer Logistische Regression Ein Verfahren zum Schätzen von Wahrscheinlichkeiten Referentinnen: B. Sc. Psych.

Mehr

Datenanalyse mit SPSS spezifische Analysen

Datenanalyse mit SPSS spezifische Analysen Datenanalyse mit SPSS spezifische Analysen Arnd Florack Tel.: 0251 / 83-34788 E-Mail: florack@psy.uni-muenster.de Raum 2.015 Sprechstunde: Dienstags 15-16 Uhr 25. Mai 2001 2 Auswertung von Häufigkeitsdaten

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

das Wählerherz 2014 Aus dem Projekt Die Mitte-Studien der Universität Leipzig Meinungsforschungsinstitut USUMA Berlin

das Wählerherz 2014 Aus dem Projekt Die Mitte-Studien der Universität Leipzig Meinungsforschungsinstitut USUMA Berlin Studie: Die Parteien und das Wählerherz 2014 Aus dem Projekt Die Mitte-Studien der Universität Leipzig Auftraggeber: Abteilung Medizinische Psychologie und Medizinische Soziologie der Universität Leipzig

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

6.1 Grundbegriffe und historischer Hintergrund

6.1 Grundbegriffe und historischer Hintergrund Kapitel 6 Regression 61 Grundbegriffe und historischer Hintergrund Bedeutung der Regression: Eines der am häufigsten verwendeten statistischen Verfahren Vielfache Anwendung in den Sozialwissenschaften

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Untersuchungen zum Thema Tracking Error

Untersuchungen zum Thema Tracking Error Untersuchungen zum Thema Tracking Error J. Fulmek 24. August 2003 1 Einleitung Im Folgenden werden folgende Punkte untersucht: 1. verschiedene in der Literatur übliche Definitionen des Tracking Errors

Mehr

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II)

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II) Prinzipien der Fragebogenkonstruktion Seminar: Patricia Lugert, Marcel Götze 17.04.2012 Medien-Bildung-Räume Inhalt Fragebogenerstellung Grundlagen Arten von Fragen Grundlegende Begriffe: Merkmal, Variable,

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

3 Deskriptive Statistik in R (univariat)

3 Deskriptive Statistik in R (univariat) (univariat) Markus Burkhardt (markus.burkhardt@psychologie.tu-chemnitz.de) Inhalt 3.1 Ziel... 1 3.2 Häufigkeiten... 1 3.3 Deskriptive Kennziffern I Lagemaße... 2 3.4 Streuungsmaße... 5 3.5 Standardisierung:

Mehr

Die Parteien und das Wählerherz

Die Parteien und das Wählerherz Studie: Die Parteien und das Wählerherz Auftraggeber: Abteilung Medizinische Psychologie und Medizinische Soziologie der Universität Leipzig Durchführung: Meinungsforschungsinstitut USUMA Berlin Befragungszeitraum:

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Advanced Encryption Standard Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Vorwort Diese Präsentation erläutert den Algorithmus AES auf einfachste Art. Mit Hilfe des Wissenschaftlichen Rechners

Mehr

Einleitung 19. Teil I SPSS kennen lernen 25. Kapitel 1 In 25 Minuten zum SPSS-Profi 27

Einleitung 19. Teil I SPSS kennen lernen 25. Kapitel 1 In 25 Minuten zum SPSS-Profi 27 Inhaltsverzeichnis Einleitung 19 SPSS oder PASW oder was? 19 Über dieses Buch 20 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Törichte Annahmen über den Leser 21 Wie dieses Buch aufgebaut

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

Grundbegriffe der Beschreibenden Statistik

Grundbegriffe der Beschreibenden Statistik Grundbegriffe der Beschreibenden Statistik 1. Datenmatrix und Messniveaus...3 1.1. Merkmale, Datenmatrix, uni- und multivariate Analysen...3 1.2. Messniveaus (Skalentypen)...4 2. Ausgewählte Verfahren

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Lösung zu Kapitel 11: Beispiel 1

Lösung zu Kapitel 11: Beispiel 1 Lösung zu Kapitel 11: Beispiel 1 Eine Untersuchung bei 253 Personen zur Kundenzufriedenheit mit einer Einzelhandelskette im Südosten der USA enthält Variablen mit sozialstatistischen Daten der befragten

Mehr

Glossar Statistik & Forschungsmethoden

Glossar Statistik & Forschungsmethoden Glossar Statistik & Forschungsmethoden Hinweis: Mit * markierte Begriffe sollten Ihnen aus der Schulzeit bekannt sein! A Abbildung (auch *Funktion): Beziehung bzw. Relation zwischen zwei Mengen, die jedem

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen.

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen. Zahlenmauern Dr. Maria Koth Zahlenmauern sind nach einer einfachen Regel gebaut: In jedem Feld steht die Summe der beiden darunter stehenden Zahlen. Ausgehend von dieser einfachen Bauvorschrift ergibt

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Übungen zur Veranstaltung Statistik 2 mit SPSS

Übungen zur Veranstaltung Statistik 2 mit SPSS Raum 22, Tel. 39 4 Aufgabe 5. Wird der neue Film MatchPoint von Woody Allen von weiblichen und männlichen Zuschauern gleich bewertet? Eine Umfrage unter 00 Kinobesuchern ergab folgende Daten: Altersgruppe

Mehr

Vorschlag der Deutschen Aktuarvereinigung (DAV) zur Einführung neuer Sterbetafeln für private Lebensversicherungen mit Todesfallcharakter

Vorschlag der Deutschen Aktuarvereinigung (DAV) zur Einführung neuer Sterbetafeln für private Lebensversicherungen mit Todesfallcharakter H I N T E R G R U N D Köln, 23. Juni 2008 Vorschlag der Deutschen Aktuarvereinigung (DAV) zur Einführung neuer Sterbetafeln für private Lebensversicherungen mit Todesfallcharakter 1. Motivation für die

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Übungsaufgaben mit Lösungsvorschlägen

Übungsaufgaben mit Lösungsvorschlägen Otto-Friedrich-Universität Bamberg Lehrstuhl für Medieninformatik Prof. Dr. Andreas Henrich Dipl. Wirtsch.Inf. Daniel Blank Einführung in das Information Retrieval, 8. Mai 2008 Veranstaltung für die Berufsakademie

Mehr

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen.

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen. 5 Statistik mit SPSS Die Durchführung statistischer Auswertungen erfolgt bei SPSS in 2 Schritten, der Auswahl der geeigneten Methode, bestehend aus Prozedur Variable Optionen und der Ausführung. 5.1 Variablen

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Fortsetzung zu Binswanger2 Überlegungen zu Geld, Kredit und Wirtschaftswachstum

Fortsetzung zu Binswanger2 Überlegungen zu Geld, Kredit und Wirtschaftswachstum Fortsetzung zu Binswanger2 Überlegungen zu Geld, Kredit und Wirtschaftswachstum Peter Fleissner (Version 05.02.2008) Bisher wurde die Rechung nur mit zirkulierendem konstantem Kapital durchgeführt. Die

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Rechtsextreme Einstellungen in Deutschland

Rechtsextreme Einstellungen in Deutschland Rechtsextreme Einstellungen in Deutschland Elmar Brähler Oliver Decker Selbständige Abteilung für Medizinische Psychologie und Medizinische Soziologie der Universität Leipzig Projektleiter: Prof. Dr. Elmar

Mehr

Kundenzufriedenheitsbefragung 2014

Kundenzufriedenheitsbefragung 2014 Kundenzufriedenheitsbefragung 2014 Auswertungsband über alle bisher erhobenen Augenoptiker Anton Optik e.k. Februar 2015, V100 Label TÜV SÜD Management Service GmbH 1 1 2 Hintergrund der Erhebung Zusammenfassung

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Die binäre Logistische Regression ein vielseitiges und robustes Analyseinstrument sozialwissenschaftlicher Forschung

Die binäre Logistische Regression ein vielseitiges und robustes Analyseinstrument sozialwissenschaftlicher Forschung Die binäre Logistische Regression ein vielseitiges und robustes Analyseinstrument sozialwissenschaftlicher Forschung Eine Einführung für Anwender - Marcel Erlinghagen - Gelsenkirchen, Oktober 2003 Gliederung

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

Kurze Einführung in IBM SPSS für Windows

Kurze Einführung in IBM SPSS für Windows Kurze Einführung in IBM SPSS für Windows SPSS Inc. Chicago (1968) SPSS GmbH Software München (1986) 1984: Datenanalyse Software für den PC 1992: Datenanalyse Software unter Windows 1993: Datenanalyse Software

Mehr

Das Risiko, ein Pflegefall zu werden

Das Risiko, ein Pflegefall zu werden Das Risiko, ein Pflegefall zu werden Von Günter Ickler Die wachsende Zahl älterer Menschen bringt eine immer größere Zahl r mit sich. Zur sozialen Absicherung des Risikos der Pflegebedürftigkeit wurde

Mehr

Übersicht. Kapitel 1 : Kapitel 2 : Kapitel 3 : Kapitel 4 : Kapitel 5 : Kapitel 6: Log-lineare und Logit-Modelle

Übersicht. Kapitel 1 : Kapitel 2 : Kapitel 3 : Kapitel 4 : Kapitel 5 : Kapitel 6: Log-lineare und Logit-Modelle Übersicht Datenanalyse (Nach W Stier, Empirische Forschungsmethoden) Michael Grottke, Matthias Fischer & Ingo Klein Wintersemester 2012/13 Kapitel 1 : Kapitel 2 : Kapitel 3 : Kapitel 4 : Kapitel 5 : Kapitel

Mehr