Analyse bivariater Kontingenztafeln

Größe: px
Ab Seite anzeigen:

Download "Analyse bivariater Kontingenztafeln"

Transkript

1 Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen Kontingenztafeln (Kreuztabellen) zum Einsatz. 1

2 Dargestellt werden die absoluten Häufigkeiten h ij für Ausprägungen der gemeinsamen Verteilung der beiden kategorialen Merkmale. Die möglichen Werte sind Kombinationen von Ausprägungen der beteiligten Merkmale. Ergänzt werden diese Tabellen durch die Randhäufigkeiten (Zeilen- und Spaltensummen), die die univariaten Verteilungen der beiden Merkmale beschreiben. 2

3 Für ein kategoriales Merkmal X (Zeilen) mit den Ausprägungen a 1,..., a k und Y (Spalten) mit den Ausprägungen b 1,..., b l hat die Tabelle die Gestalt: X Y b 1... b j... b l a 1 h h 1j... h 1l h a i h i1... h ij... h il h i..... a k h k1... h kj... h kl h k h 1... h j... h l h 3

4 mit und l k h i = h ij, h j = j=1 i=1 h ij k l k l h = h i = h j = i=1 j=1 i=1 j=1 h ij 4

5 Zur grafischen Darstellung der Verteilung in den Zeilen oder Spalten also z.b. zur Darstellung der Abhängigkeit der Verteilung in den Zeilen von den Ausprägungen des Merkmals in den Spalten bieten sich gestapelte Balkendiagramme an. 5

6 Basistechnik bei der Analyse von Kontingenztafeln ist die χ 2 Statistik, die sowohl in der beschreibenden als auch in der schließenden Statistik verwendet wird. χ 2 beschreibt dabei im Sinne des χ 2 Anpassungstests den Abstand zwischen der beobachteten Kontingenztafel und der hypothetisch unterstellten Indifferenztabelle. 6

7 Die Indifferenztabelle wird dabei aus den beiden eindimensionalen Randverteilungen ermittelt, die den beobachteten univariaten Verteilungen der beiden untersuchten Merkmale X und Y entsprechen. In der Indifferenztabelle werden für jede Zelle die bei Unabhängigkeit der beiden Merkmale erwarteten Häufigkeiten h ij aus den vorliegenden Randhäufigkeiten ermittelt h ij = h i h j n = h i n h j n n 7

8 Damit sind die Zeilen und Spalten einer Indifferenztabelle proportional. Die Unabhängigkeit der Merkmale und die Homogenität (Gleichheit) der Verteilungen in den Zeilen oder in den Spalten sind damit äquivalent. χ 2 beschreibt also den Abstand der beobachteten Kreuztabelle zu der bei Unabhängigkeit der beiden Merkmale bzw. der bei Homogenität der Verteilungen in den Zeilen und Spalten zu erwartenden Tabelle. 8

9 Kenngrößen zur Beschreibung von Abhängigkeiten in Kontingenztafeln Für die Erfassung von Abhängigkeiten in Kontingenztafeln wurde eine Vielzahl von Kenngrößen entwickelt. Den Kenngrößen liegen z.t. unterschiedliche konzeptionelle Vorstellungen zu Grunde. Bei der Auswahl von geeigneten Kenngrößen spielen auch die Dimension der Tafel und das Skalenniveau der beteiligten Merkmale eine Rolle. Es existiert kein optimales Abhängigkeitsmaß für Kontingenztafeln. 9

10 Werden zwei dichotome Merkmale X und Y beobachtet, so wird ihre gemeinsame Verteilung durch eine 4 Felder Tafel beschrieben. Wir verwenden für derartige Tafeln die folgenden Bezeichnungen: X \ Y y 1 y 2 Gesamt x 1 a b a + b x 2 c d c + d Gesamt a + c b + d a + b + c + d 10

11 Bei asymmetrischen Fragestellungen, wenn also von einer Richtung der Abhängigkeit (z.b. Kausalität) ausgegangen werden kann, verwendet man häufig Tafeln mit Zeilen- oder Spaltenprozenten. Prozentuiert wird in Richtung auf die vermutete unabhängige Einflussgröße, um die (bedingten) Verteilungen der vermuteten abhängigen Größe für die verschiedenen Ausprägungen der Einflussgröße vergleichen zu können. Ungleichheit (Inhomogenität) dieser Verteilungen ist ein Indiz für vorhandene Abhängigkeiten, also für den Zusammenhang zwischen den beobachteten Merkmalen. Das einfachste Zusammenhangmaß in einer 4 Felder Tafel ist die zeilen- oder spaltenbezogene Prozentsatzdifferenz. 11

12 Beispiel: ALLBUS 1996 Geschlechtszugehörigkeit (Spaltenvariable) und Einstellung zum Schwangerschaftsabbruch (Zeilenvariable) bei finanzieller Notlage. Absolute Häufigkeiten männlich weiblich Gesamt dafür a = 908 b = 962 a + b = 1870 dagegen c = 624 d = 606 c + d = 1230 Gesamt a + c = 1532 b + d = 1568 a + b + c + d = 3100 Die Einflussgröße ist das Geschlecht, daher verwenden wir Spaltenprozente. 12

13 Spaltenprozente männlich weiblich Gesamt dafür (a/(a + c)) 100% = 59.3% 61.4% 60.3% dagegen (c/(a + c)) 100% = 40.7% 38.6% 39.7% Gesamt ((a + c)/(a + c)) 100% = 100% 100% 100% Die Prozentsatzdifferenz bei Verwendung von Spaltenprozenten beträgt also a a + c 100% b b + d 100% = 59.3% 61.4% = 2.1% Die geschlechtsspezifischen Unterschiede bei der Einstellung zum Schwangerschaftsabbruch sind also nicht besonders stark ausgeprägt. 13

14 Als Maß für den Unterschied zwischen zwei Gruppen kann auch das Odds Ratio eingesetzt werden. Das Odds Ratio setzt die Odds zweier Gruppen zueinander ins Verhältnis. Im Beispiel sind die Odds (Chancen) unter den Frauen eine Befürworterin für den Schwangerschaftsabbruch zu finden b/d = 962/606 und unter Männern a/c = 908/624. Das Odds Ratio das Verhältnis der Odds von Frauen und Männern ist demnach b d : a c = bc ad = = Die Chancen, unter Frauen eine Befürworterin des Schwangerschaftsabbruches zu finden, sind also in Relation zu den Männern etwas größer. 14

15 Sowohl für asymmetrische als auch für symmetrische Zusammenhänge kann χ 2 zur Beschreibung verwendet werden. Für vorgegebene Randverteilungen a + b und c + d bzw. a + c und b + d hat die Indifferenztabelle die Gestalt X \ Y y 1 y 2 Gesamt x 1 x 2 (a+b)(a+c) (a+b+c+d) (c+d)(a+c) (a+b+c+d) (a+b)(b+d) (a+b+c+d) (c+d)(b+d) (a+b+c+d) a + b c + d Gesamt a + c b + d a + b + c + d Mit n = a + b + c + d lässt sich der Abstand χ 2 für eine 4 Felder Tafel in der folgenden Form darstellen: χ 2 = n (ad bc) 2 (a + b)(c + d)(a + c)(b + d) 15

16 Der maximal mögliche Wert von χ 2 für eine 4 Felder Tafel ist damit gleich n (Stichprobenumfang). Er wird erreicht, wenn in der Tabelle nur eine der Diagonalen besetzt ist, d.h. wenn entweder nur a und d oder nur c und b von Null verschieden sind (perfekter, eineindeutiger Zusammenhang). χ 2 selbst ist als Abhängigkeitsmaß ungeeignet, da es sich mit dem Stichprobenumfang verändert. Abhängigkeitsmaße für 4 Felder Tafeln, die auf χ 2 basieren, sind Φ 2 = χ2 n = (ad bc) 2 (a + b)(c + d)(a + c)(b + d) und Φ = ad bc (a + b)(c + d)(a + c)(b + d) 16

17 Φ 2 gibt mit Werten zwischen 0 und 1 die Stärke eines Zusammenhanges in einer 4 Felder Tafel an. Φ ist vorzeichenbehaftet. Das Vorzeichen ergibt sich dabei aus den Häufigkeiten auf den Diagonalen. Überwiegen die Häufigkeiten a und d, so ergibt sich ein positives Vorzeichen. Eine Deutung des Vorzeichens ist nur bei ordinalskalierten Merkmalen X und Y sinnvoll. Sind die Merkmale intervallskaliert, so stimmt Φ mit dem Korrelationskoeffizient nach Pearson überein. Im Beispiel ergeben sich χ 2 = , Φ 2 = und Φ =

18 Werden Merkmale X und Y beobachtet, die nicht nur jeweils zwei, sondern k bzw. l mögliche Ausprägungen besitzen, so ist die Kontingenztafel eine Mehrfeldertafel mit k Zeilen, l Spalten und k l Zellen. Bei asymmetrischen Fragestellungen werden wieder Zeilenoder Spaltenprozente zum Vergleich von Verteilungen eingesetzt. Prozentsatzdifferenzen dienen dazu, die Unterschiede zwischen Verteilungen für einzelne Kategorien der vermuteten abhängigen Größe zu beschreiben. Evtl. sind mehrere Prozentsatzdifferenzen zum Vergleich heranzuziehen. Analog kann man mehrere Odds Ratios einsetzen. 18

19 Beispiel: Wahlabsicht und Konfession (ALLBUS 1996) Als Einflussgröße wird die Konfessionzugehörigkeit vermutet. Prozentuiert wird also bezüglich der Kategorien dieses Merkmals. Deutliche Prozentsatzdifferenzen sind u.a. bei der CDU erkennbar. Die Odds (Chancen) unter KatholikInnen eine/n CDU WählerIn anzutreffen sind 327/349 = und unter ProtestantInnen 306/554 = Das Odds Ratio von KatholikInnen zu ProtestantInnen CDU zu wählen, beträgt demnach : = = Die Chancen aus den KatholikInnen, eine/n CDU WählerIn auszuwählen, sind also etwa 1.7 mal so groß wie eine derartige Auswahl unter ProtestantInnen. 19

20 katholisch evangelisch keine Σ CDU % 35.6% 22.3% 35.7% SPD % 34.9% 34.2% 32.9% F.D.P % 12.7% 6.5% 9.2% B 90/Gr % 15.0% 21.2% 16.4% PDS % 1.9% 15.8% 5.8% Σ 676 (100%) 860 (100%) 632 (100%) 2168 (100%) 20

21 Auch für Mehrfeldertafeln kann χ 2 zur Beschreibung sowohl von asymmetrischen als auch von symmetrischen Zusammenhängen eingesetzt werden. Der größte Wert, den χ 2 für eine Mehrfeldertafel annehmen kann, ergibt sich im Fall perfekter (funktioneller) Zusammenhänge. Im Fall einer Mehrfeldertafel mit k l Zellen ist der Maximalwert gleich n min (k 1, l 1) Im Beispiel ist der maximal mögliche Werte von χ 2 also 2168 min (5 1, 3 1) =

22 Eine Verallgemeinerung von Φ auf beliebige Mehrfeldertafeln ist Cramérs V. Es ist definiert als χ V = 2 n min(k 1, l 1) V gibt mit Werten zwischen 0 und 1 die Stärke eines Zusammenhanges in einer Mehrfeldertafel an. V ist nicht vorzeichenbehaftet. 22

23 Als weiteres Zusammenhangsmaß in beliebigen Kontingenztafeln wird der Kontingenzkoeffizient χ C = 2 χ 2 + n verwendet (siehe Statistik I). 23

24 Eine andere Betrachtungsweise der Abhängigkeit kategorialer Merkmale ist die der prädikativen Assoziation. Ihr entsprechen als Maßzahlen die PRE Maße (Proportional Reduction in Error). Das Konzept besteht darin, dass untersucht wird, wie sich die Schätzung oder Vorhersage der abhängigen Variablen ändert, wenn als zusätzliche Information die bekannte Ausprägung der unabhängigen Variablen verwendet wird, gegenüber der Situation, dass diese Information nicht vorliegt. Die PRE Maße spiegeln also den Grad wider, in dem uns die Kenntnis der Ausprägungen einer Einflussgröße hilft, die andere (abhängige) Größe vorher zusagen. 24

25 Als Beispiel für ein PRE Maß betrachten wir λ (Lambda) nach Goodman und Kruskal. λ ist ein asymmetrisches Maß für Zusammenhänge in beliebigen Mehrfeldertafeln. Je nach dem welches Merkmal als abhängig angesehen wird, werden zwei verschiedene λ Werte berechnet. Aus den beiden Werten kann noch ein dritter, symmetrischer Wert berechnet werden. λ nimmt Werte zwischen 0 und 1 an und lässt sich im Sinne der Fehlerreduktion bei der Vorhersage des abhängigen Merkmals im Gegensatz zu χ 2 einfach interpretieren. 25

26 Allen PRE Maßen nicht nur λ liegt die gleiche Konzeption zu Grunde: Verglichen werden die Fehler bei der Vorhersage der abhängigen Größe ohne Kenntnis der Ausprägungen der unabhängigen Größe (Fehler(OK)) mit den Fehlern bei Kenntnis der Ausprägungen der abhängigen Größe (Fehler(MK)). Jedes PRE Maß hat die Gestalt PRE Maß = Fehler(OK) Fehler(MK) Fehler(OK) PRE Maße unterscheiden sich nur hinsichtlich der Regeln (Modelle), die für die Vorhersage verwendet werden und die zugehörige Fehlerdefinition. Die uns bereits bekannten Kenngrößen η 2 und r 2 sind spezielle PRE Maße. 26

27 Bei der Berechnung von λ wird für die Vorhersage stets die modale Kategorie der Verteilung verwendet. Ohne Kenntnis der Ausprägungen der Einflussgröße verwendet man die modale Kategorie der univariaten Verteilung der abhängigen Größe, d.h. die häufigste Kategorie der entsprechenden Randverteilung, zur Vorhersage. Mit Kenntnis der Ausprägung der Einflussgröße verwendet man die modale Kategorie der entsprechenden bedingten Verteilung, d.h. der Verteilung in der entsprechenden Spalte oder Zeile der Kontingenztafel. Sind die Modalwerte dieser Verteilungen alle gleich dem Modalwert der Randverteilung, so kommt es zu keiner Fehlerreduktion. 27

28 In unserem Beispiel würden wir ohne Kenntnis der Konfessionszugehörigkeit die Prognose CDU WählerIn verwenden. Ist bekannt, dass die Konfessionszugehörigkeit KatholikIn oder ProtestantIn ist, so verwenden wir wieder die Prognose CDU WählerIn, auch wenn sich die Anteile der CDU WählerInnen in beiden Gruppen stark unterscheiden. Nicht konfessionsgebundene WählerInnen entscheiden sich aber mehrheitlich für die SPD. Bei Kenntnis und Verwendung der Konfessionszugehörigkeit reduziert sich also der Fehlerprozentsatz bei der Vorhersage des Wahlverhaltens. 28

29 Neben λ werden auch andere PRE Maße für nominalskalierte Merkmale verwendet, die andere Regeln (Modelle) für die Vorhersage oder Fehlerdefinition verwenden. Ein Beispiel ist der Unsicherheitskoeffizient, der die Devianz als Maß für den Vorhersagefehler benutzt. 29

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Was sind Zusammenhangsmaße?

Was sind Zusammenhangsmaße? Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten

Mehr

Bivariate Kreuztabellen

Bivariate Kreuztabellen Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen für jeden Merkmalsträger stellt sich die Frage, ob es systematische Zusammenhänge

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt.

Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Bivariate Analyse: Tabellarische Darstellung: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Beispiel: Häufigkeitsverteilung

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Kreuztabellenanalyse -Zusammenhangsmaße

Kreuztabellenanalyse -Zusammenhangsmaße Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Kreuztabellenanalyse -Zusammenhangsmaße 14. Dezember 2007 Anja Hall, Bundesinstitut für Berufsbildung, AB 2.2:

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Analyse von Kreuztabellen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof.

Mehr

Zusammenhangsanalyse in Kontingenztabellen

Zusammenhangsanalyse in Kontingenztabellen Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel

Mehr

5.3 (Empirische) Unabhängigkeit und χ 2

5.3 (Empirische) Unabhängigkeit und χ 2 5.3 (Empirische) Unabhängigkeit und χ 2 5.3.1 (Empirische) Unabhängigkeit Durch den Vergleich der bedingten Häufigkeiten mit den Randhäufigkeiten kann man Zusammenhänge beurteilen Illustration an einem

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit

Zwei kategoriale Merkmale. Homogenität Unabhängigkeit 121 Zwei kategoriale Merkmale Homogenität Unabhängigkeit 122 Beispiel Gründe für die Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährige Schulkinder in Michigan, USA Grund für Beliebtheit weiblich

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten)

3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten) 3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten) Beispiel: Gründe für Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährigen Schulkinder in Michigan, USA warum ist man bei seinen Klassenkameraden

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Biometrieübung 11 Kontingenztafeln

Biometrieübung 11 Kontingenztafeln Biometrieübung 11 (Kontingenztafeln) - Aufgabe Biometrieübung 11 Kontingenztafeln Aufgabe 1 2x2-Kontingenztafeln 100 weibliche Patienten sind mit einer konventionellen Therapie behandelt worden 85 Patientinnen

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Kapitel 3. FRAGESTELLUNG 1 und 2. Öffne die Datei commercial.sav. Folgende Darstellung sollte in der Datenansicht erscheinen:

Kapitel 3. FRAGESTELLUNG 1 und 2. Öffne die Datei commercial.sav. Folgende Darstellung sollte in der Datenansicht erscheinen: Kapitel 3 FRAGESTELLUNG 1 und 2 Öffne die Datei commercial.sav. Folgende Darstellung sollte in der Datenansicht erscheinen: Wenn in der SPSS Datenansicht bis nach unten gescrollt wird, kann festgestellt

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

Mehrere kategoriale Merkmale

Mehrere kategoriale Merkmale Kapitel 3 Mehrere kategoriale Merkmale 3.1 Wie kann man zwei kategoriale Merkmale numerisch beschreiben? Kontingenztafeln (Kreuztabellen) erzeugt man wiederum mit table: R> CMMRCIAL

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

Beeinflusst das Geschlecht das Erwerbseinkommen?

Beeinflusst das Geschlecht das Erwerbseinkommen? 74 Kapitel 5 Analyse von Zusammenhängen 5.1 Multivariate Merkmale Gerade in der Soziologie ist die Analyse eindimensionaler Merkmale nur der allererste Schritt. Letztendlich kommt es auf die Analyse von

Mehr

Kategoriale Daten. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/17

Kategoriale Daten. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/17 Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/17 Übersicht Besitzen die Daten, die statistisch ausgewertet werden sollen, kategoriales Skalenniveau, unterscheidet man die folgenden Szenarien:

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns 2. Statistische Methoden in der Diagnostik Elemente des Studiendesigns Diagnosestudien in der Medizin Klassifikation in krank - nicht krank basierend auf diagnostischem Test Beispiel: Diagnose von Brustkrebs

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j

Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j 1 Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 27 (a) Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a 2 }, S Y {ja, nein} {b

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test 1 Der zweidimensionale Chi²-Test 4 Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008 Aufgabe 1 I) Einige Mitarbeiter

Mehr

Warum reicht die Varianz nicht zur Konzentrationsmessung aus? Betrachtet man die Merkmale X A (

Warum reicht die Varianz nicht zur Konzentrationsmessung aus? Betrachtet man die Merkmale X A ( Kapitel 4 Konzentrationsmaße Warum reicht die Varianz nicht zur Konzentrationsmessung aus? Betrachtet man die Merkmale X A ( Einkommen in Land A ) und X B ( Einkommen in Land B ) mit folgender Häufigkeitsverteilung

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen

Mehr

Musterlösung zur Aufgabensammlung Statistik I Teil 3

Musterlösung zur Aufgabensammlung Statistik I Teil 3 Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Log-lineare Analyse I

Log-lineare Analyse I 1 Log-lineare Analyse I Einleitung Die log-lineare Analysemethode wurde von L.A. Goodman in den 60er und 70er Jahren entwickelt. Sie dient zur Analyse von Zusammenhängen in mehrdimensionalen Kontingenztafeln

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Gliederung. Bachelorseminar: Graphiken in R Visualisierung Kategorialer Daten. Einführung. Visualisierung von zweidimensionalen Kontingenztafeln

Gliederung. Bachelorseminar: Graphiken in R Visualisierung Kategorialer Daten. Einführung. Visualisierung von zweidimensionalen Kontingenztafeln Gliederung Bachelorseinar: Graphiken in R Visualisierung Kategorialer Daten Matthias Mitterayer betreut durch Sebastian Kaiser Einführung Institut für Statistik, LMU München 13. Januar 2011 Fazit Visualisierung

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Kontingenztabellen. Worum geht es in diesem Modul?

Kontingenztabellen. Worum geht es in diesem Modul? Kontingenztabellen Worum geht es in diesem Modul? Die Ausgangssituation Die 2x2 Felder Tafel Randverteilungen in 2x2-Tafeln Bedingte Häufigkeiten in 2x2-Tafeln Die IxJ-Felder Tafel Kontingenztabelle und

Mehr

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Inhaltsverzeichnis Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung:

Mehr

Prof. Dr. Achim Bühl SPSS 16. Einführung in die moderne Datenanalyse. 11., überarbeitete und erweiterte Auflage

Prof. Dr. Achim Bühl SPSS 16. Einführung in die moderne Datenanalyse. 11., überarbeitete und erweiterte Auflage Prof. Dr. Achim Bühl SPSS 16 Einführung in die moderne Datenanalyse 11., überarbeitete und erweiterte Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG GLIEDERUNG Statistik eine Umschreibung Gliederung der Statistik in zwei zentrale Teilbereiche Deskriptive Statistik Inferenzstatistik

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation

Einführung in die Logistische Regression. Fortbildung zur 19.Informationstagung Tumordokumentation Einführung in die Logistische Regression Fortbildung zur 9.Informationstagung Tumordokumentation Bernd Schicke, Tumorzentrum Berlin FB Bayreuth, 29.März 20 Gliederung Einleitung Schätzen von Maßzahlen

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte

Mehr

3 Zusammenhangsmaße Zusammenhangshypothesen

3 Zusammenhangsmaße Zusammenhangshypothesen 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick Mehrfeldertabellen und Zusammenhangsmaße 1. Mehrfeldertabellen und Zusammenhangsmaße:

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr