Entwicklung einer Programmbibliothek zur Simulation von Hautdeformation durch Knochen und Muskeln

Größe: px
Ab Seite anzeigen:

Download "Entwicklung einer Programmbibliothek zur Simulation von Hautdeformation durch Knochen und Muskeln"

Transkript

1 Entwicklung einer Programmbibliothek zur Simulation von Hautdeformation durch Knochen und Muskeln Universität Koblenz Institut für Computervisualistik Arbeitsgruppe Computergraphik Betreuer und Prüfer Prof. Dr.-Ing. Stefan Müller

2 Animationsverfahren Hirarchical Articulated Objects Jedes Körperteil ist ein eigenes Objekt. Die einzelnen Objekte sind hierarchisch angeordnet.

3 Animationsverfahren Hirarchical Articulated Objects Transformationen propagieren sich durch die Hierarchie nach unten weiter.

4 Animationsverfahren Hirarchical Articulated Objects Pro Einfach zu realisieren. Sehr Performant. Contra Keine geschlossene Hautoberfläche. Durchdringungen / Stoßkanten an den Gelenken.

5 Animationsverfahren Mesh morphing / blending Von einem Netz werden verschiedene Versionen gespeichert. Es darf lediglichglich die Position der Vertices verschieden sein. Die Vertices können zwischen den keyframes linear Interpoliert werden. Keyframe_1 Keyframe_2 0.5 * Keyframe_ * Keyframe_2

6 Animationsverfahren Mesh morphing / blending Pro Relativ einfach zu Implementieren. Wichtige Posen können exakt definiert werden.

7 Animationsverfahren Mesh morphing / blending Contra Für realistische Bewegungsabläufe sind viele Keyframes nötig. Nur vorbereitete Bewegungen möglich. Nur lineare Interpolation -> Verkürzungseffekt.

8 Skin and Bones Idee: Animiere ein Skelett, das Skelett bewegt die Haut.

9 Das Skelett Das Skelett besteht aus einer Hierarchie von Knochen. Transformationen die auf einen Knochen wirken werden an die Kinder weitergegeben (s.h. hierachical articulated objects ). RootBone Bone1 Bone2 Bone3 Bone4 Bone5 Bone6

10 Der Knochen Ein Knochen wird definiert durch seine lokale Transformationsmatrix. Diese Matrix wird aus einer Rotation und einer Translation zusammen gesetzt. R,, B i =R,, T x i,y i,z i T xi,y i,z i Diese Matrix verschiebt einen Punkt aus dem Ursprung an die Spitze des Knochens.

11 Der Knochen Eine Transformation zur Spitze eines Knochens ergibt sich, in der Hierarchie, durch kumulatives aufmultiplizieren der einzelnen Knochen-Matrizen. j W j = i=0 B i B 0 B 1 B 2 B 3 B 4 W 2 =B 0 B 2 W 3 =B 0 B 1 B 3 W 3 =B 0 B 1 B 4

12 Kinematik Forwarde- Kinematik Die Rotation jedes einzelnen Knochens wird gesetzt. R 0 R 1 R 2

13 Kinematik Inverse-Kinematik Der Endpunkt einer Knochen-Kette wird bestimmt. Ein Algorithmus versucht die Gelenk- Rotationen so zu bestimmen, dass der Endpunkt mit der Spitze des letzten Knochens berührt wird. Target xt, y t,z t

14 Skinning Frage: Wie bewegt man die Haut mit dem Skelett mit. Antwort: Die Vertices der Haut werden nicht relativ zum Objektkoordinatensystem definiert sondern relativ zu dem beeinflussenden Knochen. Die Position des Vertex im Objektkoordinantensystem kann durch Multiplikation des Offset-Vektors mit der kumulativ berechneten Transformationmatrix des entsprechenden Knochens, berechnet werden.

15 Rigid-Skinning Jeder Vertex wird nur von einem Knochen beeinflusst. Gute Ergebnisse bei low-poly- Objekten ( Half Life ). Bei hi-ploy-objekten starke Artefakte an den Kanten.

16 Soft-Skinning Jeder Vertex kann von mehreren Knochen beeinflußt werden. Weiche Übergänge an den Gelenken. n i v i = B bij o weight ij ij j=0 Die Summe der Gewichte muss 1 ergeben.

17 Soft-Skinning for(i über alle Vertices) for(j über alle beeinflussenden Knochen) vertex[i] += Beinflussende_Transformation * OffsetVektor[j] * gewicht;

18 Soft-Skinning Problem: Haut wird nur lokal, in Gelenk nähe deformiert.

19 Muskeln Das vier Layer Modell Haut Fett Knochen Muskel

20 Muskeln Der Spindelmuskel Annäherung durch Ellipsoid. Volumen des Muskels bleibt bei Kontraktion gleich

21 Muskeln Der Spindelmuskel x=radius x cos cos y=radius y cos sin z=radius z sin radius x = L 2 radius y =radius z p radius z = 3V 4 radius x p p= radius y radius z

22 Muskeln Andere Muskeln multi-belly-muscles Belibige andere Formen z.b. durch Bezier-Patches.

23 Fett Simulation der Fettschicht durch ein System von Federn. Ziel: Minimierung eines Energiefunktionals. Berechnung durch Lösung eines Gleichungssystems mit n Gleichungen. (n = anzahl der Federn) Für Echtzeit zu aufwendig.

24 Skinning mit Muskeln Berechne auf den Muskeln Stützpunkte. Definiere die Vertices der Haut relativ zu mehreren naheligenden Stützpunkten. Berechnung analog Skinning ohne Muskeln.

25 Berechnung der Ellipsoid- Muskeln Florian Schulze Gegeben: Anfangs- und Endpunkt und Volumen des Muskels. Berechnen der Radien. Berechnen der Transformation um den Muskel zwischen Anfangs- und Endpunkt zu platzieren. Berechnen der Stützpunkte auf dem Muskel.

26 Die Stützpunkte Bestehen aus einer Transformations- Matrix. offsetvektor y offsetvektor offsetvektor z x

27 Berechnungszyklus Animation setzen Skelett-Tree traversieren Muskeln berechnen Skinning Netz rendern

28 Implementierung Gesamte Funktionalität wird in der Klasse SBMObject Gekapselt.

29 Implementierung Initialisierung Manuell: SBMObject sbmobject; sbmobject.set...();... sbmobject.init(); Automatisch aus Datei: SBMObject * sbmobj = createsbmobject( datei );

30 Implementierung Animation setzen: sbmobject.setrotation(int id, Matrix & rot); Berechnung starten: sbmobject.compute(); Netz rendern: sbmobject.render();

CHARACTER ANIMATION in 3D Studio Max. Ulrike Martus

CHARACTER ANIMATION in 3D Studio Max. Ulrike Martus CHARACTER ANIMATION in 3D Studio Max Ulrike Martus Übersicht: 1. Aufbau von Charakteren 2. Animationsmethoden 3. Skelettanimation 4. Oberflächenanimation 2 1. Aufbau von Charakteren Aufbau von Charakteren

Mehr

Interaktion mittels Gestik, Animation

Interaktion mittels Gestik, Animation Interaktion mittels Gestik, Animation Bastian Könings bk8@informatik.uni-ulm.de Proseminar Virtuelle Präsenz SS 2005 Universität Ulm 1/38 Übersicht 1. Gestik allgemein 1.1 Definition von Gestik 1.2 lexikalische

Mehr

How to make a PIXAR movie Rigging & Skinning

How to make a PIXAR movie Rigging & Skinning Exposé Proseminar How to make a PIXAR movie Rigging & Skinning Johannes Schmidt Einführung Schon mit Beginn des Trickfilms in den 30er Jahren des letzten Jahrhunderts standen die Animatoren vor den gleichen

Mehr

Prüfungsdauer: 120 Minuten

Prüfungsdauer: 120 Minuten Computergraphik und Multimediasysteme Seite 1 von 6 Klausur: Computergraphik II Probeklausur Semester: Prüfer: Prüfungsdauer: 1 Minuten Hilfsmittel: Schreibgeräte, Lineal, nichtprogrammierbarer Taschenrechner

Mehr

Deformation Grundlagen Autodesk Maya. Grundlagen. Version 1.0-2009-03-27. 2009 Ingo Clemens brave rabbit www.braverabbit.de

Deformation Grundlagen Autodesk Maya. Grundlagen. Version 1.0-2009-03-27. 2009 Ingo Clemens brave rabbit www.braverabbit.de Deformation Grundlagen Version 1.0-2009-03-27 Deformation Arten von Deformation Nonlinear Cluster Lattice Blend Shape Wrap Sculpt Jiggle Wire Deformation Order Reihenfolge der Deformation in der Construction

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

(1) Geometrie. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU

(1) Geometrie. Vorlesung Computergraphik 3 S. Müller U N I V E R S I T Ä T KOBLENZ LANDAU (1) Geometrie Vorlesung Computergraphik 3 S. Müller KOBLENZ LANDAU KOBLENZ LANDAU Organisatorisches Vorlesung CG 2+3 Die Veranstaltung besteht aus 2 Teilen, wobei in der Mitte und am Ende eine Klausur

Mehr

Zwischenvortrag zur Diplomarbeit Simulation und Visualisierung von Muskeln, Sehnen und Bändern

Zwischenvortrag zur Diplomarbeit Simulation und Visualisierung von Muskeln, Sehnen und Bändern Zwischenvortrag zur Diplomarbeit Simulation und Visualisierung von Muskeln, Sehnen und Bändern Von Armin Burger Johann-Wolfgang-von-Goethe-Universität Frankfurt am Main Was ist ein Muskel? Wie funktioniert

Mehr

Morphing. von Tim Sternberg. Im Rahmen des Seminars Manipulation und Verarbeitung digitaler Bilder

Morphing. von Tim Sternberg. Im Rahmen des Seminars Manipulation und Verarbeitung digitaler Bilder von Tim Sternberg Im Rahmen des Seminars Manipulation und Verarbeitung digitaler Bilder Einleitung Mit Morphing wird der fließende Übergang eines Bildes in ein anderes bezeichnet. Zwei digitale Bilder

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

Seminar SS 2006 Intelligent Virtual Characters

Seminar SS 2006 Intelligent Virtual Characters Seminar SS 2006 Intelligent Virtual Characters Leiter: Dr. Michael Kipp Johannes Tran Character Animation Materials by Jeff Lander, John Lasseter and Rick Parent Überblick Einführung: Bewegung, Computer

Mehr

SPEZIALEFFEKTE IN CINEMA4D:

SPEZIALEFFEKTE IN CINEMA4D: ANIMATION UND 3D- VISUALISIERUNG SPEZIALEFFEKTE IN CINEMA4D: TUTORIAL: DER DINO AUS DEM EI ÜBUNGSAUFGABE 4 TEAM E KURZ MARGRET STÖGERER MANUELA 1 Animation Cinema4d EGG + DINO Als Ausgangsbasis für die

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich.

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Kapitel 1 Animation (Belebung) Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Anwendungen findet die

Mehr

9. Parametrische Kurven und Flächen

9. Parametrische Kurven und Flächen 9. Parametrische Kurven und Flächen Polylinien bzw. Polygone sind stückweise lineare Approximationen für Kurven bzw. Flächen Nachteile: hohe Zahl von Eckpunkten für genaue Repräsentation erforderlich interaktive

Mehr

CINEMA 4D. Band II. Das Kompendium. CGArt. Die Animation. Arndt von Koenigsmarck. Die Referenzdokumentation zum Animieren mit CINEMA 4D ab Version 16

CINEMA 4D. Band II. Das Kompendium. CGArt. Die Animation. Arndt von Koenigsmarck. Die Referenzdokumentation zum Animieren mit CINEMA 4D ab Version 16 CGArt Arndt von Koenigsmarck CINEMA 4D Das Kompendium Band II Die Animation Die Referenzdokumentation zum Animieren mit CINEMA 4D ab Version 16 Perfekt für das Selbststudium, als Fachbuch in Lehr- und

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann

Mehr

4. Segmentierung von Objekten Video - Inhaltsanalyse

4. Segmentierung von Objekten Video - Inhaltsanalyse 4. Segmentierung von Objekten Video - Inhaltsanalyse Stephan Kopf Inhalt Vorgehensweise Berechnung der Kamerabewegungen zwischen beliebigen Bildern Transformation eines Bildes Hintergrundbilder / Panoramabilder

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Parametrische Objekte Kurven und Flächen Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Kurven Welche Form der Darstellung? Beispiel: 2D-Linie Explizit: y = k x + d x = (x, y) T Implzit:

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Computergrafik 1 Transformationen

Computergrafik 1 Transformationen Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung

Mehr

A Simple and Practical Method for Interactive Ray Tracing of Dynamic Scenes

A Simple and Practical Method for Interactive Ray Tracing of Dynamic Scenes A Simple and Practical Method for Interactive Ray Tracing of Dynamic Scenes Ingo Wald Carsten Benthin Philipp Slusallek Marco Lang Bisher Ray Tracing erstmals von Appel benutzt dutzende Algorithmen vor

Mehr

Vektoren - Basiswechsel - Matrix

Vektoren - Basiswechsel - Matrix Vektoren - asiswechsel - Matrix 1. Prinzip er Zusammenhang zwischen zwei asissystemen sollen formal eleganter durchgeführt werden. Ein Nachteil des "einfachen" Verfahrens - siehe Seite V0 - ist, dass teilweise

Mehr

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE YOUNG SCIENTISTS 4 dimensionale komplexe in der Computergrafik Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE Programm Vorbereitung (Wiederholung) Komplexe Vektoren Quaternionen Quaternionen

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Diplomarbeit. Automatische Extraktion hierarchischer Skelette aus dynamischen 3D-Modellen

TECHNISCHE UNIVERSITÄT DRESDEN. Diplomarbeit. Automatische Extraktion hierarchischer Skelette aus dynamischen 3D-Modellen TECHNISCHE UNIVERSITÄT DRESDEN FAKULTÄT INFORMATIK INSTITUT FÜR SOFTWARE- UND MULTIMEDIATECHNIK PROFESSUR FÜR COMPUTERGRAPHIK UND VISUALISIERUNG PROF. DR. STEFAN GUMHOLD Diplomarbeit zur Erlangung des

Mehr

4 Roboterkinematik. Roboterarm und Gelenke

4 Roboterkinematik. Roboterarm und Gelenke 4 Roboterkinematik Roboterarm und Gelenke 4.1 Grundlegende Begriffe Mechanismus besteht aus einer Anzahl von starren Körpern (Glieder diese sind durch Gelenke verbunden Ein Gelenk verbindet genau zwei

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Analytische Geometrie Spatprodukt

Analytische Geometrie Spatprodukt Analytische Geometrie Spatprodukt David Schmid, Reto Da Forno Kantonsschule Schüpfheim Januar 2005 Analytische Geometrie: Das Spatprodukt 1 Das Spatprodukt Hinweis: Die Vektoren werden aus darstellungstechnischen

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Technische Universität Dresden Fakultät Informatik Institut für Software- und Multimediatechnik Dozent: Dr. Mascolous Referent: Gliederung / Einleitung 1 / 25 1. Kurven

Mehr

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU (7) Normal Mapping Vorlesung Computergraphik II S. Müller Dank an Stefan Rilling Einleitung Die Welt ist voller Details Viele Details treten in Form von Oberflächendetails auf S. Müller - 3 - Darstellung

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

3D Computergrafik Animation. Blender

3D Computergrafik Animation. Blender 3D Computergrafik Animation Blender Arbeitsumgebung Animation... 2 Arbeiten mit Zeitleiste und Keyframes...2 In der 3d View: Bewegung, Grössenveränderung und Drehung...3 Anpassen der Zeitleiste... 3 Graph-Editor...

Mehr

Lösungsvorschlag zum zweiten Übungsblatt

Lösungsvorschlag zum zweiten Übungsblatt Lösungsvorschlag zum zweiten Übungsblatt Aufgabe Wir zeigen, daß die Drehung um den Ursprung um 9 und die Spiegelung an der x-achse nicht kommutieren. Die Matrix für die Drehmatrix lautet in diesem Fall

Mehr

Editing of 3D-Meshes Using Implicitly Defined Occluders

Editing of 3D-Meshes Using Implicitly Defined Occluders Mesh Forging Editing of 3D-Meshes Using Implicitly Defined Occluders 2 Mesh Forging Schmieden von 3D-Netzen Bendels, Klein 2003 1. Scodef 2. Bearbeitungsschritt 3. Forgingschritt 3 1. Scodef Simple Constrained

Mehr

Computer-Version der traditionellen (Zeichentrick-) Keyframe- Animation

Computer-Version der traditionellen (Zeichentrick-) Keyframe- Animation Keyframe-Animation Computer-Version der traditionellen (Zeichentrick-) Keyframe- Animation Keyframes: ausgewählte Standbilder, die vorgegeben (modelliert, akquiriert) sind Zwischenbilder (inbetweens) werden

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011 C A R L V O N O S S I E T Z K Y Transformationen Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Motivation Transformationen Sind Grundlage vieler Verfahren der Computergrafik Model-

Mehr

Nachholtutorium A: Matrizen, Reihenentwicklungen Aufgaben

Nachholtutorium A: Matrizen, Reihenentwicklungen Aufgaben Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T: Rechenmethoden für Physiker, WiSe /3 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/t/ Nachholtutorium A: Matrizen, Reihenentwicklungen

Mehr

The Animation Process. Proseminar Computer Grafik und Visualisierung Daniel Lagler

The Animation Process. Proseminar Computer Grafik und Visualisierung Daniel Lagler Proseminar Computer Grafik und Visualisierung I. Inhaltsverzeichnis 1. Einleitung 1.1 Definition...3 1.2 Geschichte...3 1.3 Animationsfilme... 3 2. Techniken... 3 2.1 Rotoskopie... 3 2.2 Keyframing...

Mehr

Repetitorium A: Matrizen, Reihenentwicklungen

Repetitorium A: Matrizen, Reihenentwicklungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 5/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Rekonstruktion kontinuierlicher Daten Interpolation multivariater Daten Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester

Mehr

Warping im Detail $KNFXGTCTDGKVWPIWPF#NIQTKVJOGP 2TQH &T9QNHICPI-QPGP. Bildverarbeitung und Algorithmen SS Konen, Zielke

Warping im Detail $KNFXGTCTDGKVWPIWPF#NIQTKVJOGP 2TQH &T9QNHICPI-QPGP. Bildverarbeitung und Algorithmen SS Konen, Zielke $KNFXGTCTDGKVWPIWPF#NIQTKVJOGP 2TQH &T9QNHICPI-QPGP Warping im Detail SS05 8.24 Konen, Zielke SS05 8.25 Konen, Zielke &KG5EJTKVVGFGU9CTRKPI#NIQTKVJOWU 6FKULWW: Passpunkte finden automatisch oder manuell

Mehr

Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS Matlab: Fortsetzung. Jan Mayer. 4. Mai 2006

Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS Matlab: Fortsetzung. Jan Mayer. 4. Mai 2006 Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS 2006 Matlab: Fortsetzung Jan Mayer 4. Mai 2006 Manipulation von Matrizen und Vektoren [M,N]=size(A); speichert die Dimension einer Matrix bzw.

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

Non-Photorealistic Rendering

Non-Photorealistic Rendering Übersicht 1. Motivation und Anwendungen 2. Techniken - Cel Shading - Konturlinien - Hatching Einführung Traditionelle Computergraphik Ziel: Fotorealismus Einführung Motivation Bewusste Vermeidung von

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1. Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare

Mehr

Diplomarbeit. Neue Möglichkeiten durch programmierbare Shader. Unter der Leitung von: Prof. Dr.-Ing. Detlef Krömker

Diplomarbeit. Neue Möglichkeiten durch programmierbare Shader. Unter der Leitung von: Prof. Dr.-Ing. Detlef Krömker Diplomarbeit 5HDO7LPH6SHFLDO (IIHFWV Neue Möglichkeiten durch programmierbare Shader Unter der Leitung von: Prof. Dr.-Ing. Detlef Krömker Betreut von: Paul Grimm, Ralf Dörner Beginn: 01.04.02 Abgabe: 30.09.02

Mehr

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23

Einführung 17. Teil I Zu den Grundlagen der linearen Algebra 21. Kapitel 1 Schnelleinstieg in die lineare Algebra 23 Inhaltsverzeichnis Einführung 17 Zu diesem Buch 17 Konventionen in diesem Buch 17 Törichte Annahmen über den Leser 17 Wie dieses Buch aufgebaut ist 18 Teil I: Zu den Grundlagen der linearen Algebra 18

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

Tag 3. Zweidimensionale Spielewelten

Tag 3. Zweidimensionale Spielewelten Tag 3 Zweidimensionale Spielewelten Lernziele Grundlagen für eine 2D-Spielewelt Beschreibung von 2D-Welten durch Vektoren Zweidimensionale Welttransformationen durch Matrizen Mögliche Problemstellungen

Mehr

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus Conrad Donau 8. Oktober 2010 Conrad Donau 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 8. Oktober 2010 1 / 7 18.1 Wiederholung: Ebenen in R 3

Mehr

Virtuelle Charaktere Anwendung Rechnernetze Jana Hornberger

Virtuelle Charaktere Anwendung Rechnernetze Jana Hornberger Virtuelle Charaktere Anwendung Rechnernetze Jana Hornberger 1 Einleitung 1.1 Der Begriff Avatar Der Begriff Avatar leitet sich von avatara (der Herabsteigende) ab, was im Hinduismus ein Gott bezeichnet,

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Klausur zur Vorlesung Höhere Mathematik I

Klausur zur Vorlesung Höhere Mathematik I Name: 30. Januar 200,.00-3.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 20 min, 2 Zeitstunden Skript, Vorlesungsmitschrift Schreiben Sie bitte auf dieses Deckblatt oben rechts

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Computer Vision: Kalman Filter

Computer Vision: Kalman Filter Computer Vision: Kalman Filter D. Schlesinger TUD/INF/KI/IS D. Schlesinger () Computer Vision: Kalman Filter 1 / 8 Bayesscher Filter Ein Objekt kann sich in einem Zustand x X befinden. Zum Zeitpunkt i

Mehr

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1.

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1. Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian Dauer: 30 min jeweils Note: 1.0 jeweils Alles in allem eine lockere Atmosphäre, man bekommt genug Papier und

Mehr

Entwicklung einer allgemeinen dynamischen inversen Kinematik

Entwicklung einer allgemeinen dynamischen inversen Kinematik Entwicklung einer allgemeinen dynamischen inversen Kinematik Christoph Schmiedecke Studiendepartment Informatik Hochschule für Angewandte Wissenschaften Hamburg 06. Januar 2010 Inhaltsverzeichnis 1 Motivation

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Projektive Geometrie

Projektive Geometrie Projektive Geometrie Einleitung Was ist projektive Geometrie? eine alternative algebraische Repräsentation von geometrischen Objekten (Punkt, Gerade,...) und Transformationen (Translation, Rotation,...)

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Proseminar Computergraphik, 10. Juni 2008 Christoph Dähne Seite 1 Inhalt Polygonnetze 3 Knotenliste 3 Kantenliste 3 Parametrisierte kubische Kurven 4 Definition 4 Stetigkeit

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Arndt von Koenigsmarck CINEMA Grundlagen und Workshops für Profis. An imprint of Pearson Education

Arndt von Koenigsmarck CINEMA Grundlagen und Workshops für Profis. An imprint of Pearson Education Arndt von Koenigsmarck CINEMA 40 10 Grundlagen und Workshops für Profis ~Ji..~ ADDISON-WESLEY An imprint of Pearson Education München. Boston. San Francisco Harlow, England Don Mills, Ontario Sydney. Mexico

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

ProPra WS 2008/09: LEGO-Sculptor

ProPra WS 2008/09: LEGO-Sculptor ProPra WS 2008/09: LEGO-Sculptor Dipl.-Inform. Christian Düntgen Lehrgebiet Datenbanksysteme für neue Anwendungen Worum geht es? 1. Einlesen einer Formbeschreibung aus VRML-Datei (ggf. Visualisierung der

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Computergrafik 1 Übung

Computergrafik 1 Übung Prof. Dr. Andreas Butz Dipl.-Medieninf. Hendrik Richter Dipl.-Medieninf. Raphael Wimmer Computergrafik Übung Wiederholung Lineare Algebra: Vektoren, Matrizen, Transformationen in D und 3D Computergrafik

Mehr

Modellierung. Oliver Hartmann

Modellierung. Oliver Hartmann Modellierung Oliver Hartmann oliver.hartmann@uni-ulm.de Inhalt Boolesche Operationen Splines B-Splines Bezier-Kurven NURBS Anwendung Sculpting Volumengrafik Marching Cubes Ray Casting Texture Mapping Boolesche

Mehr

Jens Konerow. Managed DirectX und C#

Jens Konerow. Managed DirectX und C# Jens Konerow Managed DirectX und C# Jens Konerow Managed DirectX und C# Einstieg und professioneller Einsatz Jens Konerow: Managed DirectX und C# Einstieg und professioneller Einsatz ISBN-10: 3-935082-17-4

Mehr

3D - Modellierung. Arne Theß. Proseminar Computergraphik TU Dresden

3D - Modellierung. Arne Theß. Proseminar Computergraphik TU Dresden 3D - Modellierung Arne Theß Proseminar Computergraphik TU Dresden Gliederung Darstellungsschemata direkte Constructive Solid Geometry (CSG) Generative Modellierung Voxelgitter indirekte Drahtgittermodell

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

Gliederung. Gliederung (cont.) Probleme der Dynamik von Manipulatoren

Gliederung. Gliederung (cont.) Probleme der Dynamik von Manipulatoren - Gliederung Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 08. Juni 010 Allgemeine Informationen Einführung

Mehr

Softwareprojekt Spieleentwicklung

Softwareprojekt Spieleentwicklung Softwareprojekt Spieleentwicklung Prototyp I (2D) Prototyp II (3D) Softwareprojekt 12.04. 19.04. 26.04. 03.05. 31.05. Meilenstein I 28.06. Meilenstein II Prof. Holger Theisel, Tobias Günther, OvGU Magdeburg

Mehr

51 Numerische Berechnung von Eigenwerten und Eigenvektoren

51 Numerische Berechnung von Eigenwerten und Eigenvektoren 5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,

Mehr

Partikelsysteme. Lehrstuhl Computergrafik und Visualisierung Fakultät Informatik TU Dresden. Proseminar Computergrafik.

Partikelsysteme. Lehrstuhl Computergrafik und Visualisierung Fakultät Informatik TU Dresden. Proseminar Computergrafik. 58 Partikelsysteme Lehrstuhl Computergrafik und Visualisierung Fakultät Informatik TU Dresden Proseminar Computergrafik Robert Stelzmann Gliederung 1. Einleitung und Motivation 2. Begriffsklärung 3. Einfache

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Shadow Volumes für animierte 3DCharaktere auf der GPU

Shadow Volumes für animierte 3DCharaktere auf der GPU Masterarbeit mit dem Thema: Shadow Volumes für animierte 3DCharaktere auf der GPU erstellt von unter der Leitung der Betreuer Prof. Dr. Konrad Polthier und Dr. Alexander Wiebel am Fachbereich Informatik/Mathematik

Mehr

Transformationen. 09-Transformationen

Transformationen. 09-Transformationen Transformationen 9-Transformationen Als Transformationen werden affine Transformationen im R n betrachtet. Alle derartigen Transformationen lassen sich darstellen als: A + b wobei A die quadratische Transformationsmatri

Mehr

Gliederung. Gliederung (cont.) Grundlage zur Programmierung auf Aufgabenebene

Gliederung. Gliederung (cont.) Grundlage zur Programmierung auf Aufgabenebene - Gliederung Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 28. Juni 2011 Allgemeine Informationen Einführung

Mehr

Vektoren - Basiswechsel

Vektoren - Basiswechsel Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Vorwärtskinematik und inverse Kinematik. Andreas Schmidtke

Vorwärtskinematik und inverse Kinematik. Andreas Schmidtke Vorwärtskinematik und inverse Kinematik Andreas Schmidtke Übersicht 1. Vorwärtskinematik 2. Standardframes 3. Inverse Kinematik 4. Bemerkungen zur Numerik Übersicht 1. Vorwärtskinematik 1. Modellierung

Mehr

Einführung in die Robotik. Jianwei Zhang

Einführung in die Robotik. Jianwei Zhang - Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 28. Juni 2011 J. Zhang 324 Programmierung auf Aufgabenebene

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 16: Erste Algorithmen in Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr