Die Ziffern der Fibonacci-Zahlen

Größe: px
Ab Seite anzeigen:

Download "Die Ziffern der Fibonacci-Zahlen"

Transkript

1 Elem. Math /3/26-8 c Birhäuser Verlag, Basel, 23 Elemente der Mathemati Die Ziffern der Fibonacci-Zahlen Jürgen Spiler Einleitung und Sätze Die reursiv definierte Folge Jürgen Spiler wurde 935 in Berlin geboren. Er studierte Mathemati und Physi für das Lehramt in Göttingen und promovierte dort 962 bei H. Grauert über automorphe Funtionen. Heute interessieren ihn zahlentheoretische Probleme, insbesondere Beweismethoden aus der reellen Analysis. f =f2 =, fn + 2 =fn + +fn n ist nach Fibonacci alias Leonardo Pisano, um 2 benannt. Sie beschreibt das Wachstum einer Kaninchen-Population, wenn man folgende Regeln zugrunde legt: a. Am Anfang des. Monats lebt genau ein Paar von Kaninchen; b. edes Kaninchen-Paar wirft am Anfang eden Monats genau ein zweites Paar, beginnend mit dem 3. Monat seines Lebens; auch das Urpaar wirft erst ab dem 3. Monat; c. Kaninchen sind unsterblich. Dann ist fn die Anzahl der Paare, die im n-ten Monat leben. In der vorliegenden Arbeit werden die Dezimal-Ziffern betrachtet, die in der Fibonacci-Folge,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44,... auftreten. Kommt die 2 darin häufiger vor als die 3? Vermutlich weiß man die Antwort nicht. Gibt man edoch eine feste Stelle für die Ziffer vor, dann ann man diese Häufigeiten berechnen. So ist die 2 als Endziffer seltener als die 3. Alle Ziffern treten in periodischer Weise als Endziffern auf Satz. Als Leitziffer ommt dagegen die 2 häufiger vor als die 3. Jede Ziffer ausser der Null tritt in fast-periodischer Weise als Leitziffer auf Satz 2. Schließlich wird untersucht, wieviele Fibonacci-Zahlen genau Stellen haben. Ist 2, dann sind es 4 oder 5; der erste Fall ist häufiger und tritt in fast-periodischer Weise auf Satz 3. Dieser Zugang liefert neue Beweise für beannte Aussagen..

2 Elem. Math Die wichtigsten Eigenschaften der Fibonacci-Zahlen findet man in dem Buch von Hoggatt [2]. Dort ist auch auf S. die für alle n gültige Binet-Formel fn = αn β n α β angegeben. + 5 mit α := 2 =, 68..., β := 5 2 =, Wenn man eine natürliche Zahl n onret benennen will, dann benutzt man meistens ihre Dezimal-Darstellung n = e n mit e n,,...,9}. K Ist e K n, dann schreibt man diese Zahl üblicherweise in der Form e K ne K n...e ne n und nennt e K n die Leitziffer von n; e n ist die Endziffer. Die ersten Fibonacci-Zahlen in Dezimal-Form sind in der folgenden Tabelle enthalten: f f f f2 f f f3 2 f f f4 3 f f f5 5 f f f6 8 f f f7 3 f f f8 2 f f f9 34 f f f 55 f f f 89 f f f2 44 f f f3 233 f f f4 377 f f f5 6 f f f6 987 f f f7 597 f f f f f f9 48 f f f f f f2 946 f f f22 77 f f f f f f f f Wir behandeln in diesem Artiel 3 Probleme über die Ziffern der Fibonacci-Zahlen.

3 28 Elem. Math Problem handelt von den Endziffern der fn. Satz Sei e,,...,9} eine feste Ziffer und rn := die Endziffer von fn ist e, sonst. Dann ist die Folge rn n periodisch mit der Periode 6, und sie hat den Mittelwert Dabei ist Mr := lim N N Mr = n N rn. 5 falls e gerade, 2 5 falls e ungerade. Bemerung Man ann auch einen rechtsbündigen Bloc von einer festen Länge, also die Ziffern e fn, e 2 fn,...,e fn vorgeben. Wieder ist die zugehörige charateristische Folge rn n periodisch; ihre Periode ist 3, falls = 2 und 5, falls 3 ist [6]. Die Mittelwerte ennt man nicht. Nun zu Problem 2 über die Leitziffern der fn. Daß auch die Leitziffern eine periodische Folge bilden, ann man nicht erwarten, denn fn entsteht durch Addition von fn und fn 2, und die Überträge bei der Addition zerstören die Periodizität. Aber immerhin ist die Folge noch fast-periodisch. Um das zu präzisieren, definieren wir für eine omplexe Folge ln n die Halb-Norm ln := lim sup N N n N ln und nennen die Folge l =ln fast-periodisch, wenn zu edem natürlichen eine omplexe Linearombination h von Exponentialfolgen e 2πiαn n mit α R existiert, so daß l h < ist. Man sieht leicht, daß ede fast-periodische Folge l einen Mittelwert Ml hat und Ml = lim Mh gilt [5, Kap. VI]. Satz 2 Sei e > eine feste Ziffer und ln := die Leitziffer von fn ist e, sonst. Dann ist die Folge ln n fast-periodisch, aber nicht schließlich-periodisch, und sie hat den Mittelwert Ml =log +. e Alle Logarithmen in diesem Artiel sind zur Basis zu nehmen.

4 Elem. Math Bemerung Man ann auch einen linsbündigen Leitbloc fester Länge vorgeben und erhält wieder eine fast-periodische Folge. Sind e e 2 e die ersten Ziffern e, dann ist ihr Mittelwert log + e + e e Insbesondere tritt der Anfangsbloc am häufigsten bei den Fibonacci-Zahlen auf. Offene Fragen Man ennt vermutlich eine ähnlichen Resultate, die alle Ziffern der Fibonacci-Zahlen gleichzeitig betreffen. Was ann man über die Folge dn := # N : e fn = e} aussagen, wobei e > eine feste Ziffer ist? Wie verhält sich die Quersumme der fn asymptotisch bei n?wieverhält sie sich im Mittel? Unser drittes Problem behandelt die Anzahl der Fibonacci-Zahlen mit genau Ziffern: a := #n N : fn < }. Es gilt [4] a 4, 5}, falls >. 2 Beweis. Denn durch Indution über n sieht man, 6 fn fn <, 7 fn, n > 5. Sei > und fn die leinste Fibonacci-Zahl mit genau Ziffern; dann ist n 7 und a 4, da fn + 3 <, 7 4 fn < 8, 36 <, a 5, da fn + 5, 6 5 fn, 48 >. Damit ist 2 bewiesen. Wir definieren die Folgen falls a =4, b := sonst, Es gilt der c := falls a =5, sonst. Satz 3 Die Folgen an, bn und cn sind fast-periodisch, aber nicht schließlichperiodisch. Ihre Mittelwerte sind Ma = = 4, , Mb =5 =, 25..., Mc = 4 =, die Konstante α wurde in definiert.

5 3 Elem. Math Bemerungen. Die drei Sätze behandeln die Dezimal-Ziffern der fn. Ersetzt man die Basis durch eine beliebige Basis g 2, so bleiben die Aussagen über Periodizität und Fast-Periodizität erhalten, nur die Perioden und Mittelwerte ändern sich. 2. Die Inhalte der Sätze 3 sind teilweise beannt; ihre Beweise sind edoch neu, insbesondere war die Fast-Periodizität der betreffenden Folgen bisher unbeannt. Beweis von Satz Es ist e f = e f2 =, und aus der Tabelle der ersten Fibonacci-Zahlen erennt man e f6 = e f62 =. Hieraus folgt e f3 = e f63 = 2 und durch Indution e fn = e fn+6 für alle n. Also hat die Folge rn die Periode 6. Der Mittelwert ist Mr = 6 e fn, den man durch Auszählen berechnet. 2 Beweis von Satz 2 Wir benötigen einen n 6 Hilfssatz Hat die Funtion h : R C die Periode und ist h [, ] quadrat-integrierbar, so ist die Folge fn := hɛn fast-periodisch für edes reelle ɛ. Beweis. Ist ɛ rational, etwa ɛ = q p mit q Z, p N, dannistɛn + p =ɛn + q, und fn hat die Periode p, ist also fast-periodisch. Sei ɛ irrational. Wir definieren die Fourier-Koeffizienten von h und δ := h K x := hxe 2πix dx, Z, K Dann gilt nach der Cauchy-Schwarz-Ungleichung h h K ɛn 2 lim sup N N δ e 2πix, K N. n N h h K ɛn 2. Weil die Folge ɛn n gleichverteilt modulo ist [3, S. 8], ist der lim sup gleich hx h K x 2 dx, und das Integral hat nach der Parseval-Gleichung in L 2 [, ] den Wert δ 2. Hieraus erennt man >K lim h K hk ɛn = und die Fast-Periodizität von hɛn n.

6 Elem. Math Beispiel Seien γ, δ reelle Zahlen, γ<δ, x =[x]+x} sei die Zerlegung der reellen Zahl x im ganzen und gebrochenen Anteil sowie h γ,δ x := γ<x} <δ, 3 sonst. Dann ist die Folge h γ,δ ɛn n fast-periodisch für edes reelle ɛ. Beweis von Satz 2 für den Fall e =. Zu edem natürlichen 3 existiert nach ein n N, sodaßfür alle n > n gilt log fn n β n 2 log 5 = log < α. Die Fibonacci-Zahl fn hat genau dann die Leitziffer, wenn ein K N mit K fn < 2 K,alsoK log fn < K + log 2 existiert. Definiere reelle Zahlen γ := 2 log 5 =, und δ := 2 log 5 + log 2 =, Dann impliziert e Kfn =, n > n, die Ungleichung K + γ < n <K + δ +, also mit 3 h γ,δ+ n =, falls ln =, n > n. 4 Im anderen Fall e K fn > gilt 2 K fn < K+,alsoK + log 2 log fn < K +. Das impliziert n } <γ+ oder n } >δ,also h γ+,δ n =, falls ln =, n > n. 5 Wir approximieren nun die Folge ln: n N ln h γ,δ n = n N ln= h γ,δ+ h γ,δ n n N ln= h γ,δ n + n N ln= h γ,δ n + n N ln= h γ,δ h γ+,δ n +O nach 4 und 5 hγ,δ+ h γ+,δ n +O. n N Da irrational ist, ist die Folge n n gleichverteilt mod [3, S. 8] und lim hγ N N,δ+ h γ+,δ n n N = hγ,δ+ h γ+,δ xdx = 4, 3.

7 32 Elem. Math Damit ist ln h γ,δ n = gezeigt. Weil nach dem Hilfssatz die Folge h γ,δ n n fast-periodisch ist, ist auch ln fast-periodisch. Nun berechnen wir den Mittelwert von l. Wegen der Gleichverteiltheit mod von der Folge n n ist Ml =Mh γ,δ n = h γ,δ xdx = δ γ = log 2. Weil das eine irrationale Zahl ist, ann die Folge l nicht schließlich-periodisch sein eine schließlich-periodische Folge mit ganzzahligen Werten hat einen rationalen Mittelwert. Damit ist Satz 2 für den Fall e = bewiesen. Bei anderen Leitziffern e > schließt man in analoger Weise. 3 Beweis von Satz 3 Ist >, dann gilt nach 2 b =5 a, c =a 4. Somit müssen wir nur die Folge b untersuchen. Sei eine natürliche Zahl. Es ist genau dann b =, wenn fn 3 < und fn + 2 für ein n 4 gilt. Nach Binets Formel bedeutet das n 3 log 5 < 2 und < n + 2 log für alle >. Setze γ := 2 log =, 2...und δ := 2 log 5 =, Dann impliziert b =, >, die Ungleichung also h γ,δ+ n + γ < < n + δ +, =. Der andere Fall b = bedeutet fn 3 und =, falls >. fn + < für ein n 4, also h γ+,δ Wir approximieren nun b ähnlich wie im Beweis zu Satz 2: b h γ,δ K h γ,δ+ h γ,δ K b= K h γ,δ+ h γ+,δ + h γ,δ h γ+,δ + O K b= + O,

8 falls. Da die Zahl irrational ist, ist die Folge und lim h K K γ,δ+ h γ+,δ K = Elem. Math h γ,δ+ h γ+,δ xdx = 4,. gleichverteilt mod Damit ist b h γ,δ = gezeigt, und nach dem Hilfssatz ist die Folge b fast-periodisch. Ihr Mittelwert ergibt sich in beannter Weise: Mb = h γ,δ xdx = δ γ = 5. Weil dies eine irrationale Zahl ist, ann die Folge b nicht schließlich-periodisch sein. Bemerung Die Mittelwert-Formel Mc = 4 wurde schon in [, S. 339] mit einer anderen Methode bewiesen. Kürzlich hat Puchta [4] lim c = K K m Mc K lmodm gezeigt. Es existiert eine äquivalente Formel für die Folge b, und diese ergibt sich diret aus obigem Beweis: Weil auch die Folge gleichverteilt mod ist, folgt lim K K K lmodm b = m lim I I lmod m bmi + l = m i I h γ,δ xdx = m Mb. Literatur [] Guthmann, A.: Wieviele -stellige Fibonaccizahlen gibt es? Arch. Math , [2] Hoggatt, V.E.: Fibonacci and Lucas numbers. Boston, Houghton Mifflin, 969. [3] Kuipers, L.; Niederreiter, H.: Uniform distribution of sequences. New Yor, John Wiley, 974. [4] Puchta, J.-C.: The number of -digit Fibonacci numbers. Fibonacci Quart , [5] Schwarz, W.; Spiler, J.: Arithmetical functions. Cambridge University Press, 994. [6] Wall, D.D.: Fibonacci series modulo m. Amer. Math. Monthly 67 96, Jürgen Spiler Albert-Ludwigs-Universität Mathematisches Institut Abt. Reine Mathemati Ecerstr. D 794 Freiburg, Deutschland Jürgen.Spiler@math.uni-freiburg.de

1 Häufungswerte von Folgen

1 Häufungswerte von Folgen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 0/..0 Höhere Mathemati I für die Fachrichtung Informati. Saalübung (..0) Häufungswerte von Folgen Oft

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Bernoullipolynome und Bernoullizahlen

Bernoullipolynome und Bernoullizahlen Bernoullipolynome und Bernoullizahlen Artjom Zern Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 9, Leitung Prof. Dr. Eberhard Freitag) Zusammenfassung: Wie aus dem Titel ersichtlich ist

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Bernstein-Polynome. Autor: Johannes Erath. Schriftliche Ausarbeitung zum Vortrag vom

Bernstein-Polynome. Autor: Johannes Erath. Schriftliche Ausarbeitung zum Vortrag vom Bernstein-Polynome Autor: Johannes Erath Schriftliche Ausarbeitung zum Vortrag vom 07.04.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Einführung 3 2.1 Etwas Geschichte........................... 3 2.2 Denition

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1 Aufgabe Die strenge Monotonie zeigen wir mittels vollständiger Indution. Indutionsanfang: Trivialerweise ist f streng monoton wachsend. Indutionsschritt: Wir nehmen an, es sei gezeigt, dass für ein gewisses

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Proseminar Konvexe Mengen: Der Satz von Carathéodory

Proseminar Konvexe Mengen: Der Satz von Carathéodory Proseminar Konvexe Mengen: Der Satz von Carathéodory Gerrit Grenzebach 26. Otober 2004 In diesem Referat werden der Begriff der onvexen Hülle einer Menge eingeführt und einige Eigenschaften der onvexen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Inhaltsverzeichnis Holger Stephan, Tag der Mathemati,. Juni Vortrag. Einleitung........................................ Zahlenfolgen.......................................

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R.

Taylor-Reihenentwicklung. Bemerkungen. f(z) = a k (z z 0 ) k mit a k,z 0,z C. z k z C. f (k) (x 0 ) (x x 0 ) k mit x 0,x R. 8.2 Potenzreihen Definition: Eine Reihe der Form f(z) = a ( ) mit a,z 0,z C heißt (omplexe) Potenzreihe zum Entwiclungspunt z 0 C. Beispiel: Die (omplexe) Exponentialfuntion ist definiert durch die Potenzreihe

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-,

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x) Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Übungen zu Numerische Mathematik (V2E2) Sommersemester 2008

Übungen zu Numerische Mathematik (V2E2) Sommersemester 2008 Übungen zu Numerische Mathemati (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Übungsblatt 1 Abgabe: 24. April 2008 Aufgabe 1 Zur Berechnung der Quadratwurzel

Mehr

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung FOURIERREIHEN 1. Grundlagen a) Periodische Funtionen Beispiele: 1) f( x) = sin( x+ π / 3), T = 2 π /. 2) f( t) = cos( ωt+ ϕ), T = 2 π / ω. 3) Rechtecschwingung, 1< t < f() t =, f( t+ 2) = f() t 1, < t

Mehr

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen 3 Die natürlichen Zahlen Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen Die natürlichen Zahlen Æ = {1, 2, 3,...}. sind die natürlichen

Mehr

Blatt 11.4: Deltafunktion und Fourierreihen

Blatt 11.4: Deltafunktion und Fourierreihen Faultät für Physi R: Rechenmethoden für Physier, WiSe 215/16 Dozent: Jan von Delft Übungen: Benedit Bruognolo, Dennis Schimmel, Fraue Schwarz, uas Weidinger http://homepages.physi.uni-muenchen.de/~vondelft/ehre/15r/

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x.

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x. Der Primzahlsatz Zusammenfassung Im Jahr 896 wurde von Hadamard und de la Vallée Poussin der Primzahlsatz bewiesen: Die Anzahl der Primzahlen kleiner gleich verhält sich asymptotisch wie / log. Für ihren

Mehr

ANALYSIS FÜR INFORMATIKER ÜBUNGSBLATT WEIHNACHTSGESCHENK

ANALYSIS FÜR INFORMATIKER ÜBUNGSBLATT WEIHNACHTSGESCHENK ANALYSIS FÜR INFORMATIKER ÜBUNGSBLATT WEIHNACHTSGESCHENK Dr. J. Giannoulis, M.Sc. S. Metzler, Dipl. Math. K. Tichmann WS 00/ Trainingseinheit 0 Sript Kartieren Sie grob die Inhalte des Sripts. Welche Werzeuge,

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/01 0.11.015 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k.

3. Potenzreihen. Definition 7.5. Eine unendliche Reihe der Form. a k x k. Es handelt sich also um eine Funktionenreihe mit f k (x) = a k x k. 3. Potenzreihen Definition 7.5. Eine unendliche Reihe der Form a x mit x R (veranderlich und a R (onstant heit Potenzreihe, die Zahlen a ( heien Koezienten der Potenzreihe. Es handelt sich also um eine

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt Definition Ist (a ) eine Folge reeller (bzw omplexer) Zahlen und x 0 R (bzw z 0 C), dann heißt die Reihe a (x x 0 ) (bzw a (z

Mehr

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest.

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest. Analysis, Woche Zahlen A. Elementares Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest... Logische Symbole Seien A und B Aussagen. So eine Aussage ist zum Beispiel: Gras

Mehr

Musterlösung Zahlentheorie Frühlingssemester 2015, Aufgabenblatt 1

Musterlösung Zahlentheorie Frühlingssemester 2015, Aufgabenblatt 1 Aufgabenblatt 1 40 Punte Aufgabe 1 (Teilermengen) Seien a = 128 und b = 129. a) Beschreiben Sie die Teilermengen T(a) und T(b) in aufzählender Form. 2 b) Seien p, q zwei verschiedene Primzahlen. (i) Wie

Mehr

Fouriertransformation und Unschärfeprinzip

Fouriertransformation und Unschärfeprinzip Information, Codierung, Komplexität 2 SS 2007 24. April 2007 Das berühmte von Heisenberg in der Quantentheorie beruht, rein mathematisch betrachtet, auf einer grundlegenden Eigenschaft der der Dichtefunktionen

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Zusammenfassung. n k+1 j k! j ( k + 1 j )! 2 + k

Zusammenfassung. n k+1 j k! j ( k + 1 j )! 2 + k Aussagenlogi Tobias Krähling email: Homepage: 7.. Version. Zusammenfassung Im vorliegenden Doument soll die Potenzsummenformel i= i = n+ n + + n + j= a

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Über Potenzsummenpolynome

Über Potenzsummenpolynome Über Potenzsuenpolynoe Jörg Feldvoss I Sande 4b, D-21369 Nahrendorf Gerany Einleitung Für jede natürliche Zahl n bezeichnen wir it P n das n-te Potenzsuenpolyno, welches dadurch gegeben ist, dass es für

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Die Transzendenz von e

Die Transzendenz von e Die Transzendenz von e Stephan Wojtowytsch 2. Juni 29 Wir wollen zeigen, dass die eulersche Zahl e transzendent ist. Transzendente Zahlen sind Zahlen, die nicht als Nullstellen von Polynomen mit ganzen

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

Probeklausur zur Analysis für Informatiker

Probeklausur zur Analysis für Informatiker Lehrstuhl A für Mathemati Prof. Dr. R. Stens Aachen, den 28. Januar 20 Probelausur zur Analysis für Informatier Musterlösung Aufgabe Zeigen Sie, dass für alle n N gilt. 2n+ ( ) + Beweis durch vollständige

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.

Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt. Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.

Mehr

Die Euler-Mascheroni-Konstante

Die Euler-Mascheroni-Konstante Die Euler-Mascheroni-Konstante Niloufar Rahi Ausarbeitung zum Vortrag in Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Wenn von der

Mehr

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr.

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr. Die Binomialreihe Sebastian Schulz Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 008/09, Leitung Prof. Dr. Eberhard Freitag Zusammenfassung: Diese Ausarbeitung beschäftigt sich mit der

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

$Id: folgen.tex,v /06/07 13:16:35 hk Exp $ n qn = 0.

$Id: folgen.tex,v /06/07 13:16:35 hk Exp $ n qn = 0. $Id: folgen.tex,v 1.13 01/06/07 13:16:35 hk Exp $ 6 Folgen 6.4 Folgen reeller Zahlen Wir waren gerade mit der Besprechung diverser Beispiele zur Folgenkonvergenz beschäftigt, und wollen jetzt noch zwei

Mehr

30 Die Gammafunktion und die Stirlingsche Formel

30 Die Gammafunktion und die Stirlingsche Formel 3 Die Gammafunktion und die Stirlingsche Formel 35 Charakterisierung der Gammafunktion 36 Darstellung der Gammafunktion 38 Beziehung zwischen der Gammafunktion und der Zetafunktion 3 Stirlingsche Formel

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates: Hans Walser, [06045] Pythagoras-Schmetterling Das Phänomen Wir beginnen mit einem beliebigen rechtwinkligen Dreieck und zeichnen die übliche Pythagoras-Figur. Dann fügen wir zwei weitere Quadrate an (rot

Mehr

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur

Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf. Probeklausur Mathematisches Institut der Universität Heidelberg Prof. Dr. E. Freitag /Thorsten Heidersdorf Probeklausur Diese Probeklausur soll a) als Test für euch selber dienen, b) die Vorbereitung auf die Klausur

Mehr

Von den rationalen zu den reellen Zahlen

Von den rationalen zu den reellen Zahlen Skript zur Schülerwoche 016, zweiter Tag: Von den rationalen zu den reellen Zahlen Dr. Mira Schedensack 1. September 016 1 Einführung Dieser Vorlesung geht von der Menge der rationalen Zahlen aus und definiert

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k. Analysis, Woche 7 Reihen I 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n =

Mehr

HM I Tutorium 5. Lucas Kunz. 24. November 2016

HM I Tutorium 5. Lucas Kunz. 24. November 2016 HM I Tutorium 5 Lucas Kunz 24. November 206 Inhaltsverzeichnis Theorie 2. Definition einer Reihe.............................. 2.2 Wichtige Reihen................................. 2.3 Limites inferior

Mehr

Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06

Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 19. April 2006 Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P1: Eine spezielle Lucasfolge (L n ) ist durch L n = L n 1 + L n 2, L 0 = 2, L 1 = 1 definiert. Berechnen

Mehr

Ruprecht-Karls-Universität Heidelberg Mathematisches Institut. Ausarbeitung des Vortrags: Irrationale Zahlen

Ruprecht-Karls-Universität Heidelberg Mathematisches Institut. Ausarbeitung des Vortrags: Irrationale Zahlen Ruprecht-Karls-Universität Heidelberg Mathematisches Institut Ausarbeitung des Vortrags: Irrationale Zahlen Proseminar: Überraschungen und Gegenbeispiele in der reellen Analysis Dr. Gudrun Thäter von Jan

Mehr

Elliptische Funktionen

Elliptische Funktionen Elliptische Funktionen Jeff Schomer Universität Freiburg (Schweiz) 27.09.2007 Einleitung In diesem Seminar werden wir über doppelt periodische und elliptische Funktionen sprechen. Nachdem wir grundlegende

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

122 KAPITEL 7. POTENZREIHEN

122 KAPITEL 7. POTENZREIHEN Kapitel 7 Potenzreien 7.1 Der Konvergenzradius Definition 7.1: (Komplexe Potenzreien) Eine Potenzreie um den Punt z 0 C ist eine Reie der Form a (z z 0 ), a, z, z 0 C. Dort, wo die Reie onvergiert, definiert

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt: 1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Analysis 1 Fabian Hafner und Thomas Baldauf TUM Wintersemester 2016/17 04.04.2017 Das Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfasst von Andreas Wörfel.

Mehr

Unmöglichkeit guter Gitterpunktformeln

Unmöglichkeit guter Gitterpunktformeln ACTA ARITHMETICA 2. (2006) Unmöglichkeit guter Gitterpunktformeln von laus Langmann (Münster) Bekannt ist, dass bei Gitterpunktproblemen wie z.b. beim Viertelkreis G(t) := {(x, y) N 2 0; x 2 + y 2 t} Formeln

Mehr

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge 2.1 Natürliche Zahlen 2.1.1 Menge der natürlichen Zahlen Der Ausgangspunt für den Aufbau der Zahlenbereiche ist die Menge N = {0,1,2,3,...} der natürlichen Zahlen 0, 1, 2, 3, 4,... 2.1.2 Indutionsprinzip

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012 Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 011/01 Sandra Uhlenbrock 03.11.011 Die folgende Ausarbeitung wird, basierend auf Branching Processes

Mehr

1 Theorie der Kettenbrüche II

1 Theorie der Kettenbrüche II Theorie der Kettenbrüche II Vom ersten Vortrag erinnern wir, dass sich jede reelle Zahl α wie folgt darstellen lässt: α = a 0 + a + a 2 + mit a 0 Z und a i N >0 für jedes i Die Kettenbruchdarstellung lässt

Mehr

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26 Spieldynamik Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kap. 8 Simon Maurer Saarbrücken, den 13.12.2011 1 / 26 Ablauf 1 Imitationsdynamik 2 Monotone Auszahlung

Mehr

Fourierreihen und -transformation

Fourierreihen und -transformation Kapitel Fourierreihen und -transformation. Fourierreihen 8 postulierte Fourier (ohne stichhaltige Beweise: Jede beliebige Funktion f(x mit Periode, d. h. f(x = f(x +, lässt sich in eine Reihe der Gestalt

Mehr

Fibonaccizahlen. Auftreten in der Biologie. Bodo Werner. Department Mathematik Universität Hamburg

Fibonaccizahlen. Auftreten in der Biologie. Bodo Werner. Department Mathematik Universität Hamburg Fibonaccizahlen Auftreten in der Biologie Department Mathematik Universität Hamburg Fibonacci I Geschichte Leonardo da Pisa, genannt FIBONACCI (etwa 1170-1250) Liber Abbici (1202): Indisch-arabische Ziffern

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

Fibonacci-Zahlen Schon vor 2000 Jahren befassten sich die Inder mit einer Zahlenfolge, die im modernen Europa auf den mittelalterlichen Gelehrten Leonardo Fibonacci aus Pisa zurückgeführt wird. Die nach

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr