Analyse bivariater Kontingenztafeln

Größe: px
Ab Seite anzeigen:

Download "Analyse bivariater Kontingenztafeln"

Transkript

1 Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen Kontingenztafeln (Kreuztabellen) zum Einsatz. 1

2 Dargestellt werden die absoluten Häufigkeiten h ij für Ausprägungen der gemeinsamen Verteilung der beiden kategorialen Merkmale. Die möglichen Werte sind Kombinationen von Ausprägungen der beteiligten Merkmale. Ergänzt werden diese Tabellen durch die Randhäufigkeiten (Zeilen- und Spaltensummen), die die univariaten Verteilungen der beiden Merkmale beschreiben. 2

3 Für ein kategoriales Merkmal X (Zeilen) mit den Ausprägungen a 1,..., a k und Y (Spalten) mit den Ausprägungen b 1,..., b l hat die Tabelle die Gestalt: X Y b 1... b j... b l a 1 h h 1j... h 1l h a i h i1... h ij... h il h i..... a k h k1... h kj... h kl h k h 1... h j... h l h 3

4 mit und l k h i = h ij, h j = j=1 i=1 h ij k l k l h = h i = h j = i=1 j=1 i=1 j=1 h ij 4

5 Zur grafischen Darstellung der Verteilung in den Zeilen oder Spalten also z.b. zur Darstellung der Abhängigkeit der Verteilung in den Zeilen von den Ausprägungen des Merkmals in den Spalten bieten sich gestapelte Balkendiagramme an. 5

6 Basistechnik bei der Analyse von Kontingenztafeln ist die χ 2 Statistik, die sowohl in der beschreibenden als auch in der schließenden Statistik verwendet wird. χ 2 beschreibt dabei im Sinne des χ 2 Anpassungstests den Abstand zwischen der beobachteten Kontingenztafel und der hypothetisch unterstellten Indifferenztabelle. 6

7 Die Indifferenztabelle wird dabei aus den beiden eindimensionalen Randverteilungen ermittelt, die den beobachteten univariaten Verteilungen der beiden untersuchten Merkmale X und Y entsprechen. In der Indifferenztabelle werden für jede Zelle die bei Unabhängigkeit der beiden Merkmale erwarteten Häufigkeiten h ij aus den vorliegenden Randhäufigkeiten ermittelt h ij = h i h j n = h i n h j n n 7

8 Damit sind die Zeilen und Spalten einer Indifferenztabelle proportional. Die Unabhängigkeit der Merkmale und die Homogenität (Gleichheit) der Verteilungen in den Zeilen oder in den Spalten sind damit äquivalent. χ 2 beschreibt also den Abstand der beobachteten Kreuztabelle zu der bei Unabhängigkeit der beiden Merkmale bzw. der bei Homogenität der Verteilungen in den Zeilen und Spalten zu erwartenden Tabelle. 8

9 Kenngrößen zur Beschreibung von Abhängigkeiten in Kontingenztafeln Für die Erfassung von Abhängigkeiten in Kontingenztafeln wurde eine Vielzahl von Kenngrößen entwickelt. Den Kenngrößen liegen z.t. unterschiedliche konzeptionelle Vorstellungen zu Grunde. Bei der Auswahl von geeigneten Kenngrößen spielen auch die Dimension der Tafel und das Skalenniveau der beteiligten Merkmale eine Rolle. Es existiert kein optimales Abhängigkeitsmaß für Kontingenztafeln. 9

10 Werden zwei dichotome Merkmale X und Y beobachtet, so wird ihre gemeinsame Verteilung durch eine 4 Felder Tafel beschrieben. Wir verwenden für derartige Tafeln die folgenden Bezeichnungen: X \ Y y 1 y 2 Gesamt x 1 a b a + b x 2 c d c + d Gesamt a + c b + d a + b + c + d 10

11 Bei asymmetrischen Fragestellungen, wenn also von einer Richtung der Abhängigkeit (z.b. Kausalität) ausgegangen werden kann, verwendet man häufig Tafeln mit Zeilen- oder Spaltenprozenten. Prozentuiert wird in Richtung auf die vermutete unabhängige Einflussgröße, um die (bedingten) Verteilungen der vermuteten abhängigen Größe für die verschiedenen Ausprägungen der Einflussgröße vergleichen zu können. Ungleichheit (Inhomogenität) dieser Verteilungen ist ein Indiz für vorhandene Abhängigkeiten, also für den Zusammenhang zwischen den beobachteten Merkmalen. Das einfachste Zusammenhangmaß in einer 4 Felder Tafel ist die zeilen- oder spaltenbezogene Prozentsatzdifferenz. 11

12 Beispiel: ALLBUS 1996 Geschlechtszugehörigkeit (Spaltenvariable) und Einstellung zum Schwangerschaftsabbruch (Zeilenvariable) bei finanzieller Notlage. Absolute Häufigkeiten männlich weiblich Gesamt dafür a = 908 b = 962 a + b = 1870 dagegen c = 624 d = 606 c + d = 1230 Gesamt a + c = 1532 b + d = 1568 a + b + c + d = 3100 Die Einflussgröße ist das Geschlecht, daher verwenden wir Spaltenprozente. 12

13 Spaltenprozente männlich weiblich Gesamt dafür (a/(a + c)) 100% = 59.3% 61.4% 60.3% dagegen (c/(a + c)) 100% = 40.7% 38.6% 39.7% Gesamt ((a + c)/(a + c)) 100% = 100% 100% 100% Die Prozentsatzdifferenz bei Verwendung von Spaltenprozenten beträgt also a a + c 100% b b + d 100% = 59.3% 61.4% = 2.1% Die geschlechtsspezifischen Unterschiede bei der Einstellung zum Schwangerschaftsabbruch sind also nicht besonders stark ausgeprägt. 13

14 Als Maß für den Unterschied zwischen zwei Gruppen kann auch das Odds Ratio eingesetzt werden. Das Odds Ratio setzt die Odds zweier Gruppen zueinander ins Verhältnis. Im Beispiel sind die Odds (Chancen) unter den Frauen eine Befürworterin für den Schwangerschaftsabbruch zu finden b/d = 962/606 und unter Männern a/c = 908/624. Das Odds Ratio das Verhältnis der Odds von Frauen und Männern ist demnach b d : a c = bc ad = = Die Chancen, unter Frauen eine Befürworterin des Schwangerschaftsabbruches zu finden, sind also in Relation zu den Männern etwas größer. 14

15 Sowohl für asymmetrische als auch für symmetrische Zusammenhänge kann χ 2 zur Beschreibung verwendet werden. Für vorgegebene Randverteilungen a + b und c + d bzw. a + c und b + d hat die Indifferenztabelle die Gestalt X \ Y y 1 y 2 Gesamt x 1 x 2 (a+b)(a+c) (a+b+c+d) (c+d)(a+c) (a+b+c+d) (a+b)(b+d) (a+b+c+d) (c+d)(b+d) (a+b+c+d) a + b c + d Gesamt a + c b + d a + b + c + d Mit n = a + b + c + d lässt sich der Abstand χ 2 für eine 4 Felder Tafel in der folgenden Form darstellen: χ 2 = n (ad bc) 2 (a + b)(c + d)(a + c)(b + d) 15

16 Der maximal mögliche Wert von χ 2 für eine 4 Felder Tafel ist damit gleich n (Stichprobenumfang). Er wird erreicht, wenn in der Tabelle nur eine der Diagonalen besetzt ist, d.h. wenn entweder nur a und d oder nur c und b von Null verschieden sind (perfekter, eineindeutiger Zusammenhang). χ 2 selbst ist als Abhängigkeitsmaß ungeeignet, da es sich mit dem Stichprobenumfang verändert. Abhängigkeitsmaße für 4 Felder Tafeln, die auf χ 2 basieren, sind Φ 2 = χ2 n = (ad bc) 2 (a + b)(c + d)(a + c)(b + d) und Φ = ad bc (a + b)(c + d)(a + c)(b + d) 16

17 Φ 2 gibt mit Werten zwischen 0 und 1 die Stärke eines Zusammenhanges in einer 4 Felder Tafel an. Φ ist vorzeichenbehaftet. Das Vorzeichen ergibt sich dabei aus den Häufigkeiten auf den Diagonalen. Überwiegen die Häufigkeiten a und d, so ergibt sich ein positives Vorzeichen. Eine Deutung des Vorzeichens ist nur bei ordinalskalierten Merkmalen X und Y sinnvoll. Sind die Merkmale intervallskaliert, so stimmt Φ mit dem Korrelationskoeffizient nach Pearson überein. Im Beispiel ergeben sich χ 2 = , Φ 2 = und Φ =

18 Werden Merkmale X und Y beobachtet, die nicht nur jeweils zwei, sondern k bzw. l mögliche Ausprägungen besitzen, so ist die Kontingenztafel eine Mehrfeldertafel mit k Zeilen, l Spalten und k l Zellen. Bei asymmetrischen Fragestellungen werden wieder Zeilenoder Spaltenprozente zum Vergleich von Verteilungen eingesetzt. Prozentsatzdifferenzen dienen dazu, die Unterschiede zwischen Verteilungen für einzelne Kategorien der vermuteten abhängigen Größe zu beschreiben. Evtl. sind mehrere Prozentsatzdifferenzen zum Vergleich heranzuziehen. Analog kann man mehrere Odds Ratios einsetzen. 18

19 Beispiel: Wahlabsicht und Konfession (ALLBUS 1996) Als Einflussgröße wird die Konfessionzugehörigkeit vermutet. Prozentuiert wird also bezüglich der Kategorien dieses Merkmals. Deutliche Prozentsatzdifferenzen sind u.a. bei der CDU erkennbar. Die Odds (Chancen) unter KatholikInnen eine/n CDU WählerIn anzutreffen sind 327/349 = und unter ProtestantInnen 306/554 = Das Odds Ratio von KatholikInnen zu ProtestantInnen CDU zu wählen, beträgt demnach : = = Die Chancen aus den KatholikInnen, eine/n CDU WählerIn auszuwählen, sind also etwa 1.7 mal so groß wie eine derartige Auswahl unter ProtestantInnen. 19

20 katholisch evangelisch keine Σ CDU % 35.6% 22.3% 35.7% SPD % 34.9% 34.2% 32.9% F.D.P % 12.7% 6.5% 9.2% B 90/Gr % 15.0% 21.2% 16.4% PDS % 1.9% 15.8% 5.8% Σ 676 (100%) 860 (100%) 632 (100%) 2168 (100%) 20

21 Auch für Mehrfeldertafeln kann χ 2 zur Beschreibung sowohl von asymmetrischen als auch von symmetrischen Zusammenhängen eingesetzt werden. Der größte Wert, den χ 2 für eine Mehrfeldertafel annehmen kann, ergibt sich im Fall perfekter (funktioneller) Zusammenhänge. Im Fall einer Mehrfeldertafel mit k l Zellen ist der Maximalwert gleich n min (k 1, l 1) Im Beispiel ist der maximal mögliche Werte von χ 2 also 2168 min (5 1, 3 1) =

22 Eine Verallgemeinerung von Φ auf beliebige Mehrfeldertafeln ist Cramérs V. Es ist definiert als χ V = 2 n min(k 1, l 1) V gibt mit Werten zwischen 0 und 1 die Stärke eines Zusammenhanges in einer Mehrfeldertafel an. V ist nicht vorzeichenbehaftet. 22

23 Als weiteres Zusammenhangsmaß in beliebigen Kontingenztafeln wird der Kontingenzkoeffizient χ C = 2 χ 2 + n verwendet (siehe Statistik I). 23

24 Eine andere Betrachtungsweise der Abhängigkeit kategorialer Merkmale ist die der prädikativen Assoziation. Ihr entsprechen als Maßzahlen die PRE Maße (Proportional Reduction in Error). Das Konzept besteht darin, dass untersucht wird, wie sich die Schätzung oder Vorhersage der abhängigen Variablen ändert, wenn als zusätzliche Information die bekannte Ausprägung der unabhängigen Variablen verwendet wird, gegenüber der Situation, dass diese Information nicht vorliegt. Die PRE Maße spiegeln also den Grad wider, in dem uns die Kenntnis der Ausprägungen einer Einflussgröße hilft, die andere (abhängige) Größe vorher zusagen. 24

25 Als Beispiel für ein PRE Maß betrachten wir λ (Lambda) nach Goodman und Kruskal. λ ist ein asymmetrisches Maß für Zusammenhänge in beliebigen Mehrfeldertafeln. Je nach dem welches Merkmal als abhängig angesehen wird, werden zwei verschiedene λ Werte berechnet. Aus den beiden Werten kann noch ein dritter, symmetrischer Wert berechnet werden. λ nimmt Werte zwischen 0 und 1 an und lässt sich im Sinne der Fehlerreduktion bei der Vorhersage des abhängigen Merkmals im Gegensatz zu χ 2 einfach interpretieren. 25

26 Allen PRE Maßen nicht nur λ liegt die gleiche Konzeption zu Grunde: Verglichen werden die Fehler bei der Vorhersage der abhängigen Größe ohne Kenntnis der Ausprägungen der unabhängigen Größe (Fehler(OK)) mit den Fehlern bei Kenntnis der Ausprägungen der abhängigen Größe (Fehler(MK)). Jedes PRE Maß hat die Gestalt PRE Maß = Fehler(OK) Fehler(MK) Fehler(OK) PRE Maße unterscheiden sich nur hinsichtlich der Regeln (Modelle), die für die Vorhersage verwendet werden und die zugehörige Fehlerdefinition. Die uns bereits bekannten Kenngrößen η 2 und r 2 sind spezielle PRE Maße. 26

27 Bei der Berechnung von λ wird für die Vorhersage stets die modale Kategorie der Verteilung verwendet. Ohne Kenntnis der Ausprägungen der Einflussgröße verwendet man die modale Kategorie der univariaten Verteilung der abhängigen Größe, d.h. die häufigste Kategorie der entsprechenden Randverteilung, zur Vorhersage. Mit Kenntnis der Ausprägung der Einflussgröße verwendet man die modale Kategorie der entsprechenden bedingten Verteilung, d.h. der Verteilung in der entsprechenden Spalte oder Zeile der Kontingenztafel. Sind die Modalwerte dieser Verteilungen alle gleich dem Modalwert der Randverteilung, so kommt es zu keiner Fehlerreduktion. 27

28 In unserem Beispiel würden wir ohne Kenntnis der Konfessionszugehörigkeit die Prognose CDU WählerIn verwenden. Ist bekannt, dass die Konfessionszugehörigkeit KatholikIn oder ProtestantIn ist, so verwenden wir wieder die Prognose CDU WählerIn, auch wenn sich die Anteile der CDU WählerInnen in beiden Gruppen stark unterscheiden. Nicht konfessionsgebundene WählerInnen entscheiden sich aber mehrheitlich für die SPD. Bei Kenntnis und Verwendung der Konfessionszugehörigkeit reduziert sich also der Fehlerprozentsatz bei der Vorhersage des Wahlverhaltens. 28

29 Neben λ werden auch andere PRE Maße für nominalskalierte Merkmale verwendet, die andere Regeln (Modelle) für die Vorhersage oder Fehlerdefinition verwenden. Ein Beispiel ist der Unsicherheitskoeffizient, der die Devianz als Maß für den Vorhersagefehler benutzt. 29

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen für jeden Merkmalsträger stellt sich die Frage, ob es systematische Zusammenhänge

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Analyse von Kreuztabellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof.

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns 2. Statistische Methoden in der Diagnostik Elemente des Studiendesigns Diagnosestudien in der Medizin Klassifikation in krank - nicht krank basierend auf diagnostischem Test Beispiel: Diagnose von Brustkrebs

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Log-lineare Analyse I

Log-lineare Analyse I 1 Log-lineare Analyse I Einleitung Die log-lineare Analysemethode wurde von L.A. Goodman in den 60er und 70er Jahren entwickelt. Sie dient zur Analyse von Zusammenhängen in mehrdimensionalen Kontingenztafeln

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Warum reicht die Varianz nicht zur Konzentrationsmessung aus? Betrachtet man die Merkmale X A (

Warum reicht die Varianz nicht zur Konzentrationsmessung aus? Betrachtet man die Merkmale X A ( Kapitel 4 Konzentrationsmaße Warum reicht die Varianz nicht zur Konzentrationsmessung aus? Betrachtet man die Merkmale X A ( Einkommen in Land A ) und X B ( Einkommen in Land B ) mit folgender Häufigkeitsverteilung

Mehr

Beeinflusst das Geschlecht das Erwerbseinkommen?

Beeinflusst das Geschlecht das Erwerbseinkommen? 74 Kapitel 5 Analyse von Zusammenhängen 5.1 Multivariate Merkmale Gerade in der Soziologie ist die Analyse eindimensionaler Merkmale nur der allererste Schritt. Letztendlich kommt es auf die Analyse von

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008 Aufgabe 1 I) Einige Mitarbeiter

Mehr

Psychologische Methodenlehre und Statistik II

Psychologische Methodenlehre und Statistik II Psychologische Methodenlehre und Statistik II Pantelis Christodoulides & Karin Waldherr 9. Juni 2010 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik II 1/47 Allgemeines

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation Einführung in die Logistische Regression Fortbildung zur 9.Informationstagung Tumordokumentation Bernd Schicke, Tumorzentrum Berlin FB Bayreuth, 29.März 20 Gliederung Einleitung Schätzen von Maßzahlen

Mehr

Gliederung. Bachelorseminar: Graphiken in R Visualisierung Kategorialer Daten. Einführung. Visualisierung von zweidimensionalen Kontingenztafeln

Gliederung. Bachelorseminar: Graphiken in R Visualisierung Kategorialer Daten. Einführung. Visualisierung von zweidimensionalen Kontingenztafeln Gliederung Bachelorseinar: Graphiken in R Visualisierung Kategorialer Daten Matthias Mitterayer betreut durch Sebastian Kaiser Einführung Institut für Statistik, LMU München 13. Januar 2011 Fazit Visualisierung

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick Mehrfeldertabellen und Zusammenhangsmaße 1. Mehrfeldertabellen und Zusammenhangsmaße:

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Trendlinien in Diagrammen (Excel 2010)

Trendlinien in Diagrammen (Excel 2010) Trendlinien in Diagrammen (Excel 2010) Trendlinien in Diagrammen (Excel 2010)... 1 Allgemeines... 2 Informationen über Prognosen und das Anzeigen von Trends in Diagrammen... 3 AUSWÄHLEN DES PASSENDEN TRENDLINIETYPS

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

3 Zusammenhangsmaße Zusammenhangshypothesen

3 Zusammenhangsmaße Zusammenhangshypothesen 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Tests in Kontingenztafeln

Tests in Kontingenztafeln Tests in Kontingenztafeln Der theoretische Phi-Koeffizient Der Phi-Koeffizient bei unabhängigen Zufallsvariablen Der Chiquadrat-Unabhängigkeitstest Der Chiquadrat-Unabhängigkeitstest in Vierfelder-Tafeln

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Cohen s Kappa Felix-Nicolai Müller Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Felix-Nicolai Müller Cohen s Kappa 24.11.2009 1 / 21 Inhaltsverzeichnis 1 2 3 4

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: )

Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: ) A A1a 2197120 on on A A1a 2311330 on on on on on on on A A1a 2316420 on on A A1a 2332345 on on on on on on on A A1a 2371324 on on on on on on on A A1a 2382962 on on A A1a 2384710 on on on on on on on A

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Erstellen von statistischen Auswertungen mit Excel in den Sozialwissenschaften

Erstellen von statistischen Auswertungen mit Excel in den Sozialwissenschaften Erstellen von statistischen Auswertungen mit Excel in den Sozialwissenschaften Dr. Viola Vockrodt-Scholz Telefon: 030/25 29 93 26 Email: vvs@zedat.fu-berlin.de Dr.Viola.Vockrodt-Scholz@t-online.de www.userpage.fu-berlin.de/~vvs

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Bivariate Chi-Quadrat-Verfahren

Bivariate Chi-Quadrat-Verfahren Inhaltsverzeichnis Bivariate Chi-Quadrat-Verfahren... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-3)... 3 1. Kontingenztafeln... 3 2. Vergleich einer bivariaten mit einer theoretisch erwarteten Verteilung...

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Reproduzierbarkeit der Bachelor-Thesis

Reproduzierbarkeit der Bachelor-Thesis der Bachelor-Thesis Anonymisierungsverfahren: Randverteilungen und ihr statistisches Analysepotential Seminar Institut für Statistik Ludwig-Maxmilians-Universität in München Betreuung: Manuel J. A. Eugster

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

6. Auswertung mehrdimensionaler Daten

6. Auswertung mehrdimensionaler Daten 6. Auswertung mehrdimensionaler Daten Bisher: Auswertungsmethoden für Daten eines einzelnen Merkmals, z.b. Diskrete Klassierung Grafische Darstellungen (Verteilungsfunktion) Lagemaße Streungsmaße Schiefemaße

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung).

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). a) Die Anzahl der voneinander verschiedenen Beobachtungswerte eines statistischen Merkmals

Mehr

Achim Bühl, Peter Zöfel. SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. 7., überarbeitete und erweiterte Auflage

Achim Bühl, Peter Zöfel. SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. 7., überarbeitete und erweiterte Auflage Achim Bühl, Peter Zöfel SPSS Version 10 Einführung in die moderne Datenanalyse unter Windows 7., überarbeitete und erweiterte Auflage ADDISON-WESLEY An imprint of Pearson Education München Bosten San Francisco

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung Der Internetdienst für Ihre Online-Umfragen Leitfaden statistische Auswertung Weitere in dieser Reihe bei 2ask erschienene Leitfäden Allgemeiner Leitfaden zur Fragebogenerstellung Sie möchten einen Fragebogen

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Analyse von Kategoriedaten / Nicht-parametrische Methoden Dezember 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 19. Dezember 2012: Vormittag (09.15 12.30) Vorlesung

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Datenanalyse mit SPSS spezifische Analysen

Datenanalyse mit SPSS spezifische Analysen Datenanalyse mit SPSS spezifische Analysen Arnd Florack Tel.: 0251 / 83-34788 E-Mail: florack@psy.uni-muenster.de Raum 2.015 Sprechstunde: Dienstags 15-16 Uhr 25. Mai 2001 2 Auswertung von Häufigkeitsdaten

Mehr

Analyse von Querschnittsdaten. Regression mit Dummy-Variablen

Analyse von Querschnittsdaten. Regression mit Dummy-Variablen Analyse von Querschnittsdaten Regression mit Dummy-Variablen Warum geht es in den folgenden Sitzungen? Datum Vorlesung 9.0.05 Einführung 26.0.05 Beispiele 02..05 Forschungsdesigns & Datenstrukturen 09..05

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Skalenniveau Grundlegende Konzepte

Skalenniveau Grundlegende Konzepte Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Karin Waldherr & Pantelis Christodoulides 4. November 2009 Karin Waldherr & Pantelis Christodoulides Psychologische Methodenlehre und Statistik I 1/56 Informationen,

Mehr

DOE am Beispiel Laserpointer

DOE am Beispiel Laserpointer DOE am Beispiel Laserpointer Swen Günther Ein wesentliches Ziel im Rahmen der Neuproduktentwicklung ist die aus Kundesicht bestmögliche, d.h. nutzenmaximale Konzeption des Produktes zu bestimmen (vgl.

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr