Diplomarbeit. Einsatz von Bildverarbeitungssystemen in der Produktionsautomatisierung am Beispiel der Glasindustrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Diplomarbeit. Einsatz von Bildverarbeitungssystemen in der Produktionsautomatisierung am Beispiel der Glasindustrie"

Transkript

1 Fachhochschule Wiesbaden, Fachbereich Physikalische Technik SCHOTT Glas Mainz, Abteilung Forschung und Technologieentwicklung Veredelungstechnik Diplomarbeit von Michael Stelzl zum Thema: Einsatz von Bildverarbeitungssystemen in der Produktionsautomatisierung am Beispiel der Glasindustrie Januar 2001 Referent: Prof. Dr. rer. nat. Gerd Küveler, FH Wiesbaden Korreferent: Dipl. Ing. (FH) Stephan Drozniak, SCHOTT Glas

2 Inhaltsverzeichnis 1 Einleitung Ziel der Diplomarbeit Komponenten eines Bildverarbeitungssystems Objekte Beleuchtung Diffuses Auflicht Diffuses Durchlicht Auflicht Dunkelfeld Durchlicht Dunkelfeld Kombinationen von Beleuchtungen Telezentrische Beleuchtung Strukturierte Beleuchtung Lichtschnittverfahren Farbspektrum der Beleuchtung Fremdlicht Beugungseffekte Verwendung von polarisiertem Licht Verminderung von Reflexionen Leuchtmittel Optik Abbildungsgesetze Blende Tiefenschärfe Bildfeldgröße Minimaler Arbeitsabstand C-Mount- und CS-Mount-Objektive Objektivformat Abbildungsfehler Verzeichnung Farbfehler Bildwölbung Objektivtypen Sensor CCD-Chip Videonorm Eigenschaften der Sensoren Zeilenkamera CMOS-Chip Bilderzeugung Signalumwandlung Abtastfehler Pixeltakt Bildfehler Digitale Systeme Auswerteeinheit Bildvorverarbeitung Punktoperationen Look-Up Tabelle Binarisierung Lokale Operationen Auswertung Kantenerkennung Blobanalyse

3 Mustererkennung Vorgehensweise bei der Erstellung von Prüfprogrammen Genauigkeit der Algorithmen Kommunikationseinheit Reaktionseinheit Allgemeiner Aufbau eines Bildverarbeitungssystems Hard- und Software für Applikationen Ansätze im Hardwareaufbau Intelligente Kamera Kamera mit externer Auswertehardware PC-Kamera PC-basierte Systeme Softwarebibliotheken Common Vision Blox (CVB) Matrox Imaging Library Parametrierbare Software NeuroCheck SAC-Coake Anlagenhersteller Durchführung von Projekten Lastenheft Kontaktaufnahme Alternative Technologien Bemusterung Angebotsprüfung Lieferantenauswahl Beispielprojekte Winkelmessung Lichtleiterstab Konturenprüfung Armaturengläser Automatische Fehlererkennung an ungeschliffenen Fernsehschirmen Ausblick Literatur- und Quellenverzeichnis Quellen weiterführende Literatur Fachvorträge Fachmessen Linksammlungen zum Thema Bildverarbeitung Internetseiten Firmenverzeichnis

4 Selbständigkeitserklärung Ich versichere, die vorliegende Arbeit selbständig unter der Anleitung des Referenten und des Korreferenten durchgeführt und nur die angegebenen Referenzen und Hilfsmittel benutzt zu haben. Anmerkung: Die in dieser Diplomarbeit erwähnten Produkt- und Markennamen können Marken oder eingetragene Markennamen der jeweiligen Eigentümer sein. Sollten Schutzrechte verletzt worden sein, war dies nicht beabsichtigt. 3

5 1 Einleitung Die Automatisierung von Produktionsanlagen spielt in der heutigen Zeit eine immer größere Rolle. Im Zuge der Modernisierung solcher Anlagen müssen auch die ständig steigenden Qualitätsanforderungen an das hergestellte Produkt erfüllt werden. Die Anforderungen an die in der Produktion eingesetzten Messmittel wachsen daher stetig. Man ist auf der Suche nach immer besseren Techniken, die aber gleichzeitig noch flexibler und kostengünstiger werden sollen. Bei vielen Anwendungen ist eine mögliche Lösung dieses Problems der Einsatz von industriellen Bildverarbeitungssystemen. Sie sind oft billiger und flexibler als traditionelle Techniken oder machen eine Qualitätskontrolle im geforderten Umfang überhaupt erst möglich. Vereinfacht ausgedrückt wird bei diesen Systemen ein Objekt durch eine Kamera aufgenommen, das entstandene Bild elektronisch ausgewertet und ein Ergebnis ausgegeben. So kann z. B. überprüft werden, ob ein Produkt vorgegebene Qualitätskriterien erfüllt oder nicht. Aufbau und Einsatz solcher Bildverarbeitungssysteme sollen in dieser Diplomarbeit behandelt werden. 4

6 2 Ziel der Diplomarbeit Diese Arbeit wurde in Zusammenarbeit mit der Firma Schott Glas in Mainz erstellt. Eine Zielvorgabe war es, das Themengebiet Bildverarbeitung zusammenzufassen, um Mitarbeitern, die neu mit diesem Gebiet in Berührung kommen, ein Grundwissen zu vermitteln und einen Leitfaden für die Durchführung von Projekten an die Hand zu geben. Gleichzeitig sollte aber erreicht werden, dass diese Darstellung auch von Personen ohne spezielles Fachwissen leicht zu verstehen ist. So wird versucht, diese Zusammenstellung auf einem leicht verständlichen Level zu halten, ohne jedoch den theoretischen Hintergrund allzu sehr zu vernachlässigen. Dazu sollen auch viele Beispiele und Abbildungen helfen. Es werden zunächst allgemein die benötigten Teilkomponenten eines Bildverarbeitungssystems vorgestellt, deren Funktionsweise und die notwendigsten theoretischen Grundlagen erläutert. Anschließend werden die verschiedenen Ansätze beim Aufbau solcher Systeme gezeigt und deren Einsatzbereiche verglichen. Exemplarisch werden einige der typischen Auswertungsalgorithmen und ihre Verwendung vorgestellt. Im letzten Teil der Arbeit werden dann anhand einiger Projekte, die im Rahmen der Tätigkeit bei der Firma Schott Glas durchgeführt wurden, einzelne Schritte einer Projektplanung als Beispiel dargestellt, bei denen das zuvor zusammengetragene Wissen in der Praxis angewandt wurde. 5

7 3 Komponenten eines Bildverarbeitungssystems In diesem Kapitel werden zunächst die einzelnen Komponenten eines industriellen Bildverarbeitungssystems beschrieben. Dieses ist vom Aufbau her dem menschlichen Sehsystem sehr ähnlich. Betrachten wir ein Beispiel: Abb. 3-1: Der Mensch als Bildverarbeitungssystem Vorrausetzung für das Sehen ist das Vorhandensein von Licht. Es ist ohne Beleuchtung nicht möglich, die Dartscheibe zu sehen. Bei geeigneter Beleuchtung wird das Bild der Dartscheibe durch eine Linse und die Iris auf unsere Netzhaut abgebildet. Beim Auftreffen des Lichtes reagieren die Stäbchen bzw. die Zapfen, die sich auf der Netzhaut befinden, mit Reizen, die dann durch den Sehnerv an das Sehzentrum im Gehirn übermittelt werden. Dieses setzt die Reize zu einem Bild zusammen und stellt es für die Auswertung zur Verfügung. Nach der Auswertung durch das Gehirn werden Ergebnisse wie Wurfrichtung und Wurfstärke wiederum über Nerven an den Arm übermittelt. Diese Komponenten kann man in ähnlicher Weise auch in industriellen Bildverarbeitungssystemen wiederfinden: - Objekt - Beleuchtung - Optik - Sensor - Bilderzeugung - Auswertung - Kommunikation - Reaktion Somit ergibt sich eine erste einfache Beschreibung: Ein vorhandenes Objekt wird beleuchtet und durch eine Optik auf einen Sensor abgebildet. Dieser muss das Licht in verwertbare Signale umwandeln, welche an die Bilderzeugung übertragen werden. Dort werden sie wieder zu einem Bild zusammensetzt, das einer Auswerteeinheit zur Verfügung gestellt wird. Sie errechnet ein Ergebnis, das dann über Kommunikationsschnittstellen an ein übergeordnetes System oder direkt an eine Reaktionseinheit übertragen wird. Diese führt die von dem Ergebnis abhängige Reaktion aus. 6

8 3.1 Objekte Alle Objekte, deren relevante Merkmale mit ausreichendem Kontrast erfassbar sind, können durch Bildverarbeitungssysteme untersucht werden. Die möglichen Anwendungszwecke sind annähernd unbegrenzt. Von kleinsten Strukturen bis hin zu sehr großen Objekten können unterschiedlichste Dinge erfasst werden. Einige Beispiele sollen hier aufgezählt werden. - In der Halbleiterindustrie werden Eigenschaften im Mikrometerbereich untersucht - Massenartikel wie Zahnbürsten können erst durch Bildverarbeitung in dem geforderten Umfang auf Produktionsfehler überprüft werden. - Für die Anfertigung von Maßanzügen kann der Körper eines Kunden mit Hilfe der Bildverarbeitung vollständig vermessen werden. - Mit Robot-Vision-Systemen wird in Häfen die Lage von Überseecontainern bestimmt, um sie übereinander stapeln zu können. Diese Beispiele sind nur ein kleiner Auszug aus möglichen Anwendungen. Es sind sowohl 40 t schwere Container als auch mikroskopisch kleine Halbleiter als Objekt möglich. Dies macht die Bildverarbeitung zu einer universell einsetzbaren Querschnittstechnologie. 3.2 Beleuchtung Als Informationsträger der Bildverarbeitung dient Licht. Es handelt sich dabei um elektromagnetische Wellen, die mit dem Sensor in Wechselwirkung treten, welche abhängig von Eigenschaften des Lichtes sind. Mögliche Eigenschaften sind z. B.: - Wellenlänge - Intensität - Richtung - Polarisation Die Eigenschaften des Lichtes sind in erster Linie von der Wahl der Lichtquelle abhängig, jedoch verändern sich die Eigenschaften durch Wechselwirkung mit dem Objekt. Das durch das Objekt beeinflusste Licht wird durch die Bildverarbeitung betrachtet. Diese Wechselwirkungen sind: - Brechung - Reflexion - Absorption Die Aufgabe der Beleuchtung ist es, die relevanten Merkmale so hervorzuheben, dass sie mit möglichst hohem Kontrast im Bild erscheinen. Ohne diesen Kontrast ist keine zuverlässige Signalverarbeitung möglich. Genau dies macht die Beleuchtung zu einer der wichtigsten Komponenten in der Bildverarbeitung, da sie maßgeblich die Bildqualität beeinflusst. Es sind nur Merkmale auswertbar, die auch im Bild zu sehen sind. Zum einen ist es fast unmöglich, Informationen, die bei der Bildaufnahme verloren gehen, wieder herzustellen. Zum anderen erspart eine sorgfältige Auswahl der Beleuchtung eine sonst vielleicht notwendige Bildvorverarbeitung, die wiederum Rechenleistung und somit auch Zeit und Geld in Anspruch nimmt. 7

9 Die Beleuchtung ist die Komponente, mit der sich am einfachsten der nötige Aufwand minimieren und die Erfolgsaussichten und die spätere Prozesssicherheit maximieren lassen. schlecht gut - geringer Kontrast der Schrift - für den Menschen lesbar - mit Bildverarbeitung nur durch höheren Aufwand lesbar - Kante nicht scharf abgebildet - Ungenauigkeit bei der Kantenantastung - kein Kontrast zwischen Einstellschraube und Gehäuse - Vermessung der Einstellschraube nicht möglich Abb :Einfluss der Beleuchtung auf die Bildqualität Werksbilder der Firma VISION & CONTROL, Suhl Wegen der Bedeutung dieser Komponente sollen ihre Eigenschaften und theoretischen Grundlagen hier ausführlich erklärt werden. Am Markt ist eine Vielzahl von Beleuchtungsquellen in unterschiedlichsten Ausführungen erhältlich. Diese können wiederum in beliebig vielen verschiedenen Anordnungen verwendet werden. Die Variationsmöglichkeiten sind daher nahezu unbegrenzt. Eine kleine Auswahl an gebräuchlichen Beleuchtungen soll hier vorgestellt werden. Generell können Beleuchtungsanordnungen danach unterschieden werden, ob das entstandene Bild in der Summe eher hell oder dunkel ist. Dementsprechend wird ein Bild, das sehr viele dunkle Punkte hat und in dem die Merkmale wie z. B. Kanten hell erscheinen, als Dunkelfeldbeleuchtung und umgekehrt ein helles Bild, bei dem die Merkmale dunkel erscheinen als Hellfeldbeleuchtung bezeichnet. (Siehe Abb und 3.2-3) 8

10 Abb : Dunkelfeldbeleuchtung Abb : Hellfeldbeleuchtung Eine weitere Unterscheidungsmöglichkeit ist der Weg, den das Licht zwischen Beleuchtung über das Objekt zum Sensor zurücklegt. So wird unterschieden, ob ein Objekt im Durchlicht oder im Auflicht beleuchtet wird, d. h. ob ein Bild in Transmission oder in Reflexion aufgenommen wird. Je nach Verwendung von diffusem oder nicht diffusem Licht kann zwischen gerichteter und ungerichteter Beleuchtung differenziert werden Diffuses Auflicht Eine Flächenleuchte bestrahlt ein Objekt, bei dem z. B. eine Verschmutzung der Oberfläche andere optische Eigenschaften als die restliche Oberfläche zeigt. Die Kamera nimmt das reflektierte Licht auf. Zeigt die Verschmutzung eine geringere Reflexion und eine höhere Absorption, erscheint sie als dunkler Fleck in einem hellen Bild. Abb : diffuses Auflicht Abb : verschmutzte Oberfläche Diffuses Durchlicht Die Kamera empfängt das Licht der Flächenleuchte, welches durch das Objekt teilweise absorbiert wird. Im Bild ist sozusagen der Schatten des Objektes zu erkennen. Diese Beleuchtung eignet sich sehr gut, um die Kontur von Teilen mit hoher Lichtabsorption mit hohem Kontrast hervorzuheben. Mit ihr kann z. B. an gestanzten Blechteilen überprüft werden, ob alle geforderten Bereiche ausgestanzt sind. Wird diese Beleuchtung ohne eine weitere Beleuchtung verwendet, gehen Informationen über die Oberfläche verloren, da diese vollständig schwarz erscheint. 9

11 Abb : diffuses Durchlicht Abb : Stanzteil im Durchlicht Auflicht Dunkelfeld Das Licht einer gerichteten Beleuchtung wird an der Oberfläche des Objektes reflektiert. Der Winkel ist so gewählt, dass ohne Merkmale das reflektierte Licht die Kamera nicht erreicht und das Bild schwarz wird. Nur wenn Merkmale oder Fehler vorhanden sind, wird das Licht entweder gestreut oder in einem anderen Winkel reflektiert. So erscheinen die Merkmale als helle Bereiche mit hohem Kontrast. Diese Anordnung eignet sich sehr gut, um z. B. Kratzer oder Verschmutzungen an reflektierenden Oberflächen zu erkennen. Diese würden im Hellfeld nur einen schlechten oder sogar keinen Kontrast zeigen (siehe Abbildung Hellfeld). Als Beispiel sei hier die Kratzersuche an polierten Metall- oder Glasoberflächen erwähnt, wobei nur Informationen über eine Seite des Objektes erfassbar sind. Abb : gerichtetes Auflicht Dunkelfeld Abb : Armaturenglas im Auflicht Dunkelfeld Durchlicht Dunkelfeld Die Eigenschaften dieser Beleuchtung sind denen des Auflichtes in Dunkelfeldanordnung sehr ähnlich. Auch hier wird eine gerichtete Beleuchtung benutzt, die aber in Transmission angeordnet ist. Der Winkel wird so gewählt, dass das Licht durch ein Objekt mit ausreichender Transparenz an der Kamera vorbeistrahlt. Vorhandene Merkmale, die den Lichtweg ändern, erscheinen im dunklen Bild als helle Bereiche. Da in dieser Anordnung durch das Objekt hindurch beleuchtet wird, erhält man Informationen über beide Seiten und das Volumen. Diese Anordnung eignet sich sehr gut, um in transparenten Materialien wie z. B. Flachglas Blasen, Steine, geschliffene Kanten, Kratzer, Staub oder ähnliche Merkmale zu finden. 10

12 Abb : gerichtetes Durchlicht Dunkelfeld Abb : Blasen in Glas mit Durchlicht Dunkelfeld Kombinationen von Beleuchtungen Die hier beschriebenen Anordnungen führen nicht immer zum Ziel, da eine einzige Beleuchtung oft nicht alle Merkmale im Bild sichtbar machen kann. Auch dies soll an einem Beispiel verdeutlicht werden. Bei einem Wabenblech soll überprüft werden, ob die Oberseite abgerundet ist und die Stege die korrekte Stärke haben. Wird das Blech im diffusen Hellfeld Durchlicht betrachtet, ist die Kontur sehr gut zu erkennen und somit auch die Stärke der Stege, jedoch ist keine Information über die Oberseite zu gewinnen. Im gerichteten Hellfeld Auflicht können Informationen über die Oberseite gewonnen werden, nicht jedoch über die Kontur. Um beide Merkmale im Bild erkennen zu können, ist die Kombination beider Beleuchtungen notwendig. Objektiv A A - A A einfallendes Licht reflektiertes Licht Abb :Skizze des Wabenblechs Abb :Skizze des Strahlengangs Abb : diffuse Hellfeld Durchlicht Beleuchtung Abb : gerichtetes Auflicht Werksbilder der Firma VISION & CONTROL, Suhl Abb : Kombination beider Beleuchtungen 11

13 3.2.6 Telezentrische Beleuchtung Eine besondere Form der gerichteten Beleuchtung ist die telezentrische Beleuchtung. Sie wird mit telezentrischen Optiken verwendet, die später erklärt werden. Bei dieser Bauart wird versucht, zur optischen Achse paralleles Licht zu erzeugen. Dies gelingt nur begrenzt, so dass diese Beleuchtungen eine geringe Apertur, d. h. einen geringen Öffnungswinkel zeigen. Diese Art von Beleuchtung wird für genaue Vermessungsaufgaben wie z. B. bei Präzisionsdrehteilen verwendet. Der geringe Öffnungswinkel sorgt für scharfe Kantenübergänge, da der Schatten sehr scharf auf den Sensor abgebildet wird. Optik TZB Abb :Beispiel für Telezentrische Beleuchtung Abb : Anordnung der Beleuchtung Werksbild der Firma VISION & CONTROL, Suhl Strukturierte Beleuchtung Beim entstehenden Kamerabild handelt es sich um eine Projektion des dreidimensionalen Raumes in ein zweidimensionales Bild. Um räumliche Informationen über das Objekt zu erhalten, ist die Verwendung einer strukturierten Beleuchtung nötig. Je nachdem ob das Objekt mit einem Lichtpunkt, einer Lichtlinie oder einem Lichtgitter beleuchtet wird, unterscheidet man zwischen Triangulations-, Lichtschnitt- oder Gitterprojektionsverfahren. Beim Triangulationsverfahren kann die Höhe an einem Punkt erfasst werden, beim Lichtschnittverfahren entlang einer Linie und beim Gitterprojektionsverfahren erhält man eine größere Rauminformation. Mit diesem Verfahren erhält man Informationen über die dritte Dimension dadurch, dass die Beleuchtung in Abhängigkeit vom Einfallswinkel an einer anderen Ort auf der Oberfläche auftrifft. Dieser Auftreffpunkt ist im Bild zu erkennen, wenn an dieser Stelle eine diffuse Reflexion erfolgt. Dann ist auch die Berechnung der Höhe möglich Lichtschnittverfahren Eine meist durch einen Laser erzeugte Linie wird auf ein Objekt abgebildet. Aus dem Versatz der Linie im entstehenden Bild lässt sich aus den geometrischen Verhältnissen die Höhe berechnen. Bei dem in Abbildung dargestelltem Lichtschnittverfahren, ist die Anordnung so gewählt, dass die Auslenkung der Linie genau der Höhe h entspricht. Dies ist an dem gleichschenkligen gelben Dreieck in der Abbildung zu erkennen. Die entstehende Laserpojektionsebene und die optische Achse der Kamera sind in einen Winkel von 45 angeordnet. Wird die Oberfläche abgerastert, kann eine Volumenmodel des Objektes erzeugt werden. 12

14 Kamera Laser a h Abb : Lichtschnittverfahren Abb : Strukturierte Beleuchtung Farbspektrum der Beleuchtung Für die Auswahl der Beleuchtung sollte man auch die Wellenlänge des verwendeten Lichtes beachten. Oft werden in der Bildverarbeitung keine Farbkameras verwendet. Unterschiedliche Farben können im Bild die selben Helligkeitswerte (Grauwerte) haben, so dass die geforderten hohen Kontraste nicht erreicht werden können. In diesem Fall ist es möglich, mit der Farbe des Lichtes zu experimentieren, um kontrastreichere Bilder zu erreichen. Bekanntlich ist weißes Licht aus einer Vielzahl von Spektralfarben zusammengemischt. Wird ein Farbanteil aus diesem Spektrum entfernt, ist die Komplementärfarbe zu sehen. Abhängig von den Eigenschaften des Objektes wird Licht unterschiedlicher Wellenlänge unterschiedlich stark absorbiert, reflektiert oder transmittiert. Zeigt ein mit weißem Licht bestrahlter Körper eine hohe Absorption für gelbes Licht, ist im restlichen reflektierten Licht dieser Anteil geringer als vorher. Somit erscheint dieser Körper blau (Komplementärfarbe zu gelb). Die beiden Bilder eines blauen Einstellreglers mit weißer Stellschraube liefern unter blauer und gelber Beleuchtung unterschiedliche Kontraste. Unter blauem Licht kann die Einstellschraube schlecht vom Gehäuse unterschieden werden, weil die Reflexionseigenschaften des blauen Gehäuses und der weißen Stellschraube unter diesem Licht annähernd gleich sind (Abb ). Wird aber mit gelbem Licht beleuchtet, erscheint das Gehäuse im Bild dunkel, weil der Gehäusekunststoff dieses Licht stark absorbiert und damit eine geringere Reflexion zeigt (Abb ). Im Gegensatz dazu hat die weiße Stellschraube gute Reflexionseigenschaften für gelbes Licht und erscheint daher hell. Wird ein Objekt mit der eigenen Farbe beleuchtet, erscheint dieses im Bild hell, wird es mit der Komplementärfarbe beleuchtet, erscheint es dunkel. Der Vollständigkeit halber wird hier auch der Farbkreis abgebildet, mit dem die Komplementärfarbe eines zu untersuchenden Objektes ermittelt werden kann (Abb ). Dazu wird im Farbkreis die der Objektfarbe gegenüberliegende Farbe gesucht. 13

15 Abb :Bild mit blauer Beleuchtung Abb : Bild mit gelber Beleuchtung Werksbilder der Firma VISION & CONTROL, Suhl grün cyan gelb blau rot magenta Abb : Farbkreis der Komplementärfarben Fremdlicht An vielen Stellen, an denen industrielle Bildverarbeitungssysteme eingesetzt werden, kann das Umgebungslicht störend wirken. Für diesen Fall kann neben einer Fremdlichtabschattung auch die Auswahl der Beleuchtung die Prozesssicherheit gewährleisten. Die Wellenlänge des zu verwendenden Lichtes wird so gewählt, dass sich das Spektrum der Beleuchtung vom Spektrum des Fremdlichtes abhebt und letzteres durch Filter ausgeblendet werden kann. Bei Tageslicht ist üblicherweise eine Beleuchtung zu wählen, die im Infrarotbereich liegt, da die üblichen Sensoren, die sogenannten CCD-Chips, über den sichtbaren Bereich des Lichtes hinaus im IR- Bereich noch empfindlich sind (Abb ). Durch die Verwendung eines Filters wird sichergestellt, dass das Fremdlicht im Gegensatz zum IR-Licht den Sensor nicht erreicht. Es ist aber zu berücksichtigen, dass sich auf vielen CCD-Chips bereits ein IR-Filter befindet, der den Empfindlichkeitsbereich jenseits des sichtbaren Lichtes einschränkt. Damit soll verhindert werden, dass z. B. warme Objekte, die die im IR- Bereich liegende Wärmestrahlung aussenden, ein anderes Bild erzeugen als kalte Objekte. (Eine Ausnahme ist die Thermographie, die gerade nur diesen Spektralbereich der Wärmestrahlung betrachtet, um Aussagen über die Temperatur und deren Verteilung an Objekten machen zu können.) 14

16 sichtbar für CCD-Chip ca. 1100nm UV VIS IR sichtbar für den Menschen Abb : Vergleich Empfindlichkeitsbereich von CCD-Chips und dem Menschen Auch bei der Verwendung von infrarotem Licht sind die Absorptions-, Reflexionsund Transmissionseigenschaften verschiedener Materialien unterschiedlich ausgeprägt. So erscheint der Aufdruck eines SMD-Bauteils unter weißem Licht mit gutem Kontrast, da das Licht vom Gehäuse stark absorbiert wird. Das IR-Licht dringt jedoch ins Gehäuse ein und wird diffus gestreut, wodurch die Schrift nicht mehr gut zu erkennen ist. Daher ist es wichtig, bereits im Vorfeld zu überprüfen, welche Kontraste bei dieser Beleuchtung erzielt werden. Abb : SMD-Bauteil unter weißem Licht Abb : SMD-Bauteil unter IR-Licht Werksbilder der Firma VISION & CONTROL, Suhl Beugungseffekte Bei starken Vergrößerungen von Objekten kann es zu Beugungseffekten kommen. Auch hier spielt die Wellenlänge des Lichtes eine Rolle. Kommt die Pixeldimension, d. h. der Wert, der für die Größe eines abgebildeten Bildpunktes steht, in die Größenordnung der Wellenlänge des Lichtes, ist der Wellencharakter des Lichtes nicht mehr zu vernachlässigen. Licht breitet sich z. B. hinter einem sehr dünnen Spalt nicht mehr nur linear aus. Es ist Licht an Stellen zu beobachten, an denen es nach der linearen Optik nicht zu erwarten wäre. Als Erklärung sei hier auf das Huyghen sche Prinzip verwiesen, das jeden Punkt einer Wellenfront als Ausgangspunkt einer neuen Wellen sieht (z.b [Hering92]). Dieser Effekt der Beugung ist an jeder Kante zu beobachten, ist aber meist vernachlässigbar klein, außer bei den erwähnten hohen Vergrößerungen. Die folgende Abbildung zeigt eine Kante, die mit telezentrischer Beleuchtung und Optik bei 10-facher Vergrößerung aufgenommen wurde. Ein Bildpunkt entspricht einer Strecke von 1 µm, liegt also in der Größenordnung der Wellenlänge des Lichtes. Es ist deutlich die helle Umrandung der Kante zu erkennen, die durch die Beugung hervorgerufen wurde. Die Beugung ist proportional zur Wellenlänge des Lichtes, d. h. bei rotem Licht ist dieser Effekt fast doppelt so stark ausgeprägt wie bei blauem Licht. 15

17 Abb : Beugungseffekte bei hohen Vergrößerungen Werksbild der Firma VISION & CONTROL, Suhl Verwendung von polarisiertem Licht Als letzte Möglichkeit, mit den Eigenschaften des Lichtes zu experimentieren, sei hier die Veränderung der Polarisationsrichtung des Lichtes erwähnt. Hierbei spielen die Welleneigenschaften des Lichtes eine Rolle. Natürliches Licht besteht aus kurzen Wellenzügen, die völlig regellos in alle Richtungen schwingen. Ein sogenannter Polfilter hat die Eigenschaft, nur die Komponenten des Lichtes durchzulassen, die in einer bestimmten Ebene schwingen. Die Vorgänge bei Reflexion und Transmission sind abhängig von der Polarisationsrichtung und dem Einfallswinkel des verwendeten Lichtes. Wird polarisiertes Licht als Durchlicht verwendet, verändern verschiedene Materialien die Polarisation unterschiedlich stark. Wird vor die Kamera ein Polarisationsfilter montiert, erhält man unterschiedliche Kontraste in Abhängigkeit von der Drehrichtung des Filters. Dieser Effekt wird häufig durch Spannungsdoppelbrechung ausgelöst, bei der Spannungen in Materialien, wie in dem hier abgebildeten Glasstück, die Polarisation des transmittierten Lichtes verändern. Ohne Polarisationsfilter ist das Glas durch seine Transparenz schlecht vom Hintergrund zu trennen. Werden jedoch zwei Polarisationsfilter jeweils vor und nach der Probe in gekreuzter Anordnung verwendet, ist das Glas gut zu erkennen. Ohne ein Medium, welches die Polarisation verändert, ist das Bild schwarz. Der erste Filter läßt nur den Teil des Lichtes durch, der in einer Richtung schwingt und gerade dieses Licht wird vom zweiten Filter vollständig gesperrt, da er um 90 verdreht ist. Die im Glas durch zu schnelle Abkühlung eingefrorenen Spannungen ändern die Polarisationsrichtung des nach dem ersten Filter bereits polarisierten Lichtes, so dass dieses vom zweiten Filter nicht mehr vollständig absorbiert werden kann. Das Glas hebt sich daher vom Hintergrund ab. Abb : Glasprobe ohne Polarisationsfilter Abb : Glasprobe mit gekreuzten Polarisationsfilter 16

18 Verminderung von Reflexionen Störende Reflexionen können durch Polfilter minimiert werden. Unpolarisiertes Licht ist nach einer Reflexion teilweise polarisiert. Teile des reflektierten Lichtes können daher durch einen in korrekter Drehlage verwendeten Polfilter aus dem restlichen Licht ausgeblendet werden. Weil störende Reflexionen gerade bei der Prüfung von Glas eine großes Problem darstellen, sei hier eine ausführlichere Darstellung erlaubt. Der beschriebene Effekt lässt sich durch das Brewster-Gesetz erklären. Die als Licht in das Medium eintretende elektromagnetische Strahlung regt wiederum die Elektronen des Mediums zur Emission von elektromagnetischer Strahlung an, da diese in eine erzwungene Schwingung versetzt werden. Diese Emission unterliegt einer gewissen Abstrahlcharakteristik: in Schwingungsrichtung wird nichts abgestrahlt und senkrecht zur Schwingungsrichtung ist diese Abstrahlung maximal [Hering92, S. 470]. I=0 Licht e - I=Max. Abb : Intensitätsverteilung des Lichtes Die Einfallsebene wird durch die Flächennormale und den einfallenden Strahl aufgespannt. Licht, das senkrecht zur Einfallsebene polarisiert ist, wird als s-polarisiert bezeichnet; Licht, das parallel zur Einfallsebene polarisiert ist, analog als p-polarisiert. Der Brewster-Effekt ist nur bei p-polarisiertem Licht zu beobachten. Nur bei diesem Licht kann die Schwingungsrichtung der Elektronen mit der Ausbreitungsrichtung des reflektierten Strahls übereinstimmen. Bei diesem sogenannten Brewsterschen Winkel ist daher bei p-polarisiertem Licht annähernd keine Reflexion vorhanden. Dieser Winkel ist leicht nach dem Brechungsgesetz und den Winkelsummen zu errechnen. Bei dieser Formel ist n die Brechzahl des jeweiligen Mediums, das zweite Medium Luft mit dem Brechungsindex von annähernd 1 wurde vernachlässigt. α = tan 1 n B Für das Medium Glas wird eine Brechzahl von 1,5 angenommen. Daraus ergibt sich ein Winkel von 56,3 zum Lot, bzw. von 33,7 zur Fläche. In den Abbildungen und wird die Polarisationsrichtung des Lichtes durch Pfeile für eine Schwingungsrichtung in Zeichnungsebene und durch Punkte für eine Schwingungsrichtung senkrecht zur Zeichnungsebene verdeutlicht. 17

19 Luft α α n 1~1 Medium 90 n 2 β Abb : Brewsterwinkel mit s-polarisiertrem Licht Abb : Brewsterwinkel mit p-polarisiertem Licht keine Beeinflussung der Reflexion minimale Reflexion Je stärker sich der Einfallswinkel von unpolarisiertem Licht dem Brewsterwinkel nähert, desto stärker ist es s-polarisiert. Es kann durch einen senkrecht zur Schwingungsrichtung angeordneten Polfilter ausgeblendet werden. Analog dazu kann auch p-polarisiertes Licht verwendet werden. Je näher der Einfallswinkel am Brewsterwinkel liegt, desto geringer ist die Reflexion. Bei den hier abgebildeten Beispielen wurde als Einfallswinkel ein Winkel gewählt, der sehr nahe am Brewsterschen Winkel lag. Die unerwünschten Reflexionen verschwinden fast vollständig durch einen Polfilter und das Logo wird wieder gut lesbar. Abb : Glasprobe ohne Polarisationsfilter Abb : Glasprobe mit Polarisationsfilter Leuchtmittel Nachdem die Vielfalt der möglichen Beleuchtungskombinationen besprochen wurde, sollen die üblich verwendeten Leuchtmittel erklärt werden. Zum Einsatz kommen in der Regel: - Leuchtstoffröhren - Halogenlampen - Leuchtdioden (LED) - Laser 18

20 Leuchtstoffröhren werden häufig als Flächenleuchten eingesetzt, wobei durch Reflektoren und vorgesetzte Platten (z. B. Milchglasplatten), die als Diffusoren dienen, eine möglichst homogene Intensitätsverteilung erreicht werden soll. Es entsteht eine homogen leuchtende Fläche, die als diffuses Durch- oder Auflicht verwendet wird. Ringleuchten mit einigen Zentimetern Durchmesser kommen ebenfalls zum Einsatz. Der Ring ist jedoch für den sogenannten Starter unterbrochen, wodurch die Lichtverteilung nicht ideal ist. Außerdem ist zu beachten, dass die Lampen bei der niederfrequenten 50Hz-Netzspannung periodische Helligkeitsschwankungen erzeugen, die das Bild negativ beeinflussen können. Der Einsatz von Hochfrequenzvorschaltgeräten ist daher notwendig. Sie sorgen dafür, dass die Frequenz der Helligkeitsschwankung nicht mehr in der Größenordnung der Bildaufnahmerate liegt. Halogenlampen sind sehr helle Leuchtmittel. Sie werden meist in Verbindung mit Lichtwellenleitern verwendet. Sie ermöglichen es, die Lampe an geschützten Stellen zu platzieren und das Licht an den für die Beleuchtung notwendigen Ort zu leiten. Dort sind sie zudem leicht austauschbar. Dies ist bei diesen Lampen durchaus notwendig, da die Lebensdauer mit etwa Stunden relativ kurz ist. Ein weiterer Vorteil ist die Möglichkeit, faseroptische Querschnittswandler zu verwenden, wodurch zum Beispiel lichtstarke Linienlichter erzeugt werden können, wie sie bei Zeilenkameras benötigt werden. Auch werden verschiedene faseroptische Ringleuchten am Markt angeboten, die je nach Austrittswinkel der Faserenden als Hellfeld- oder Dunkelfeldbeleuchtung verwendet werden können. Leuchtdioden (LEDs) können in verschiedensten Anordnungen wie Linien, Rechtecken oder Ringen und auch in allen Kombinationen verwendet werden. Sie haben den entscheidenden Vorteil, dass jede Diode einzeln geschaltet werden kann. Dadurch können mit nur einer schaltbaren Beleuchtung Bilder unter verschiedenen Beleuchtungsverhältnissen gemacht werden. Dies ist bei Objekten nötig, bei denen nicht alle Merkmale durch eine einzige Beleuchtung in einem aufgenommenen Bild dargestellt werden können. Leuchtdioden haben eine extrem lange Lebensdauer von mehr als Stunden, sie sind nahezu verschleißfrei. Dies ist in Systemen mit kontinuierlichen Prozessen sehr wichtig, da hier ein Ausfall der Beleuchtung oft auch eine Produktionsstörung oder sogar Produktionsausfall bedeutet. Einzig die Leuchtkraft lässt durch Alterung nach, was in einigen Fällen eine Helligkeitsnachführung notwendig macht. LEDs lassen sich gut als Blitzlicht für schnelle Prozesse verwenden. Als letztes sei hier erwähnt, dass üblicherweise LEDs verwendet werden, die im roten oder im nahen Infrarotbereich arbeiten, was den bereits erwähnten Einsatz von Tageslichtfiltern ermöglicht und auch die an der Anlage arbeitenden Mitarbeiter nicht stört. Laser werden als Lichtquelle für die Bildverarbeitung fast ausschließlich in Form von Laserdioden verwendet. Sie kommen sehr oft als strukturierte Beleuchtung wie bei dem Lichtschnittverfahren zum Einsatz, da sie gute Fokussierungsmöglichkeiten haben. 19

21 3.3 Optik Analog zum menschlichen Sehen mit Hilfe von Linse und Iris, wird auch in der Bildverarbeitung ein optisches System in Form eines Objektives und einer Blende benötigt. Es hat die Aufgabe, das Objekt mit den durch die ausgewählte Beleuchtung hervorgehobenen Merkmalen auf den Sensor scharf abzubilden Abbildungsgesetze Betrachten wir zunächst die idealisierte dünne Linse. Linsen werden durch ihre Brennweite charakterisiert, sie gibt den Abstand zwischen Hauptebene und den Brennpunkten auf beiden Seiten an. Strahlen, die parallel in die Linse einfallen, verlaufen auf der gegenüberliegenden Seite durch den Brennpunkt F. Analog dazu werden Strahlen, die durch den Brennpunkt F laufen, nach der Linse zu parallelen Strahlen. Strahlen die durch den Mittelpunkt der Linse verlaufen, werden nicht abgelenkt. So ergibt sich Bildpunkt A als scharfes Bild von Punkt A. g b A P G C F O F C B A f f Abb : prinzipieller Strahlengang einer dünnen Linse Der Abstand von Gegenstand bzw. Bild zur Hauptachse wird als Gegenstandsweite g bzw. Bildweite b bezeichnet. Die Dimension des Objektes bzw. des Bildes wird Gegenstandsgröße G und Bildgröße B genannt. Da es sich bei den Dreiecken ACO und A C O um ähnliche Dreiecke handelt, stehen die jeweiligen Seiten der Dreiecke in einem konstanten Verhältnis, woraus sich nach Umformung die Gleichung für den Abbildungsmaßstab ergibt: B b = G g Durch die Ähnlichkeit der Dreiecke POF und A C F gilt ebenfalls: B B b b f = = = PO G g f Durch einfache Umformung erhält man die bekannte Abbildungsgleichung nach Abbe: = + f g b 20

22 Durch die Gleichung des Abbildungsmaßstabes und der Abbildungsgleichung nach Abbe lassen sich die meisten nötigen Größen errechnen. In Wirklichkeit bestehen Optiken nicht aus einer idealen dünnen Linse, sondern aus ganzen Linsensystemen. Diese korrigieren bestehende Abbildungsfehler. Um die eben beschriebenen Zusammenhänge und Gleichungen weiter benutzen zu können, wird eine weitere Hauptebene H eingeführt. Werden alle Größen auf die jeweilige Haupteben bezogen, gelten weiterhin alle Gesetzmäßigkeiten. Für praktische Anwendungen sind die Gegenstandsweiten so groß, dass der Hauptebenenabstand vernachlässigbar ist und die Gleichungen ohne Einschränkung verwendet werden können. Sind die Gegenstandsweiten jedoch klein, sollte der Abstand der Hauptebenen beachtet werden. g H H f f b G F F B Abb : Hauptebenen einer dicken Linse Blende Die Abbildungseigenschaften eines Objektivs hängen neben der Brennweite auch von dem eingestellten Durchmesser der Blende ab. Mit der Blende kann man die einfallende Lichtmenge regulieren und so die Helligkeit des Bildes der eingesetzten Beleuchtung anpassen. Ist das Objekt stark beleuchtet, muss ein kleiner Blendendurchmesser gewählt werden, damit das Bild nicht zu hell wird und umgekehrt. Die Blende wird durch die sogenannte Blendenzahl charakterisiert, die folgendermaßen definiert ist: f k =. d f d Abb : Relative Öffnung eines Objektives 21

23 Ist die Blende nicht stufenlos einstellbar, ist eine internationale Blendenreihe genormt, die aus folgenden Zahlen besteht: 1,0 1,4 2 2,8 4 5, Von Blende zu Blende wird die Beleuchtungsstärke halbiert. Die Menge des einfallenden Lichtes ist dem Quadrat der Blendenzahl umgekehrt proportional. Die Blendenzahlen wachsen daher mit dem Faktor 2 [Demant98, S266]. 1 E ~ k E ~ 2 2k Tiefenschärfe Die Blende beeinflusst auch die Tiefenschärfe der Anordnung. Theoretisch können nur Objekte scharf abgebildet werden, die in einer Ebene liegen, da nur für diesen Bereich die Abbildungsgleichungen gelten. Jedes Objekt, das sich in einem anderen Abstand befindet, wird unscharf abgebildet. Der Bereich, in dem diese Unschärfe vernachlässigbar ist, wird als Tiefenschärfe bezeichnet. Die Unschärfe ist abhängig vom Abstand zwischen Sensor und Fokusebene und den Winkeln der Strahlen, die durch die Blende und die Bildweite bestimmt werden. Die Unschärfe wird durch den entstehenden Unschärfekreis mit dem Durchmesser C charakterisiert. Die Festlegung des zulässigen maximalen Durchmessers ist prinzipiell willkürlich. Für einfache Aufgaben werden Durchmesser von zwei Pixeln toleriert, da ein Pixel die kleinste erfassbare Bildeinheit darstellt und eine Unschärfe erst bei zwei Pixeln erkennbar ist. Für hochgenaue Vermessungsaufgaben sind Angaben von einem halben Pixel üblich, da ein Punkt dieser Größe bei den üblichen Sensoren nicht zwei Pixel gleichzeitig belichten kann. g 0 C g v g h Abb : Herleitung der Tiefenschärfe Für die Tiefenschärfe g gilt die Formel: g = g h g v 2g 0 Ck f ( g f ) Der Anwender kann schnell in der Formel und auch in der Zeichnung die Zusammenhänge zu erkennen, die für ihn meist ausreichen. Er will nur wissen, wie die Umgebungsbedingungen die Tiefenschärfe beeinflussen. Je kleiner der

24 Blendendurchmesser, desto kleiner wird der Unschärfekreis. Die Tiefenschärfe wird also größer. Aber mit abnehmendem Blendendurchmesser, d. h. mit zunehmender Blendenzahl, wird jedoch das Bild dunkler, da weniger Licht den Sensor erreicht. Zwischen beiden Werten muss ein Kompromiss gefunden werden. Die Tiefenschärfe wird mit zunehmender Gegenstandsweite größer. Ab einem Grenzwert werden sogar alle Objekte scharf abgebildet. Mit einer Verkleinerung der Brennweite wird ebenfalls eine Erhöhung der Tiefenschärfe erreicht. - kleinerer Blendendurchmesser - größere Gegenstandsweite - kleinere Brennweite - größere Tiefenschärfe Bildfeldgröße Abb : Verkleinerte Blende und verkleinerter Unschärfekreis Für den Anwender ist die Größe des erfassbaren Bildfeldes relevant. Ihn interessiert, wie groß ein Objekt sein kann, um das entstehende Bild bei gegebenen Arbeitsabstand auf den Sensor mit festgelegter Größe vollständig abzubilden. Dazu wird die Abbildungsgleichung nach b aufgelöst und in die Gleichung für den Abbildungsmaßstab eingesetzt. Löst man diese Gleichung nach G auf, erhält man: g f G = B f Für übliche Gegenstandsweiten ist im Zähler die Brennweite vernachlässigbar klein. g G B f Um ein größeres Bildfeld erfassen zu können, muss man also entweder die Gegenstandsweite, die auch Arbeitsabstand genannt wird, vergrößern oder das Objektiv durch ein Objektiv mit kleinerer Brennweite austauschen. Umgekehrt gilt analog, dass für kleinere Objekte geringere Arbeitsabstände oder größere Brennweiten nötig sind. - größere Gegenstandsweite - kleinere Brennweite - größeres Bildfeld 23

25 3.3.5 Minimaler Arbeitsabstand Eine weitere Möglichkeit die Abbildungseigenschaften zu verändern, ist die Verwendung von Zwischenringen, die zwischen Kamera und Objektiv geschraubt werden können. Beim Scharfstellen des Bildes wird die Bildweite verändert, um sie der Gegenstandsweite anzupassen. Dazu werden die in einem Gewinde befestigten Linsen durch eine Drehung der Linsenfassung entlang der optischen Achse bewegt. Ist ein Objekt unendlich weit entfernt, wird das Bild in der Brennebene scharf abgebildet, d. h. die Bildweite ist minimal und entspricht der Brennweite. Für jede kleinere Gegenstandsweite muss die Bildweite vergrößert werden, indem die Linse vom Sensor wegbewegt wird. Der minimale Arbeitsabstand ist erreicht, wenn die Bildweite maximal ist. Die Bildweite ist durch die Länge des Gewindes und dem damit verbundenen Anschlag, bis zu dem die Linse bewegt werden kann, beschränkt. Eine Vergrößerung der maximalen Bildweite und damit eine Verkleinerung des minimalen Arbeitsabstandes kann nur durch den Einsatz von Zwischenringen erreicht werden. Durch die Verwendung des Zwischenrings wird aber auch der maximale Arbeitsabstand verkleinert, da die minimale Bildweite nun um die Stärke des Zwischenrings vergrößert ist und somit Gegenstände ab einer bestimmten Entfernung g max. nicht mehr scharf abgebildet werden können. Der maximale Arbeitsabstand verringert sich durch den Einsatz von Zwischenringen schneller als der minimale Arbeitsabstand. Die maximale Dicke der Zwischenringe ist eingeschränkt, da ab einem bestimmten Wert der maximale Arbeitsabstand kleiner als der minimale Arbeitsabstand würde. Es ist dann keine scharfe Abbildung mehr möglich. g max. f bmin = b f min f = ( f + s ) s Ring Ring - größerer Zwischenring - kleinerer minimaler Arbeitsabstand - kleinerer maximaler Arbeitsabstand Brennweite Auflagenmaß Sensor Zwischenring Abb : Verwendung von Zwischenringen 24

26 3.3.6 C-Mount- und CS-Mount-Objektive Die gängigsten Objektiv-Ausführungen sind die sogenannten C-Mount- und CS- Mount-Objektive. Sie besitzen die gleichen Gewinde, unterscheiden sich jedoch im Auflagenmaß. Dies ist der Abstand zwischen Objektivauflage und Sensor (Abb ). Beim C-Mount ist es mit 17,525 mm und beim CS-Mount mit 12,525 mm genormt. Zwischenringe werden auch als Adapterstücke verwendet. Eine CS-Mount-Kamera kann mit C-Mount-Objektiven verwendet werden, da der Abstand durch den Einsatz eines 5 mm Zwischenrings angepasst werden kann. Eine C-Mount-Kamera hingegen kann nur mit C-Mount-Objektiven verwendet werden, da die CS-Mount-Objektive zu weit vom Sensor entfernt wären Objektivformat Bei der Auswahl der Objetive ist darauf zu achten, dass das Objektivformat, d. h. die Größe des entstehenden Lichtkreises, zum verwendeten Sensorformat passt. Die gemachten Angaben sind keine absoluten Größen, sondern sind auf die Sensorformate ausgelegt. So kann ein 1 -Sensor vollständig durch ein 1 -Objektiv ausgeleuchtet werden, da er gerade in den Lichtkreis passt. Es ist verständlich, dass kleinere Sensoren mit größeren Objektiven verwendet werden können, jedoch nicht umgekehrt. 15,9 mm 6,0 mm 6,6mm 6,6mm 8,8mm 8,8mm Abb : 2/3 -Sensor mit Lichtkreis eines 1/3 -Objektivs [[Demant98, S. 280] Abb : 2/3 -Sensor im Lichtkreis eines 1 -Objektivs [[Demant98, S. 280] Um den Anwendern die Auswahl der Objektive möglichst leicht zu machen, bieten viele Hersteller Tabellen an, in denen die passenden Objektive nachgeschlagen werden können. Einige der Hersteller haben diese Tabellen auch im Internet veröffentlicht. Als Beispiel sei hier die Homepage der Firma Data Translation erwähnt. Die Tabellen sind nach Arbeitsabstand, Objektgröße und Sensorgröße sortiert und ermöglichen eine schnelle Auswahl ohne Rechenaufwand Abbildungsfehler Neben den Abbildungsgesetzen ist auch die Kenntnis über die möglichen Abbildungsfehler wichtig. Diese Fehler sind durch die erreichte Qualität der modernen Objektive oft vernachlässigbar, sollten aber für genaue Vermessungsaufgaben Beachtung finden. 25

27 Verzeichnung Der Abbildungsmaßstab von Linsen ist abhängig vom Abstand der Strahlen zur optischen Achse, d. h. der Abbildungsmaßstab für Punkte am Rand kann größer oder kleiner sein, wodurch das Bild verzerrt wird. Geraden in einem Bild werden daher zum Mittelpunkt hin- bzw. weggekrümmt, wodurch die sogenannte Kissen- bzw. Tonnenverzeichnung entsteht. Die Verzeichnungswerte liegen in der Regel zwischen 0,2% und 1%, wodurch Abweichungen bis zu mehreren Bildpunkten möglich sind. Abb : Kissenverzeichnung Abb : Tonnenverzeichnung Farbfehler Beim Durchgang von weißem Licht durch ein Prisma wird das Licht in seine Spektralfarben zerlegt. Dieser Effekt beruht auf der Dispersion des Lichtes. Durch sie ist die Brechzahl des Mediums von der Wellenlänge des Lichtes abhängig. Dieser Effekt ist auch bei Linsen zu erkennen. Die Fokussierung eines Bildpunktes ist prinzipiell nur für eine Wellenlänge exakt, da die Brennweite vom Brechungsindex abhängt und damit die Abbildungsgleichung eine andere ist. Ist das Bild eines blauen Objektes scharf, ist das Bild eines roten Objektes bei gleichen Einstellungen unscharf. Dieser Fehler wird chromatische Aberration genannt. Durch den Einsatz mehrerer Linsen mit entgegengesetzten Dispersionen wird versucht, einen über alle Wellenlängen konstanten Brechungsindex zu erreichen. Dies gelingt begrenzt, wodurch für hochgenaue Vermessungen die Verwendung von monochromatischem Licht, d. h. Licht einer Wellenlänge, ratsam ist. Abb : Blaues fokussiertes Viereck Abb : rotes Viereck mit gleichen Einstellungen Bildwölbung In der Praxis wird das Bild durch die Linse auf einer gewölbten Fläche erzeugt. Der Sensor stellt jedoch eine planare Fläche dar. Das Bild ist daher an den Rändern unscharf, da dort die Fokuspunkte weiter vom Sensor entfernt sind. Sensor gewölbte Bildebene Abb : gewölbte Bildebene 26

28 3.3.9 Objektivtypen Für einfache Aufgabe ohne hohe Anforderungen werden günstige Standardobjektive mit den beschriebenen Abbildungsfehlern angeboten. Ist die genaue Lage von Merkmalen im Bild, jedoch nicht die genaue Größe relevant, können verzeichnungsarme Optiken verwendet werden. Sie sind auch für einfache Vermessungsaufgaben von Objekten geringer Dicke, die im konstanten Abstand aufgenommen werden, geeignet. Für hochgenaue Vermessungsaufgaben ist der Einsatz von telezentrischen Objektiven notwendig. Bei diesen Objektiven wird eine Blende genau in den Brennpunkt gelegt, wodurch nur Strahlen den Sensor erreichen, die objektseitig parallel zur optischen Achse verlaufen. Im Telezentrie-Bereich ist daher der Abbildungsmaßstab konstant. Eine Änderung der Gegenstandsweite führt zu keiner Änderung der Bildgröße. Dies zeigen die Abbildungen und am Beispiel des blauen Zylinders. Änderung der Gegenstandsweite konstanter Abbildungsmaßstab Abb : Strahlengang der telezentrischen Optik So können auch unerwünschte perspektivische Abbildungen verhindert werden, wie die Abbildungen bis am Beispiel der roten Bohrung zeigen. Abb : Objekt Abb : Bild mit normaler OptikAbb : Bild mit telezentrischer Optik Diese Optiken werden für genaue Aufgaben mit telezentrischen Durchlicht- Beleuchtungen verwendet, da sie im Vergleich zu normalen Aufbauten die genaueren Ergebnisse liefert (Abb ). 27

29 entozentrisches Objektiv und diffuse Beleuchtung große Beleuchtungs- und große Obkjektivapertur Überblendung und Reflexion EZO telezentrisches Objektiv und diffuse Beleuchtung große Beleuchtungs- und kleine Objektivapertur Reflexion an Radius TZO telezentrisches Objektiv und telezentrische Beleuchtung kleine Beleuchtungs- und kleine Objektivapertur keine Überblendung und keine Reflexion f TZO TZB wahre Größe Abb : Polierter Bolzen unter verschiedenen Bedingungen Werksbilder der Firma VISIOSN&CONTROL, Suhl An den Bildern ist die Steigerung der Kantenqualität durch geringe Öffnungswinkel zu sehen. Es kommt nicht zu Überblendungen oder störenden Reflexionen am Radius des Stabes. Die abgebildete Kante entspricht der wahren Kante. Für einige Anwendungen können Superweitwinkel-Objektive, die auch als Fischaugen-Objektive bezeichnet werden, zum Einsatz kommen. Sie ermöglichen aufgrund ihrer Bauart und dem damit verbundenen extremen Öffnungswinkel Aufnahmen. Solche Aufnahmen zeigen eine hohe Kissenverzeichnung und sind daher nur für Anwesenheitskontrollen z. B. im Inneren von rotationssymmetrischen Objekten geeignet [Demant98, S. 281]. Für die Untersuchung an unzugänglichen Stellen werden sogenannte Technoscope eingesetzt, die vom Aufbau her den in der Medizin verwendeten Endoscopen sehr ähnlich sind. Bei diesen stabförmigen Optiken, die aus Objektiv, Okular und Beleuchtung bestehen, wird Licht meist durch einen Lichtleiter zum Objekt und wieder zurück geleitet. Üblicherweise werden dazu faseroptische Bildleitfasern verwendet. Die hier erwähnten Optiken entsprechen nur einem kleinen Ausschnitt. Es sind viele weitere Optiken erhältlich, die jedoch nur für sehr spezielle Anwendungen eingesetzt werden. 28

30 3.4 Sensor CCD-Chip Der Sensor hat die Aufgabe, das entstandene Bild in verwertbare Signale umzuwandeln. Dazu werden lichtempfindliche Elemente benötigt, die ein von der Beleuchtungsstärke abhängiges elektrisches Signal erzeugen. Heutzutage werden in fast allen Kameras dazu sogenannte CCD-Chips (charge coupled device) verwendet. Dabei handelt es sich um flächig oder zeilenförmig angeordnete lichtempfindliche Halbleiterelemente, die als Pixel bezeichnet werden. Je nach Anordnung der Pixel handelt es sich um Matrix- bzw. Zeilenkameras. Während der Belichtungszeit, die auch Integrationszeit genannt wird, wandelt der Sensor einfallendes Licht in Elektronen um und speichert diese entstehende Ladung. Durch die kleinen Sensorgrößen ist es nicht möglich, jedes Sensorelement einzeln zu verdrahten. Sie werden durch Schieberegister verbunden und später durch Umladungsvorgänge sequenziell ausgelesen. Nach der Integrationszeit wird die Ladung der einzelnen Elemente zeilenweise erst in das vertikale und dann ins horizontale Schieberegister transportiert und ausgelesen. Der Beleuchtungswert wird als analoges zeitabhängiges Spannungssignal übertragen. Um die einzelnen Elemente zu trennen, sind ebenfalls Potenzialwälle notwendig, so dass der Anteil der lichtempfindlichen Fläche des Sensors um die Register und die Potenzialwälle vermindert wird. Dieser Anteil wird als Fillfaktor bezeichnet Videonorm Die Sensoren einer Matrixkamera stammen oft aus dem günstigen Massenmarkt der Videotechnik und arbeiten daher nach der CCIR-Norm, die die Übertragung von Halbbildern beinhaltet. Dieses Verfahren wird auch als Interlaced-Verfahren bezeichnet. Durch die Halbbildübertragung, z. B. beim Fernsehen, wird ein für den Menschen ruhigeres Bild erzeugt. Es wird erst nur eine Hälfte der Sensorelemente, d. h. alle ungeraden Zeilen und später die andere Hälfte der Elemente ausgelesen. Um den Beginn einer neuen Zeile oder eines neuen Halbbildes zu markieren, werden Zeilen durch horizontale Synchronisationsimpulse und die Halbbilder durch einen vertikalen Synchronisationsimpuls getrennt. Diese Impulse unterscheiden sich in ihrer Dauer und genauen Position, die später von der Bilderzeugung erkannt werden. Vertikale Schieberegister Sensorelemente Horizontales Schieberegister Ausgang: U(t) U(t)=VSYNC, U(1), U(2), U(3), U(4), HSYNC, U(9),U(10),U(11),U(12), VSYNC, U(5), U(6), U(7), U(8), HSYNC, U(13), U(14), U(15),U(16) Abb : CCD-Sensor und sequenzielle Auslesung nach Videonorm 29

31 Durch die Beleuchtung der einzelnen Elemente mit Licht einer bestimmten Intensität I und Wellenlänge λ wird während der Integrationszeit T I pro Element mit den Koordinaten x und y eine gewisse Ladungsmenge Q erzeugt, welche sequenziell ausgelesen und als ein von der Zeit t abhängiges analoges Spannungssignal U an den Ausgang übertragen wird. Abb : Beleuchteter Sensor I(x,y,λ) Q(x,y,T I ) U(t) Abb : Prozentualer Ladungszustand der Sensorelemente Abb : Signalumwandlungen Vollbild relative Spannung Halbbild 2. Halbbild Zeile 1 Zeile 3 Zeile 5 Zeile 2 Zeile 4 Zeile 6 VSYNC Zeit HSYNC Abb : Prinzipskizze des Spannungssignals 30

32 3.4.3 Eigenschaften der Sensoren Die Sensoren werden durch mehrere Eigenschaften charakterisiert. Die Anzahl der Sensorelemente bestimmt die Auflösung des späteren Bildes. Standard-Videokameras arbeiten mit 752 x 582 Pixeln. Hochauflösende Kameras mit 1024 x 1024 oder teure Kameras mit bis zu 4000 x 4000 Pixeln finden ebenfalls Einsatz. Für den Einsatz in der Astronomie werden sogar Kameras mit 8000 x 8000 Pixeln eingesetzt. Die Pixelgröße gibt die tatsächliche Größe eines Elementes an und liegt im µm- Bereich, z. B. 8,3=µm x 8,3 µm. Für genaue Vermessungen sollten nur Sensoren mit quadratischen Elementen verwendet werden, da rechteckige das entstehende Bild negativ beeinflussen würden. Die Sensorgröße gibt die Größe der lichtempfindlichen Fläche an. Durch die fortgeschrittene Herstellungstechnologie können diese Halbleiterbauteile in immer kleineren Abmessungen mit höheren Auflösungen hergestellt werden, wodurch die Anforderungen an die Optiken ebenfalls kleiner werden, da eine kleinere Fläche homogen ausgeleuchtet werden muss. Früher waren 1 -Sensoren üblich, heute sind auch 2/3 - und 1/3 -Sensoren erhältlich und in Zukunft werden es 1/4 -Sensoren sein. Die Lichtempfindlichkeit gibt an, ab welcher Beleuchtungsstärke ein Sensor Bilder liefern kann. Auch der Dunkelstrom, d. h. ein Signal ohne Lichteinfall, bedingt diese Grenze, da er in den Signal-Rauschabstand einfließt. Er entsteht, da Ladungsträger nicht nur durch einfallendes Licht, sondern auch durch thermische Anregung im Sensorelement erzeugt werden können. Er kann durch Kühlung des Sensors verringert werden. Beim hier erwähnten Interlaced-Verfahren kommt es bei schnell bewegten Objekten zum Halbbildversatz, da sich zwischen den beiden Bildern das Objekt bewegt hat. Abhilfe schafft die Verwendung eines Progressive-Scan-Sensors, der Vollbilder überträgt und somit diesen Fehler nicht aufweist Zeilenkamera Neben den Matrixkameras ist auch die Verwendung von Zeilenkameras möglich. Bei ihnen sind Sensorelemente in einer Reihe angeordnet. Solche Kameras eignen sich sehr gut für die Kontrolle von Endlosmaterialien wie Stahlbänder, Papier, Textilstoffe etc. Für die Produktionsüberwachung werden sie über das sich bewegende Band montiert. Abb : Prinzipskizze einer automatischen Fehlererkennung an Flachglas mit einer Zeilenkamera 31

33 Diese Kameras nehmen in bestimmten Zeitabständen, die konstant oder von der Bandgeschwindigkeit abhängig sein können, eine Zeile auf. Die entstehenden Zeilen werden später zu einem Bild zusammengesetzt und können wie die Bilder einer Matrixkamera ausgewertet werden. Auch bei Applikationen, für die extrem hohe Auflösungen notwendig sind, die durch Matrixkameras nicht mehr erreicht werden können, ist der Einsatz von Zeilenkameras notwendig. Für die Erfassung des Objektes muss die Kamera oder das Objekt bewegt werden, damit die Kamera einzelne Ausschnitte des Objektes aufnehmen kann. Ein handelsüblicher Flachbettscanner funktioniert übrigens auf die gleiche Weise CMOS-Chip Neben den erwähnten CCD-Chips werden in Zukunft wohl vermehrt CMOS-Chips (complementary metal oxide semiconductor) eingesetzt werden. Die Funktionsweise dieser Chips ist der Funktionsweise der CCD-Chips sehr ähnlich. CCD-Chips zeichnen sich durch ausgereifte und etablierte Technologie, sowie geringes Signal-Rausch-Verhältnis aus. Sie ermöglichen aber nur das vollständige Auslesen von Halb- bzw. Vollbildern. Demgegenüber bieten CMOS-Chips die Möglichkeit, gezielt einzelne Pixel oder Pixelbereiche auszulesen. Somit können auch einzelne Teile des Bildfeldes aufgenommen werden. Da mehr elektronische Komponenten auf dem Chip integriert werden können, ist eine günstigere Herstellung möglich. Dadurch verringern sich die Systemkosten. Leider ist bei diesen Chips das Signal-Rausch-Verhältnis derzeit noch deutlich schlechter. Auch wenn diese Technologie noch nicht so ausgereift ist, bietet sie aber ein Potenzial, das es in Zukunft zu nutzen gilt. 3.5 Bilderzeugung Das vom Sensor erzeugte Signal muss aufbereitet werden, um es der Auswerteeinheit als Bild zur Verfügung zu stellen. Die Komponente, die dieses Bild erzeugt, wird Framegrabber genannt Signalumwandlung Beim Sensorsignal handelt es sich, wie oben beschrieben, um eine zeitabhängige Spannung, die die Aneinanderreihung der Ladung der einzelnen Sensorelemente wiedergibt. Dabei wird der Beginn der Zeilen und der Halbbilder durch die Synchronisationsimpulse markiert. Dieses analoge Signal muss digitalisiert werden. Dazu wird das Signal vom Framegrabber mit einer konstanten Frequenz abgetastet. Die Abtastung startet mit einem Synchronisationsimpuls. Das Zeitintervall zwischen den Abtastungen ist konstant. Die Abtastung wird solange weitergeführt, bis ein neuer Impuls den Beginn einer neuen Zeile oder eines neuen Halbbildes anzeigt. Der jeweils eingelesene Spannungswert wird mit einer 8 Bit-Auflösung digitalisiert und als Grauwert übertragen. Eine Auflösung von 8 Bit bedeutet, dass der erfasste Spannungsbereich in 2 8 = 256 Teile unterteilt wird. Zwischenwerte sind nicht möglich. Die einzelnen Werte werden in den Kurzspeicher übertragen und dort nach ihrer Reihenfolge wieder zu einem Bild zusammengesetzt. Die gesamte Umwandlung der Signale ist in dargestellt. 32

34 Vollbild U(t) relative Spannung Halbbild 2. Halbbild Z1 Z3 Z5 Z2 Z4 Z Zeit Abtastzeitpunkte U 1,U 2,U 3... Digitalisierte Spannung VSYNC HSYNC HSYNC VSYNC G 1,G 2,G G(x,y) Abb Signalumwandlungen 33

35 3.5.2 Abtastfehler Am entstehenden Bild ist bereits zu erkennen, dass es durch die beschränkte Auflösung zu einem Informationsverlust kommt. Die Form des Kreises ist nur zu erahnen. Merkmale, die kleiner als die Pixeldimension sind, können nicht erfasst werden. Die Abtastfrequenz wird unabhängig von der Auslesefrequenz der Pixel durch einen Oszillator erzeugt. Der eingelesene Spannungswert, der zum Grauwert eines Bildpunktes umgerechnet wird, muss also nicht dem Spannungswert des zugehörigen Pixels entsprechen. Die Anzahl der abgetasteten Spannungswerte wird nur durch das von der Oszillatorfrequenz abhängige Zeitintervall t festgelegt. Die Pixelanzahl pro Zeile im entstehenden Bild, d. h. die vertikale Auflösung, muss nicht mit der Pixelanzahl des Sensors übereinstimmen. Dies kann zu Verfälschungen führen, die bei bestimmten Anwendungen nicht toleriert werden können. digitalisierte Werte digitalisierte Werte U(t) U(t) t 0 t t 0 t Tatsächliche Werte der Sensorelemente Abb : Abtastfrequenz = Auslesefrequenz Tatsächliche Werte der Sensorelemente Abb : Abtastfrequenz > Auslesefrequenz Abb : korrekte Zeile Abb : verfälschte Zeile Pixeltakt Um sicherzustellen, dass ein Wert zum korrekten Zeitpunkt digitalisiert wird, ist die Synchronisation der Pixel notwendig. D. h. die Kamera muss neben dem Videosignal ein weiteres Signal übertragen, das als Pixeltakt bezeichnet wird. Dieses Signal muss der Framegrabber ebenfalls unterstützen, damit er im Kameratakt zum korrekten Zeitpunkt den Spannungswert digitalisiert. 34

36 3.5.4 Bildfehler Alle bisher beschriebenen Komponenten dienen dazu, das Objekt und die zugehörigen Merkmale zu erfassen. Das entstandene Bild, das später ausgewertet werden soll, ist je nach Auswahl der Komponenten stark fehlerbehaftet. Alle Fehler bestimmen das Ergebnis der Auswertung und die damit verbundene Genauigkeit bzw. die Prozesssicherheit. Wie stark sich ein Bild vom Objekt unterscheiden kann, soll an einem Beispiel gezeigt werden. Ein Blechteil soll auf Maßhaltigkeit überprüft werden und wird mit einem Förderband durch ein Prüfsystem mit Bildverarbeitungskomponenten bewegt. Als Komponenten werden ein diffuses Durchlicht, ein Standardobjektiv, eine Standardkamera und ein dazu passender Framegrabber verwendet. Jede dieser Komponenten erzeugt spezifische Fehler: - Durch die diffuse Beleuchtung werden die Kanten nicht scharf abgebildet. - Die Führung des Förderbandes ist nicht beliebig genau, dadurch ist der Abstand von Objekt zu Kamera nicht konstant. - Da keine telezentrische Optik verwendet wird, ist somit auch die Bildgröße nicht konstant. - Die Optik zeigt eine Verzeichnung, wodurch das entstandene Bild verzerrt ist. Dieses verzerrte Bild wird mit einer begrenzten Auflösung aufgenommen und übertragen. - Da es sich um eine Halbbildübertragung handelt, zeigen die beiden Halbbilder einen Versatz. - Und weil die Abtastfrequenz des Framegrabbers nicht mit der Auslesefrequenz der Kamera übereinstimmt, ist das Bild gedehnt. Die Bilderreihe zeigt anhand der übertrieben dargestellten Fehler, wie stark sich ein Bild von dem Objekt unterscheiden kann. Es leuchtet ein, dass die Informationen, die bereits bei der Bildaufnahme verloren gehen, nicht durch noch so genau arbeitende Algorithmen bei der Vermessung wiederhergestellt werden können. Durch die geringe Auflösung (Pixelanzahl) ist nicht mehr zu erkennen, welche Kante gewellt und welche gezackt ist. Für den Anwender ist es daher wichtig zu wissen, dass das aufgenommene Bild nicht mehr genau die Eigenschaften des Objektes widerspiegelt. Es kann nur begrenzt Informationen zur Verfügung stellen und erhebliche Ungenauigkeiten beinhalten. Abb : Ideales Bild Abb : Bild mit Unschärfe, Verzeichnung und falschem Abbildungsmaßstab Abb : Digitalisiertes Bild mit Halbbildversatz und Stauchung in x-richtung 35

37 3.5.5 Digitale Systeme Für die industrielle Bildverarbeitung werden immer mehr Systeme angeboten, die nicht nach der beschriebenen Videonorm arbeiten. Diese Systeme sind noch sehr teuer, da sie nur in geringen Stückzahlen gefertigt werden. Sie bieten jedoch die Möglichkeit, die beschriebenen Übertragungsfehler, die durch das Digitalisieren des analogen Signals der Pixel entstehen, durch andere Übertragungsarten zu vermindern. So werden digitale Kameras angeboten, die jeden ausgelesenen Pixel direkt digitalisieren und in digitaler Form an die Auswerteeinheit übertragen. Diese Kameraart ist sehr gut für genaue Vermessungsaufgaben geeignet, da sie praktisch keine der beschriebenen Übertragungsfehler zeigt. Jeder Hersteller entwickelt seine eigene Übertragungstechnik und den damit verbundenen Datenbus, wodurch die Komponenten verschiedener Hersteller nicht untereinander kompatibel sind. Abhilfe könnte das Bussystem IEEE-1394 sein. Es wurde bereits vor Jahren von der Firma Apple unter dem Namen FireWire entwickelt und hält im Moment Einzug in die Videotechnik und Unterhaltungselektronik. So ist jeder neue digitale Camcorder mit dieser Schnittstelle versehen. Der Einsatz dieser Technik im Massenmarkt und die damit verbundenen Stückzahlen lassen auf fallende Preise hoffen. Neben dem günstigen Preis zeichnet sich dieser Datenbus vor allem durch seine hohen Übertragungsraten von 400 Mb/s und zukünftig sogar 1600 Mb/s aus. So ist verständlich, dass bereits einige Firmen im Bereich der industriellen Bildverarbeitung digitale Kameras für diesen Datenbus entwickelt haben. 3.6 Auswerteeinheit Die Auswerteeinheit hat die Aufgabe, die gewünschten Informationen aus dem erzeugten Bild zu gewinnen. Beim menschlichen Sehvorgang wertet das Gehirn das übermittelte Bild aus. Es ist in der Lage, sehr schnell die unrelevanten Inhalte eines vollständigen Bildes zu vernachlässigen. Der Mensch kann sich auf bestimmte Objekte konzentrieren und diese beurteilen, ohne das gesamte Bild auswerten zu müssen. Er kann ebenfalls sehr gut störende Bildinformationen ausblenden. Es ist für ihn kein Problem, auch bei starkem Regen Objekte zu erkennen, solange es hell genug ist. Die Regentropfen sind fast unsichtbar, wenn der Beobachter sich nicht auf sie konzentriert. Ein Bildverarbeitungssystem ist von sich aus nicht in der Lage zu entscheiden, welcher Bildinhalt relevant ist und welcher nicht. Die Kriterien für die Entscheidung, welche Inhalte ausgewertet werden sollen, müssen dem System durch die Programmierung mitgeteilt werden. Die Gewinnung der gesuchten Informationen erfolgt mit Hilfe mathematischer Rechenvorschriften Bildvorverarbeitung Vor der eigentlichen Auswertung ist oft eine Veränderung des Bildes notwendig. Dieser Schritt wird Bildvorverarbeitung genannt. Er hat die Aufgabe, die Eigenschaften des Bildes zu verbessern und Störungen zu minimieren. Ein Mittel ist die Verwendung von Filtern. In Abhängigkeit von den Grauwerten des Originalbildes wird ein neues Bild mit anderen Eigenschaften errechnet. 36

38 3.6.2 Punktoperationen Man unterscheidet zwischen Punktoperationen, bei denen der Grauwert eines Pixels im neuen Bild nur vom Grauwert des korrespondierenden Pixels im Originalbild abhängt, und den lokalen Operationen, bei denen der neue Grauwert eines Pixels von mehreren Pixeln im alten Bild abhängt Look-Up Tabelle Ein typisches Beispiel für eine Punktoperation ist die Look-Up-Tabelle. Der Grauwert des Zielpixels ist eine beliebige Funktion des Grauwertes des Eingangspixels: G x, y = f G x y ( ) ( ( )) Z E, Um die Berechnung des neuen Bildes zu beschleunigen, wird die Funktion in einer Tabelle, der sogenannten Look-Up-Tabelle, hinterlegt, d. h. für jeden Eingangsgrauwert wird nachgeschaut (engl.: look), welcher Ausgangsgrauwert dem neuen Pixel zugewiesen werden soll. G Z(x,y)=G E(x,y)/2 Eingangsgrauwert Ausgangsgrauwert Eingangsbild Ausgangsbild Abb : Funktion der Look-up-Tabelle Viele Programme bieten die Möglichkeit, die Funktion, mit deren Hilfe die Tabelle errechnet wird, selbst vorzugeben. Dazu wird sie entweder als Formel eingegeben oder in grafischer Form selbst erzeugt. Werden Formeln verwendet, bei denen es zu Werten außerhalb des erlaubten Bereichs von 0 bis 255 (8 Bit-Auflösung) kommt, werden die Zahlen entweder durch 0 oder 255 ersetzt. So kann z. B. ein Bild durch folgende Funktion schnell invertiert werden: G ( x, y) = 255 G ( x y) Z E, Auch kann der Kontrast verstärkt werden, indem gewisse Grauwertbereiche aufgehellt oder verdunkelt werden. Abb : Originalbild Abb : Invertiertes Bild Abb : Bild mit Kontrastverstärkung 37

39 Binarisierung Die am häufigsten verwendete Punktoperation ist die Binarisierung. Sie verringert den Speicherplatz des Bildes und die damit verbundene notwendige Rechenleistung für die Auswertung des Bildes. Aus den 256 möglichen Grauwerten werden in Binärbildern nur die zwei möglichen Grauwerte 0 für Schwarz und 1 für Weiß errechnet. Typische Anwendung ist das Setzen eines Schwellwertes G S (Treshhold). Alle Pixel im Eingangsbild mit Grauwerten, die kleiner als der Schwellwert sind, werden zu schwarz und die restlichen werden zu weiß. G Z G = G E E G S > G S = 0 = 1 Abb : Vergleich Grauwertbild und Binärbild Die Binarisierung dient zur Trennung von Objekt und Hintergrund. Diese Trennung ermöglicht später eine einfache und schnelle Segmentierung. Durch Beleuchtungsschwankungen unterliegen jedoch die aufgenommen Bilder oftmals Helligkeitsschwankungen. Diese verhindern den Einsatz eines festen Schwellwertes, so dass er für jedes Bild neu berechnet werden muss. Man spricht von Schwellwertnachführung. Durch die Berechnung wird sichergestellt, dass das Objekt sich immer noch vom Hintergrund abhebt und so von ihm getrennt werden kann. Eine Möglichkeit der Berechnung ist die Verwendung eines Histogramms. Die Pixel mit gleichem Grauwert werden gezählt und ins Verhältnis zur Gesamtzahl der Pixel gesetzt. Diese Häufigkeit wird in einem Histogramm dargestellt. In der Regel hat man in einem Bild viele helle Punkte des Objektes und viele dunkle Punkte, die den Hintergrund repräsentieren. Dies wird durch die Ausbildung von zwei Maxima im Histogramm deutlich. Für jedes neue Bild wird der Schwellwert zwischen beide Maxima gesetzt. Die Bildreihe auf der nächsten Seite zeigt einen Strichcode, der bei unterschiedlichen Lichtverhältnissen aufgenommen wurde. Werden die Bilder mit einem konstanten Schwellwert binarisiert, ist der Strichcode nur beim mittleren Bild auszuwerten. Wird für jedes einzelne Bild anhand eines berechneten Histogramms ein angepasster Schwellwert verwendet, ist der Strichcode in allen drei Bildern auswertbar. 38

40 Originalbilder Binärbilder mit konstantem Schwellwert Histogramme der Orginalbilder Binärbilder mit Schwellwertberechnung im Histogramm Abb : Vergleich der Binarisierung mit konstantem und berechnetem Schwellwert 39

41 Sind im Bild sowohl helle als auch dunkle unrelevante Bildpunkte vorhanden, ist die Verwendung einer zweiten Binärschwelle notwendig. Die Schwellen werden so gelegt, das sie unterhalb und oberhalb der relevanten Bereiche liegen. So werden sowohl helle als auch dunkle Punkte des Hintergrundes vom Objekt getrennt. Die Verwendung weitere Schwellwerte ist möglich. Sie wird jedoch selten angewandt. G Z G = G G E E E G > G G S 2 S1 S1 = 0 = 1 = 0 Originalbild ein hoher Schwellwert ein niedriger und ein hoher Schwellwert ein niedriger Schwellwert Abb : Verlust von Informationen durch den Einsatz nur eines Schwellwertes Lokale Operationen Bei den lokalen Operationen wird der neue Grauwert des Pixels durch eine Funktion berechnet, in die neben dem eigentlichen Pixel auch seine Nachbarpixel eingehen. G Z ( G( x n x)... G( x + n x), G( y n y) G( y + n y) ) = f... Auch hier wird diese Funktion näherungsweise berechnet, wozu eine sogenannte Filtermaske mit einer bestimmten Kantenlänge erzeugt wird, in der die Eingangspixel entsprechend ihrer Lage gewichtet werden. Eine solche Maske wird als Filterkern bezeichnet. Als Beispiel soll hier der Gaußfilter mit einem 3 x 3 Filterkern dargestellt werden, der zur Glättung von Bilder verwendet wird (Abb und 3.6-9). Da für die Berechnung der Zielpixel am Rand Teile des Filterkerns auf nicht vorhandene Pixel zugreifen würden, werden diese entweder entfernt, mit einem konstanten Grauwert versehen oder durch die ersten berechenbaren Pixel ersetzt. Die letztere Methode hat den Vorteil, dass das neue Bild weder verkleinert wird, noch dass neue Kanten entstehen. Typische Filtergrößen sind 3 x 3, 5 x 5, 7 x 7 und 9 x 9. 40

42 Abb : Filterkern des 3 x 3 Gaußfilters GZ= ( ) / 16= Abb : Funktionsweise des Gaußfilters 41

43 Es sind sehr viele Filter einsetzbar. Da für den Anwender die Eigenschaften des Filters wichtig sind, folgt ein kleiner Überblick über übliche Filter: Tabelle 1: übliche Filter und ihre Funktionen Filter Mittelwert Gaußfilter Median Kontrast Erosion Dilatation Closing Opening Sobel x, Sobel y Eigenschaft Glättung des Bildes Glättung des Bildes mit stärkerer Gewichtung der mittleren Pixel Glättung des Bildes mit Erhalt der Kantenschärfe Kantenextraktion Vergrößerung der dunklen Bereiche Vergrößerung der hellen Bereiche Schließung der Unterbrechungen an hellen Objekten Schließung der Unterbrechungen an dunklen Objekten Richtungsabhängige Kantenextraktion Closing Opening Kantenextraktion Sobel x Mittelwert Orginalbild Kantenextraktion Sobel y Dilatation Errosion Kontrast Abb : Auswirkung verschiedener Filter 42

44 3.6.3 Auswertung Moderne Bildverarbeitungssysteme bieten umfangreiche Möglichkeiten, Informationen aus dem Bild zu gewinnen. In diesem Abschnitt soll ein kleiner Ausschnitt aus den möglichen Methoden gezeigt werden Kantenerkennung Um ein Objekt zu vermessen, muss der Ort der Kante erkannt werden. Durch die Beleuchtung muss die relevante Kante mit einem ausreichendem Kontrast im Bild dargestellt werden. Ist dies der Fall, kann bereits im Grauwertbild entlang einer Linie nach Helligkeitsunterschieden gesucht werden. Es werden zwei Verfahren unterschieden: Das Schwellwertverfahren und das Kontrastverfahren. Beim Schwellwertverfahren wird der genaue Ort der Kante durch einen Schwellwert repräsentiert. Dieses Verfahren ist sehr schnell, da entlang der Linie nur ein gewisser Grauwert gefunden werden muss. Der gefundene Ort der Kante kann jedoch durch Helligkeitsschwankungen wandern. Ein anderes Verfahren stellt das Kontrastverfahren dar. Bei ihm wird entlang der Linie die Stelle mit dem höchsten Kontrast, d. h. dem Ort mit der höchsten Helligkeitsänderung (1. Ableitung) gesucht. gefundene Position gefundene Position Weiß Weiß Grauwert Schwellwert 1. Ableitung Schwarz Schwarz Position Position Grauwertübergang entlang der Suchlinie Abb : Schwellwertverfahren Grauwertübergang entlang der Suchlinie Abb : Kontrastverfahren Bei einer Vermessung werden in der Regel im Suchfenster sehr viele Punkte bestimmt, die den Verlauf der Kante repräsentieren. Über diese Punkten können verschiedene Maße wie maximaler, minimaler oder mittlerer Abstand ermittelt werden. Letzterer wird mit Hilfe einer durch lineare Regression ermittelten Ausgleichsgerade gemessen. Als Abstandmaß wird der Abstand der Geraden ermittelt. Auf die selbe Weise werden auch andere Formen durch Ausgleichgeometrien wie Kreise und Ellipsen angenähert, um sie vermessen zu können. Suchbereiche gefundene Punkte maximaler Abstand minimaler Abstand mittlerer Abstand Abb : Geradenantastung Ausgleichgeraden 43

45 Suchbereich Ausgleichskreis gefundene Punkte Abb : Kreisantastung Blobanalyse Bei der Blobanalyse werden im Binärbild zusammenhängende schwarze oder weiße Flächen, sogenannte Blobs (binary large object) gesucht. Die gefundenen Bereiche können auf ihre Eigenschaften untersucht werden. Mögliche Eigenschaften sind Schwerpunkt, Fläche, Umfang, längste bzw. kürzeste Ausdehnung usw. Mit den Ergebnissen lassen sich z. B. die Anzahl der Objekte bestimmen, die die geforderten Eigenschaften besitzen. Im hier gezeigten Beispiel soll die Anzahl der Bohrungen in einem Bauteil überprüft werden. zusammenhängende weiße Flächen suchen Blobs mit abweichenden Eigenschaften Anzahl überprüfen Anzahl = 8 o.k. Abb Beispiel für eine Blobanalyse Mustererkennung I In der Bildverarbeitung muss oft ein Objekt bzw. ein Merkmal im Bild gefunden werden. Dazu wird ein Objekt oder Merkmal aufgenommen, markiert und im Speicher des Systems als Muster hinterlegt. Dieser Vorgang wird in der Regel als Einlernen bezeichnet. Im neuen Bild wird versucht, dieses Muster wieder zu finden. Für dieses Wiederfinden kommen eine Vielzahl von unterschiedlichen Algorithmen zum Einsatz. Sie unterscheiden sich in ihrer Schnelligkeit, Genauigkeit und Flexibilität. Die einfachsten Algorithmen können nur Objekte mit gleicher Größe und ohne Verdrehung finden. Andere Algorithmen können das Muster in jedem Drehwinkel im neuen Bild wieder finden. Seit wenigen Jahren werden sehr flexible und dennoch schnelle Algorithmen angeboten, die trotz Verdrehung, Größenänderung, Beleuchtungsänderung und sogar teilweiser Verdeckung das Muster dennoch sicher finden. Diese Eigenschaften der sogenannten grauwertbasierten Algorithmen werden als verdrehungs-, größen-, beleuchtungs- und verdeckungsinvariant bezeichnet. Der Anwender muss die Grenzen des von ihm ausgewählten Verfahrens kennen, um sicherzustellen, dass die Aufgabe unter den gegebene Bedingungen sicher gelöst wird. Ist z. B. nicht sichergestellt, dass das Objekt immer in der richtigen Drehlage im Bild erscheint, muss ein Algorithmus verwendet werden, der verdrehungsinvariant ist. Die 44

46 Algorithmen geben als Ergebnis ein Übereinstimmungsmaß (Score) zwischen eingelerntem Muster und gefundenen Muster an. Dem Bediener wird die Möglichkeit gegeben, ein Grenze anzugeben. Wird für ein Objekt dieser Wert unterschritten, wird es nicht als erkannt markiert. Eine typische Grenze ist 0,8, d. h. das System muss ein Objekt mit mindesten 80% der hinterlegten Merkmale im neuen Bild finden. im Speicher hinterlegtes Muster Abb : Bild mit einzulernendem Muster Abb : neues Bild mit gefundenen Mustern Die erwähnten grauwertbasierten Algorithmen eignen sich hervorragend für das sogenannte Robot-Vision. In immer mehr Bereichen der Industrie, vor allem in der Automobilindustrie, werden Roboter eingesetzt. Sie fahren vorgegebene Koordinaten ab, z. B. um Bauteile aufzunehmen und abzulegen oder um Bauteile zu verkleben der zu verschweißen. Ohne den Einsatz von Bildverarbeitungssystemen müssten Objekte immer sehr genau positioniert werden, damit die im Roboter hinterlegten Koordinaten mit den Koordinaten des Objektes übereinstimmen. Diese Positionierung ist störanfällig, sehr aufwändig und damit teuer. Ist ein Objekt verschoben, kann der Roboter darauf nicht reagieren. Die Bildverarbeitung macht den Roboter sehend. Sie wertet das Bildfeld aus, sucht die hinterlegten Muster und übergibt die nötigen Koordinaten an den Roboter. Beim hier dargestellten Beispiel handelt es sich um das Entpalettieren von Motorbauteilen. Vor dem Einsatz eines Bildverarbeitungssystems mussten die Bauteile immer genau positioniert sein. Durch die Verwendung eines Systems kann auf eine genaue Positionierung verzichtet werden. Das Muster des Bauteils wird in das System eingelernt und im Bild gesucht. Die Koordinaten und der Drehwinkel werden an den Roboter übertragen, welcher dann die Bauteile greift und an der vorgesehenen Position ablegt. Im Bild sind gefundene Übereinstimmungen durch einen roten Rahmen und fehlende Übereinstimmungen durch einen gelben Rahmen markiert. 45

47 Abb : Grauwertbasierte Mustererkennung Werksbild der Firma ISRA, Darmstadt Vorgehensweise bei der Erstellung von Prüfprogrammen Bei der Komplexität der möglichen Anwendungen ist es unmöglich, ein einheitliches Lösungskonzept zu erstellen. Die übliche Vorgehensweise ist aber oft die gleiche. Nach dem Schritt der Bildaufnahme muss die Notwendigkeit einer Bildvorverarbeitung geprüft werden. Je nach verwendetem System und den späteren Algorithmen muss das Bild binarisiert werden. Danach werden Bereiche definiert, die untersucht werden müssen. Oft sind relevante Objekte nicht an der selben Position, so dass die Suchbereiche dynamisch für jedes Bild neu positioniert werden müssen. Dazu eignet sich z. B. eine gefundene Kante, ein Blob, ein Muster oder ähnliche Merkmale. Nun können relativ zu den Positionen Suchlinien oder Arbeitsbereiche definiert werden, um alle relevanten Informationen aus dem Bild zu gewinnen. Es können je nach System Vollständigkeitskontrollen, Vermessungen, Mustererkennungen, Texturanalysen, Druckbildkontrollen, Schrift- und Codeerkennungen und vieles mehr durchgeführt werden. Für jedes Problem gibt es mehrere Lösungswege. Ziel ist aber, eine möglichst einfache und daher schnelle und dennoch prozesssichere Lösung zu finden. Der Bediener muss sicherstellen, dass Merkmale, die er verwendet, immer eindeutig und vor allem immer in der geforderten Form vorhanden sind. Positioniert man einen Suchbereich nach einem Muster muss dieses natürlich immer vorhanden ist. Wird nach einem Blob einer gewissen Größe gesucht, darf dieser durch Prozessschwankungen nicht außerhalb der tolerierten Größe liegen. Wird eine Kante verwendet, muss diese mit ausreichendem Kontrast dargestellt sein und nicht z. B. durch Fremdlicht überblendet sein. Für den Einsatz von Bildverarbeitungssystemen ist es besonders wichtig, zu Beginn eines Projektes genau zu definieren, was das System tun soll, bzw. welche Merkmale wie untersucht werden sollen, und welche Parameter sich ändern können. Diese Arbeit bedingt das gesamte weitere Vorgehen und ist daher bestimmend für die Kosten und die Erfolgsaussicht. Sie wird daher in einem späteren Kapitel noch näher beschrieben. 46

48 Genauigkeit der Algorithmen Bei der Planung von Bildverarbeitungssystemen wird fast immer nach der Genauigkeit der Auswertung gefragt. Die Genauigkeit solcher Systeme hängt von vielen Faktoren ab. Diese Frage kann daher nicht wie bei Messgeräten mit einer Zahl oder einer prozentualen Abweichung beantwortet werden. Wichtigster Faktor ist die Pixeldimension. Sie ist die kleinste darstellbare Einheit. Sie wird bestimmt durch die Größe des aufgenommenen Bildes und die Auflösung der Kamera. Wird ein Bildfeld von 5 cm x 5 cm durch eine Kamera mit 1000 x 1000 Pixeln aufgenommen, entspricht ein Pixel einer Länge von 50 µm. Wird mit der selben Kamera ein Bildfeld von 5 m x 5 m aufgenommen, entspricht ein Pixel 5 mm. Die Genauigkeit hängt also in erster Linie von der Größe des Bildes ab. Die Messgenauigkeit wird daher in der Regel als Bruchteil von Pixeln angegeben. Sie hängt neben der Bildgröße auch von der Beleuchtung, dem damit verbundenen Kontrast, der Bildqualität und den jeweils verwendeten Algorithmen ab. Hersteller geben als theoretischen Wert für die Genauigkeit 1/10 Pixel, einige Firmen sogar 1/40 Pixel an. In der Realität werden oft 1/3 Pixel angenommen. Diese Werte können jedoch nur durch statistische oder Approximationsverfahren erreicht werden. Bei der Kantenerkennung kann man unter guten Bedingungen die genaue Lage der Kante im Subpixelbereich abschätzten. Der Grauwert, den ein Sensorelement liefert, wird durch die mittlere Beleuchtungsstärke seiner Fläche bedingt. Wird im entstandenen Bild entlang einer Linie nach einer Kante gesucht, kann der stufenähnliche Grauwertverlauf durch Interpolationslinien dem tatsächlichen Verlauf der Beleuchtungsstärke genähert werden. Die Interpolationslinie liefert bei Verwendung des Schwellwertverfahrens Kantenpositionen, die zwischen den Pixeln liegen. Es wird eine Position im Subpixelbereich bestimmt. Da es sich um eine Abschätzung handelt, kann es auch zu Fehlern kommen. In der Abbildung ist ein Objekt gezeigt, welches das selbe Bild und damit die gleiche Kante liefern würde. Der maximale Abstand der beiden Kanten ist jedoch ein anderer. Auf Sensor abgebildetes Objekt 1 entstandenes Bild geschätzte Positionen Grauwert Weiß Interpolations -linie Schwellwert Schwarz Suchlinie Position Auf Sensor abgebildetes Objekt 2 Grauwertübergang entlang der Suchlinie Abb : Kantenantastung im Subpixelbereich 47

49 In vielen Anwendungen werden die Koordinaten eines Objektes errechnet. Dies kann z. B. durch eine Schwerpunktberechnung geschehen. Durch die beschränkte Auflösung wird ein Objekt gerastert, d. h. der Ort der gefundenen Kanten entspricht nicht der genauen Position der tatsächlichen Kante. Je mehr Punkte als Grundlage für die Positionsbestimmung verwendet werden, desto genauer ist die errechnete Position, da sich die Abweichungen der einzelnen Punkte herausmitteln. Es sind ebenfalls alle Bildfehler (Verzeichnung, Halbbildversatz, Verzerrung...) zu beachten, die die Abbildung eines Objektes und damit ihre Merkmale verändern. Grundsätzlich wird die Genauigkeit größer durch: - höhere Auflösung - kleineres Bildfeld - angepasste Optik (geringe Verzeichnung, telezentrisch, hohe Tiefenschärfe...) - angepasste Beleuchtung (hoher Kontrast, scharfe Kanten) - angepasste Hardware - Interpolation - größere Anzahl an Stützpunkten bzw. Merkmalen 3.7 Kommunikationseinheit Die Kommunikationseinheit hat die Aufgabe die ermittelten Ergebnisse an ein übergeordnetes System oder direkt an die Reaktionseinheit zu übermitteln. Die Ergebnisse können bestimmt sein für: - Bedienpersonal - Prozesssteuerung - Qualitätsdatenbank - Reaktionseinheit Je nach Bestimmungsort stehen verschiedene Möglichkeiten zur Verfügung: - Bildschirmanzeigen, Signallampen - digitale Ein- und Ausgänge - serielle Schnittstellen (RS-232) - sonstige Schnittstellen (CAN-Bus, Profibus...) 3.8 Reaktionseinheit Die Reaktionseinheit hat die Aufgabe, die vom Ergebnis abhängige Aktion auszuführen. Reaktionen können sein: - das Greifen eines Bauteils durch einen Roboter nach Lagebestimmung - Ausschleusung von Teilen mit unzureichenden Eigenschaften - Änderung der Prozeßparameter - Markierung defekter Zonen auf Bandmaterial - Sortierung von Objekten 48

50 3.9 Allgemeiner Aufbau eines Bildverarbeitungssystems Nachdem die einzelnen Komponenten genauer vorgestellt sind, kann nun die anfängliche Beschreibung eines Gesamtsystems genauer formuliert werden. Für die Bilderfassung muss ein vorhandenes Objekt beleuchtet werden. Die durch die Beleuchtung hervorgehobenen Merkmale des Objektes werden durch die Optik auf den Sensor abgebildet. Der Sensor muss das Licht in verwertbare elektrische Signale umwandeln, welche an die Bilderzeugungseinheit übertragen werden. Das (fehlerbehaftete) Bild wird einer Auswerteeinheit zur Verfügung gestellt, die dieses Bild durch ausgewählte Algorithmen auswertet und ein Ergebnis errechnet. Diese Algorithmen werden durch die Bedienschnittstelle ausgewählt. Das Ergebnis wird über Kommunikationsschnittstellen an ein übergeordnetes System oder direkt an eine Reaktionseinheit übertragen, welche die von dem Ergebnis abhängige Reaktion ausführen soll. Bediener Bedienschnittstelle Objekt / Prozeß / Materialfluß Optik Signal Sensor Aktion Kommunikationsschnittstelle Reaktionseinheit Bild Algorithmen Auswertung Bilderzeugung Übergeordnetes System Abb : allgemeiner Aufbau eines Bildverarbeitungssystems 49

51 4 Hard- und Software für Applikationen Die Kosten für ein Bildverarbeitungssystem waren früher sehr hoch. Man benötigte Softwarespezialisten, die alle nötigen Softwaremodule vollständig programmieren mussten. Die nötigen Algorithmen wurden speziell für jede Applikation angepasst oder sogar neu entwickelt. Jede Anlage war meist eine Einzellösung, die fast vollständig neu entworfen werden musste. Die Hardware war sehr speziell und damit teuer. Die Kosten solcher Systeme lagen durch die hohen Entwicklungskosten in der Regel weit über DM. Durch die Standardisierung der Soft- und Hardware- Komponenten können heute Lösungen unter DM realisiert werden. Lösungen einfacher Problemstellungen sind sogar direkt vom Anwender ohne die Hilfe von Spezialisten möglich. Für diesen Einsatz werden mittlerweile sehr viele Komponenten angeboten, welche sich grundlegend im Hardwareansatz unterscheiden. 4.1 Ansätze im Hardwareaufbau Je nachdem wo die beschriebenen Komponenten im System untergebracht sind, können die Systeme in unterschiedliche Kategorien unterteilt werden, wobei die Grenzen zwischen diesen Kategorien fließend sind. Es ist möglich, zwischen intelligenten Kameras, Kameras mit externer Auswertehardware, PC-Kameras und PC-basierten Systemen zu unterscheiden. Im folgenden werden zunächst allgemein die Vor- und Nachteile solcher Systeme diskutiert und dann exemplarisch verschiedene am Markt erhältliche Produkte vorgestellt, die im Laufe dieser Diplomarbeit als Leihgeräte für ausführliche praktische Test zur Verfügung gestellt wurden. Dabei ist der Hinweis wichtig, dass diese Produkte nicht für Vergleichszwecke getestet wurden. Die Produkte unterscheiden sich erheblich im Einsatzweck, in der Leistungsfähigkeit, in der Flexibilität und im Anschaffungspreis. Die hier vorgestellten Produkte zeigen eine Momentaufnahme eines kleinen Spektrums im äußerst vielfältigen und dynamischen Markt der Bildverarbeitung. Wie im PC-Markt sind auch hier die Zeitabstände zwischen den Neuentwicklungen sehr kurz, d. h. die hier vorgestellten Produkte können in einem Jahr bereits veraltet oder gar nicht mehr am Markt erhältlich sein. Dennoch ist es sinnvoll an ihnen die grundsätzlichen Vor- und Nachteile solcher Systeme zu zeigen Intelligente Kamera Als intelligente Kameras werden solche Systeme bezeichnet, bei denen alle Komponenten in miniaturisierter Form in ein Gehäuse integriert sind. D. h. neben Optik und Sensor incl. Elektronik sind in das Gehäuse ein Framegrabber, die Auswerteeinheit meist ein digitaler Signalprozessor (DSP), eine Speichereinheit, die Kommunikationseinheit in Form von digitalen Ein- und Ausgängen samt serieller Schnittstelle, wie auch ein Anschluss für einen Bildschirm eingebaut. Diese Systeme sind nicht viel größer als reine Kameras. Ihr Vorteil liegt vor allem in ihrer geringen Größe, bei dennoch erstaunlicher Leistungsfähigkeit. Sie haben den Vorteil, dass sie keine Infrastruktur wie PC-basierte Systeme benötigen (siehe 4.1.4). Die intelligente Kamera passt z. B. im Falle eines rauen Produktionsumfeldes, wie es bei der Heißformgebung in der Glasproduktion vorliegt, in das selbe Kühlgehäuse, das auch für die Videokamera nötig gewesen wäre. Wie bei der Videokamera sind die Anschlussleitungen gesondert vor Hitze zu schützen. Insgesamt spart man also bei diesem System vollständig die sonst nötige und sehr kostenintensive Peripherie. 50

52 Die intelligenten Kameras haben trotz ihre geringen Größe eine weites Spektrum an unterschiedlichen Einsatzbereichen. Um sie einzurichten, wird ein PC, z. B. ein Laptop, benötigt, auf dem mit der zugehörigen Software die Prüfprogramme erstellt werden und über die serielle Schnittstelle in die Kamera übertragen werden. Dies ist nötig, da in der Kamera nicht genügend Speicherplatz vorhanden ist, um die Bediensoftware, alle nötigen Algorithmen, die notwendigen Musterbilder, mehrere Prüfprogramme und Fehlerbilder abzulegen. So lagert man die Bediensoftware und die Bibliothek mit den Algorithmen auf den Laptop aus, an dem die nötigen Prüfbefehle ausgesucht und parametriert werden. Das so erstellte Prüfprogramm wird in die für die Kamera verständliche Maschinensprache übersetzt und übertragen. Sobald man die Kamera einschaltet, wird das Prüfprogramm ausgeführt, wobei im Speicher der Kamera mehrere Programme hinterlegt werden können, zwischen denen durch die vorhanden Schnittstellen umgeschaltet werden kann. Die jeweiligen Prüfergebnisse können über die serielle Schnittstelle an das übergeordnete System übermittelt werden. Über die digitalen Ausgänge kann je nach Ergebnis ein Vorgang freigegeben oder gestoppt werden. Für Versuchszwecke wurde von der Firma FiberVision eine leistungsfähige intelligente Kamera PICTOR M1108 von Vision&Control zur Verfügung gestellt. Bei diesem Modell kommt ein Progressive-Scan-Chip mit einer Auflösung von 640 x 480 Bildpunkten und quadratischen Pixeln zum Einsatz. Die Speicherkapazität beträgt für Bilder 8 MB DRAM, das entspricht 17 Vollbildern oder 34 Halbbildern und für Programme und Daten steht ein 2 MB EPROM-Speicher zur Verfügung. Für die Kommunikation stehen neben der seriellen RS-232 Schnittstelle noch 4 digitale Ein- und ebenfalls 4 digitale Ausgänge zur Verfügung. Die Abmessungen betragen 100 mm x 50 mm x 36 mm und das Gewicht beträgt ca. 250 g. Die Software erlaubt es, die Kamera sehr komfortabel einzurichten. Sie ist menügesteuert und intuitiv zu bedienen. Ist der Bediener mit der Materie der Bildverarbeitung etwas vertraut, sind die meisten Befehle, die in einer umfangreichen Bibliothek hinterlegt sind, selbsterklärend. Eingerichtet wird im Bildschirm des Laptops, die Auswirkungen der Befehle können gleich an dem an die Kamera angeschlossen Ausgabebildschirm nach einem Testlauf betrachtet werden. Suchfenster und Arbeitsbereiche lassen sich leicht einrichten, indem man durch einen Doppelklick mit der rechten Maustaste die Maussteuerung im Eingabebildschirm des Laptops deaktiviert und einen Cursor im Ausgabebildschirm erzeugt, mit dem man die Fenster in der Größe verändern und verschieben kann. Durch einen weiteren Doppelklick wird die Maussteuerung des PC wieder aktiviert. Befehle kann man löschen und einfügen, ihre Reihenfolge nachträglich ändern. Erstellte Befehle werden entsprechend ihre Reihenfolge auf der Programm-Oberfläche VC-Win mit den zugehörigen wichtigsten Parametern dargestellt, was für die Übersicht eines Prüfprogramms sehr vorteilhaft ist. Aufgenommene Bilder lassen sich auf den PC übertragen, jedoch ist die Übertragung über die Schnittstelle sehr langsam und es wird nur das eigentliche Bild abgespeichert ohne zusätzliche Bildschirm-Overlays. Die Software erkennt bei der Initialisierung der Verbindung automatisch, um welchen Kameratyp es sich handelt, und gibt dementsprechend nur die vom Modell unterstützten Befehle frei. Dieses System zeichnet sich durch seinen geringen Platzbedarf und die niedrigen Kosten für die Peripherie aus. Ist die Leistungsfähigkeit ausreichend und ist eine Veränderung der Prüfroutinen selten nötig, lassen sich mit diesem System kompakte und günstige Lösungen realisieren. 51

53 Abb. 4-1: Eingabebildschirm VC-Win Abb. 4-2: Ausgabebildschirm VC-Win Abb. 4-3: Pictor M1108 Abb. 4-4: Eingebauter Pictor Werksbild der Firma VISION & CONTROL, Suhl Kamera mit externer Auswertehardware Diese Systeme haben ähnliche Komponenten wie die intelligente Kamera. In diesem Ansatz ist der Sensor und die Optik vom Rest des Systems getrennt. Es wird ebenfalls keine PC-Struktur verwendet, sondern es kommen DSPs zum Einsatz. Das Zentralgerät mit integrierter Bilderzeugung, Auswertung und Kommunikation kann an beliebigen Stellen positioniert werden. Üblicher Einsatzort ist ein naher Schaltschrank. Die Abmessungen sind größer als bei der intelligenten Kamera, da diese Systeme höhere Rechenleistung und Speicherplatz besitzen. In der Regel sind daher Bediensoftware und die Algorithmen im Gerät integriert, so dass Prüfprogramme ohne Zusatzgeräte erstellt werden können. Diese Geräte eignen sich für Applikationen bei denen die Platzverhältnisse ebenfalls beengt sind und auf die Parametrierung ohne Zusatzgeräte gewünscht ist. Von der Firma Matsushita wurde eine Micro-Imagechecker A200 bereitgestellt. Das System besteht aus einer Progressive-Scan-Kamera mit 512 x 480 Pixel einem 32-bit RISC Prozessor 14 Ausgängen, 11 Eingängen, zwei RS-232 Schnittstellen. Es kann mit bis zu drei weiteren Kameras, die an der selben Auswerteeinheit betrieben werden, ausgebaut werden. Es hat die Abmessungen 120 mm x 40 mm x 74 mm und ein Gewicht von ca. 300 g. Die Verkabelung und Inbetriebnahme dieses Gerätes gestalten sich sehr einfach. Es sind kleine praktische Hilfsroutinen hinterlegt, die den Anwender bei der korrekten Einstellung von Blende und Fokus unterstützen. Die implementierte Bibliothek ist sehr umfangreich und mit ihr können die meisten Standard-Bildverarbeitungsaufgaben gelöst werden. Der vorhandene Auto-Trigger kann hervorragend für Messungen an schnellen Fließbändern eingesetzt werden. Er ermöglicht es, das 52

54 Bildfeld mit sehr hohen Bildraten aufzunehmen, da nicht jedes Bild ausgewertet werden muss. Erst wenn sich ein Objekt an der korrekten Stelle befindet, d. h. wenn in einem vorher definierten Suchbereich ein Hell/Dunkelübergang stattfindet, wird die Auswertung aktiviert. Bei normalen Systemen muss die Anzahl der Auswertungen incl. der Bildaufnahme pro Sekunde bzw. der Prozesstakt, so gewählt werden, dass jedes Teil mindestens einmal vollständig im Bild ist und somit korrekt ausgewertet werden kann. Durch diesen Auto-Trigger ist die Auswertezeit nicht mehr so kritisch, da sie nicht bei jedem Bild ausgeführt werden muss, wodurch der mögliche Prozesstakt maximiert wird. Auch kann dieser Trigger eine oft notwendige Lichtschranke ersetzen. Des Weiteren können auch hauseigene Beleuchtungskomponenten der Firma Matsushita direkt an das A200 angeschlossen, mit Strom versorgt und auch gesteuert werden. Bei der Entwicklung dieses Systems wurde allem Anschein nach mehr Wert auf die Leistungsfähigkeit sowohl in der Auswertezeit als auch in der Zeit für die Bildaufnahme (8,4 ms) als auf die Bedienbarkeit gelegt. Die Bedienung dieses Gerätes ist nicht selbsterklärend, wobei dies natürlich nur ein subjektiver Eindruck ist. Durch die beschränkte Anzahl an Tasten gestaltet sich die Bedienung an einigen Stellen umständlich. Laut Hersteller war es gerade das Ziel, ein Bedienkonzept ohne eine komplexe Menü- und Maussteuerung mit wenigen überschaubaren Tasten zu entwickeln, da das Personal oft keine Erfahrung mit Windows-Systemen besitzt. Hat man aber das Bedienkonzept einmal verstanden, können leistungsfähige Prüfprogramme erstellt werden. Dieses Gerät zeichnet sich durch seinen attraktiven Preis und die hohe Geschwindigkeit aus. Es ist sinnvoll einzusetzen, wenn hohe Taktraten und geringer Platzbedarf gefordert sind und komplexe Änderungen an den Prüfprogrammen nur selten notwendig sind. Abb. 4-5: A200 der Firma Matsushita Das zweite Gerät dieser Bauart war das von einem Vertriebsingenieur vorgestellte InSight 2000 der Firma Cognex. Dieses Paket besteht aus einer digitalen Progressive-Scan-Kamera mit 800 x 600 Pixeln, einem 4 MB großen Flashspeicher für fast 20 Verarbeitungsprogramme, 16 MB SDRAM Arbeits- und Bildspeicher, einem Keypad, 10 digitalen Ein- und Ausgängen, und zwei RS-232 Schnittstellen. Das Gerät hat die Abmessungen 293 mm x 143 mm x 46 mm und ein Gewicht von 970 g. Schon die Abmessungen dieses Systems liegen wie auch der Preis in der oberen Kategorie. 53

55 Das System zeichnet sich durch ein hervorragendes Bedienkonzept und eine äußerst umfangreiche Bibliothek an Algorithmen aus. Die Darstellungsmöglichkeiten am Bildschirm sind außergewöhnlich gut. Auch die Verwendung einer digitalen Kamera, die prinzipbedingt eine sehr gute Bildqualität liefert und deren Belichtungszeit gesteuert werden kann, ist selten. Als Eingabegerät fungiert ein Keypad, wie es z. B. auch bei Spielkonsolen eingesetzt wird. Ungewöhnlich ist Verwendung eines Eingabe-Spreadsheet. Dies erscheint auf den ersten Blick etwas ungewohnt, funktioniert aber ausgesprochen gut. Für Anwender, die bereits mit Tabellenkalkulationsprogrammen gearbeitet haben, ist die Bedienung sehr einfach. Die Prüfbefehle werden mit den zugehörigen Parametern und späteren Ergebnissen in einzelne Zellen geschrieben. Alle Zellen können wie gewohnt mit verschiedenen Operatoren verknüpft werden. Dieses Spreadsheet ermöglicht eine Flexibilität wie sie eigentlich nur von programmierten Lösungen bekannt ist. Am Bildschirm lassen sich Eingabefenster darstellen und ggf. mit Passwortschutz versehen, die es dem Maschinenbediener erlauben, Toleranzen zu ändern. Das laufende Programm kann von Personen mit den nötigen Zugriffsrechten während des Betriebes verändert werden. Bei der Eingabe kann das Eingabespreadsheet halbtransparent dargestellt werden, wodurch die Auswirkungen auf den Betrieb sofort im Hintergrund erkennbar sind. Neben dem guten Bedienkonzept fällt auch die Anzahl der auswählbaren Prüfbefehle auf. Dieses System enthält viele der bereits von den PC-Systemen der Firma Cognex bekannten Algorithmen in gleicher oder ähnlicher Form, z. B. einen leistungsfähigen grauwertbasierten Algorithmus. Das vorgestellte System hat allerdings einen hohen Preis. Es ist dennoch interessant für Anwendungen, bei denen PC-basierte Systeme zuviel Platz benötigen würden, aber eine ähnliche Leistungsfähigkeit gefordert ist und eine häufige Änderung oder Neuerstellung von Prüfprogrammen durch Personen mit geringen Programmierkenntnissen notwendig ist. Abb. 4-6: Komponenten des InSight 2000 Werksbild der Firma Cognex Abb. 4-7: Bildschirm mit halbtransparentem Spreadsheet und im Automatikbetrieb Werksbild der Firma Cognex 54

56 4.1.3 PC-Kamera Als PC-Kameras werden Kameras bezeichnet, bei denen wie bei der intelligenten Kamera alle Komponenten in einem Gehäuse integriert sind. Nur ist im Gegensatz zu anderen Systemen hier ein vollständiger PC mit allen üblichen Elementen wie Festplatte, Betriebssystem, Arbeitsspeicher und üblichen Schnittstellen im Gehäuse vorhanden. Dies wird durch die Verwendung von miniaturisierten Komponenten des PC-Marktes, speziell aus dem Laptop-Bereich, ermöglicht. So ist auch verständlich, dass das Volumen dieser Geräte im Vergleich zu den intelligenten Kameras größer ist. Da es sich um einen vollständigen PC handelt, bietet diese Bauart ähnliche Flexibilität und Leistungsfähigkeit wie PC-basierte Systeme. Einzige Einschränkung ist auch hier die notwendige Kompatibilität zwischen Softund Hardware. Auch diese Kameras werden in verschiedenen Ausführungen in Rechenleistung, Auflösung und Speicherkapazität angeboten. Durch ein Standardbetriebssystem, meist auf Windows-Basis, können verschiedene Bildverarbeitungsprogramme installiert werden. Es kann zwischen selbst erstellten Programmen oder parametrierbaren Softwarepaketen ausgewählt werden, was bei den bisher beschriebenen Geräten nicht möglich ist, da die verwendete Software dies nicht zulässt. So ist es möglich, dieses System durch Bibliotheken mit den jeweiligen Algorithmen, die entweder zugekauft oder selbst programmiert werden, den eigenen Anforderungen anzupassen. Prüfprogramme werden wie bei den PC-basierten Systemen durch die gewählte Software über die zur Verfügung gestellten Schnittstellen bzw. Oberflächen mit Maus und Keyboard programmiert oder parametriert. Ein Nachteil dieser Geräte ist, dass im Falle eines Defektes nicht, wie beim PC, jede Komponente einzeln ausgetauscht werden kann, sondern, da die Komponenten oft als Baugruppen zusammengefasst sind ein vollständiger Austausch der Baugruppe notwendig ist. Ein Gerät der Firma SAC aus Karlsruhe konnte im Rahmen einer Messevorführung getestet werden. Bei dem gezeigten Gerät handelte es sich um eine CamALot III mit 740 x 540 Pixeln, 64 MB Arbeitsspeicher, einer 1,2 GB Festplatte, einem Intel Pentium Prozessor, mit Windows 98 als Betriebssystem, 11 digitalen Ausgängen, 9 digitalen Eingängen, einer seriellen Schnittstelle, einer parallelen Schnittstelle, sowie einer Netzwerkkarte und der firmeneigenen Software SAC-Coake, einem sogenannten Bildverarbeitungsinterpreter, der die Erstellung von komplexen Prüfprogrammen ohne Programmierkenntnisse über eine grafische Programmierschnittstelle mittels Drag & Drop ermöglicht. Dieses Programm wird später noch näher beschrieben. Auch die anderen Softwarepakete der Firma, die auf spezielle Anwendungen ausgelegt sind, sind kompatibel zu diesem Kameramodell. Es lassen sich ebenfalls eigene Algorithmen oder Programme auf dem Betriebssystem implementieren, um die Funktion der Kamera den eigenen Anforderungen anzupassen. So kann dieses Modell z. B. durch die Netzwerkkarte an ein firmeneigenes Netzwerk angeschlossen und von einem Arbeitsplatz im Bürobereich aus gewartet werden. Die Kamera kann auch mit Programmen eingesetzt werden, die anhand der Ergebnisse des Prüfprogramms gewisse Regelfunktionen oder Prozesssteuerungen ausführen. Da es sich um ein System mit integriertem PC handelt, ist die Leistungsfähigkeit dieses Systems von den jeweils eingesetzten Komponenten und vor allem von der verwendeten Software abhängig. Die Leistungsfähigkeit der PC-Kameras ist im Vergleich zu PC-basierten Systemen meist schlechter, da die miniaturisierten Komponenten aus dem Laptop-Bereich geringere Leistungsdaten besitzen. 55

57 Solche Systeme eignen sich für Anwendungen, bei denen die Flexibilität von PCbasierten Systemen benötigt wird, der zur Verfügung stehende Platz aber eingeschränkt ist PC-basierte Systeme Abb. 4-8: PC-Kamera der Firma SAC Werksbild der Firma SAC, Karlsruhe Dieser Ansatz verwendet Komponenten aus dem Computermassenmarkt, die durch Komponenten für den Einsatz in der Bildverarbeitung erweitert werden. Diese Systeme bieten die höchste Flexibilität, da sie den Anforderungen der jeweiligen Applikation angepasst werden können. Die Rechenleistung der Systeme nimmt stetig zu, da die Rechenleistung der Computer ständig weiter gesteigert wird. Dieser Leistungsgewinn wird ohne Einsatz von Entwicklungskosten erreicht. Allerdings benötigen solche Systeme sehr viel Platz für PC, Bildschirm und alle Anschlüsse, was an einigen Stellen in der Produktion gar nicht möglich ist oder sehr viel Aufwand verursacht. Bei schwierigen Verhältnissen im Produktionsumfeld, wie z. B. bei der Heißformgebung in der Glasproduktion, sind Vorkehrungen zum Schutz der Hardware wie etwa klimatisierte Schaltschränke nötig. Mittlerweile bieten aber viele Hersteller PC-basierte Lösungen an. Wichtigster Bestandteil der PC-basierten Systeme ist die Software. Durch sie können die gewünschten Prüfprogramme auch vom Anwender selbst erstellt werden. Je nach Fachwissen des Anwenders sind unterschiedliche Softwarevarianten erhältlich. 4.2 Softwarebibliotheken Wurden früher alle Algorithmen für die Bildverarbeitung selbst programmiert, sind heute Software-Bibliotheken erhältlich. Sie bestehen aus einer Zusammenstellung von Verfahren, mit denen die Bilder ausgewertet werden. Neben den Algorithmen enthalten diese Sammlungen auch Module zur Bilderfassung und zur Visualisierung. Diese Produkte setzen jedoch ein hohes Maß an Programmiererfahrung voraus. Sie erleichtern auf der einen Seite die Erstellung einer Lösung erheblich, da die Algorithmen nicht selbst entwickelt werden müssen. Der Anwender muss aber noch einen erheblichen Teil an weiteren Modulen für die Gesamtlösung selbst programmieren. Die Algorithmen werden in der Entwicklungsumgebung in Form von sogenannten DLLs (dynamic link library) eingebunden, wobei festgelegte Anforderungen zu beachten sind. Es handelt sich dabei um einzelne Funktionen, denen Eingangsgrößen, wie Bilder und Parameter übergeben werden und die wiederum Ergebnisse in Form 56

58 eines Bildes, von Zahlenwerten o. Ä. zurückgeben. Ein Beispiel für diese Art der Bibliothek ist das Produkt Halcon der Firma MVTec. Eine Weiterentwicklung dieser Softwareschnittstelle ist die ActiveX-Schnittstelle. Sie ermöglicht eine einfachere Einbindung von Bildverarbeitungsfunktionen. Die bei DLLs noch umständliche Einbindung vereinfacht sich durch diese Schnittstelle erheblich. Solche Produkte werden vermehrt angeboten, da Entwickler mit weniger Programmiererfahrung durch sie schnell und dennoch sehr flexibel Programme erstellen können. Solche Produkte wurden in Verbindung mit Visual Basic im Rahmen dieser Arbeit ausführlich getestet. Solche Programme werden z. B. von der Firma Stemmer als Common Vision Blox und von der Firma Matrox als Matrox Imaging Library (MIL) angeboten Common Vision Blox (CVB) Bei diesem Produkt wird jede Funktion (Tool) einzeln angeboten. So müssen nur Tools gekauft werden, die auch für die jeweilige Applikation benötigt werden. Die Kosten für das Grundmodul liegen bei ca. 600 DM. Die Preise für die Tools liegen zwischen wenigen hundert Mark (Kantenerkennung) und mehreren Tausend Mark für die umfangreicheren Tools (Objekterkennung). Als Distributor für Bildverarbeitungskomponenten bietet die Firma Stemmer ein umfangreiches Produktspektrum aller nötigen Komponenten an. Da die gesamte Hard- und Software aus einer Hand geliefert werden, ist die Kompatibilität zwischen den einzelnen Elementen sichergestellt. Hier ein kleines Programmierbeispiel in Visual Basic, bei dem in einem geladenen Bild von einem Mittelpunkt aus kreisförmig nach der Kante gesucht wird. Es werden zuerst die Koordinaten für die Suchbereiche festgelegt bzw. errechnet. In einer Schleife wird das Tool mit den neu berechneten Parametern auf das dargestellte Bild angewendet und die gefundenen Punkte als Overlay angezeigt (Abb. 4-9) Das zur Befehlsschaltfläche Bild laden gehörende Modul ist ein Standardtool des CVB. In der Entwicklungsumgebung wird das ActiveX-Element EdgeControl auf die Oberfläche abgelegt und kann direkt aus dem Programm ohne Deklaration im Programmtext aufgerufen. Die gefundenen Koordinaten können in einer Matrix abgelegt werden und stehen für weitere Auswertungen zur Verfügung. So könnte beispielsweise der Durchmesser der Öffnung durch einen Ausgleichskreis vermessen oder die Lage des Ausgusses erkannt werden. Quellcode: Private Sub Kante_Click() Dim I As Integer pi=3.141 Zuweisung des Bildes CVCEdgeControl1.image = CVdisplay1.image Schleife zur Berechnung des Suchbereiches für die kreisförmige Kantenantastung For I = -70 To 240 Step 10 CVCEdgeControl1.Threshold1 = 140 CVCEdgeControl1.x0 = * Sin(I / 180 * pi) CVCEdgeControl1.y0 = * Cos(I / 180 * pi) CVCEdgeControl1.x1 = CVCEdgeControl1.x0-5 * Cos(I / 180 * pi) CVCEdgeControl1.y1 = CVCEdgeControl1.y0-5 * Sin(I / 180 * pi) CVCEdgeControl1.x2 = * Sin(I / 180 * pi) CVCEdgeControl1.y2 = * Cos(I / 180 * pi) Ausführung der Kantenantastung CVCEdgeControl1.Execute Markierung des gefundenen Punktes CVdisplay1.AddLabel I, False, 255, 1, CVCEdgeControl1.px, CVCEdgeControl1.py Next I End Sub 57

59 Abb. 4-9: Bildschirm mit gefundenen Kantenpositionen Der Umgang mit solchen Tools ist sehr einfach und auch für unerfahrene Programmierer erlernbar. Für Anwender ohne Programmierkenntnisse ist dieses Produkt jedoch nicht sinnvoll einsetzbar Matrox Imaging Library Dieses Produkt der Firma Matrox ist dem Common Vision Blox sehr ähnlich. Es wird aber als vollständiges Paket mit allen verfügbaren Funktionen für mehrere Tausend Mark angeboten. Für jedes erstellte Programm, das eingesetzt wird, ist eine sogenannte Runtime-Lizenz zu erstehen. Die Kosten liegen hier bei mehreren hundert Mark. Da die Firma Matrox eine Vielzahl von Framegrabbern herstellt, ist für jede Anwendung ein kompatibler Framegrabber mit den jeweiligen Leistungsdaten erhältlich. Sehr interessant ist das Gerät Matrox 4Sight II. Es handelt sich dabei um eine kleinen PC, dessen Leistungsdaten ebenfalls den Anforderungen angepasst werden können. Die eingebaute Hardware ist kompatibel zur hauseigenen Software. So lassen sich sehr kompakte aber dennoch äußerst flexible Applikationen erstellen. Dieses Gerät ist auch auf den bereits erwähnten IEEE-1394-Bus ausgelegt. Dadurch ist auch die Verwendung von digitalen Kameras möglich. Abb. 4-10: Matrox 4Sight II Werksbild der Firma Matrox 58

60 4.3 Parametrierbare Software Alle bisher erwähnten Software-Produkte können nur von Anwendern mit Programmiererfahrung verwendet werden. Für Anwender, die auch ohne Programmierkenntnisse selbst Applikationen erstellen wollen, sind Produkte erhältlich, die Lösungen ohne Programmierung ermöglichen. Diese Programme werden nur parametriert, d. h. es werden vorgefertigte Prüfbefehle aneinandergereiht und mit den Eingangsparametern versehen. Das Ziel einfache Bedienbarkeit kann nur über die Beschränkung der Komplexität der Software erreicht werden. So ist durch die festgelegten Prüfbefehle und deren Eingangsgrößen die Flexibilität von solchen Programmen gegenüber der von programmierten Lösungen stark eingeschränkt NeuroCheck Die Software NeuroCheck ist Kernstück eines Leihsystems, das die Firma DS-GmbH aus Remseck für die Dauer dieser Arbeit zur Verfügung stellte. Dieses Produkt eignet sich hervorragend, eigene Applikationen ohne Programmierkenntnisse zu erstellen. Hierzu stehen vielfältige Prüfbefehle zur Verfügung, die per Maus ausgewählt und parametriert werden. Die Software ist äußerst leicht zu erlernen und zu bedienen. Mit ihr lassen sich dennoch leistungsfähige Applikationen erstellen. Es können verschiedene Benutzerprofile mit entsprechenden Zugriffsrechten definiert und durch Passwörter geschützt werden. Kommunikation über übliche Schnittstellen (seriell, parallel, digital...) ist sehr einfach möglich. Diese Software eignet sich sehr gut, um im Rahmen einer Voruntersuchung zunächst eine schnelle Lösung zu erarbeiten. In der neuesten Version ist das Programm durch viele Internet- und Netzwerkoptionen erweitert worden. Das Layout der Visualisierung kann in Grenzen den eigenen Anforderungen angepasst werden. Es ist möglich, ein eigenes Programm mit entsprechender Oberfläche und Eingabefenstern zu nutzen, aus dem heraus NeuroCheck über die OLE-Schnittstelle (Softwareschnittstelle) gestartet und gesteuert werden kann. Zwischen den im NeuroCheck erstellten Prüfprogrammen und dem eigenen Programm können in beide Richtungen Daten ausgetauscht werden. So können von außen Sollwerte und Parameter in den einzelnen Prüfschritten verändert und Ergebnisse der Prüfungen aus einer Ergebnismatrix ausgelesen werden. Um die Flexibilität einer programmierten Lösung zu erreichen, wird dem Anwender die Möglichkeit geboten, eigene DLLs ins Programm als neue Prüfbefehle einzubinden. So können weitere Tools, die nicht im Programm enthalten sind, eingebaut werden. Diese Möglichkeit kann aber nur von erfahrenen Programmierern genutzt werden SAC-Coake Die Funktionsweise des SAC-Coake der Firma SAC aus Karlsruhe ist der des bereits vorgestellten Programms NeuroCheck ähnlich, einzelne Prüfbefehle werden in Form von Icons an eine frei wählbare Stelle im sogenannten Programmeditor gesetzt und im danach erscheinenden Fenster parametriert ( Drag & Drop ). Nicht nur der Name CamALot der PC-Kamera zeugt von der Fantasie der Entwickler. Auch die Verwendung einiger Prüfbefehle ist sehr kreativ und praktisch gelöst. So können Suchbereiche für Vermessungsaufgaben durch einen im Bild erscheinenden Messschieber eingerichtet werden. Er hebt sich nicht nur durch sein Erscheinungsbild, sondern auch durch seine komfortable Bedienung von den 59

61 restlichen auf den Markt befindlichen Produkten ab. Der Messschieber lässt sich in alle nötigen Richtungen verändern oder verschieben. Auch zeigt dieses Programm durch die Möglichkeit verschiedene Arten von Variablen, wie Punkte und Geraden, zu definieren, eine erhöhte Flexibilität, da auf diese Variablen in späteren Abschnitten des Prüfprogramms zugegriffen werden kann. Die größte Flexibilität wird bei der sogenannten Professional Edition erreicht, in der das Programm im offengelegten Quellcode den eigen Wünschen angepasst oder durch eigene Module erweitert werden kann. Dadurch lassen sich für reguläre Aufgaben schnell Prüfprogramme ohne großen Programmieraufwand erstellen. Sollte für eine Applikation ein spezielles nicht vorhandenes Modul benötigt werden, kann es jedoch vom Anwender hinzuprogrammiert oder -gekauft und eingebunden werden, ohne den Rest des Programms selbst erstellen zu müssen. Durch die erhöhte Flexibilität ist an einigen Stellen die Übersichtlichkeit bzw. die einfache Bedienbarkeit vermindert, da nicht jeder Schritt selbsterklärend und sofort zu verstehen ist. Auch ist an einigen Stellen nicht ersichtlich, wie man zwischen den Betriebsmodi wechselt. Dieses Programm ist außerdem in einer Version lieferbar, die es ermöglicht, einen handelsüblichen Scanner als Bildquelle zu verwenden. Mit einem Scanner können plane Gegenstände, die auf die Scannerplatte gelegt werden, in sehr hoher Auflösung aufgenommen und somit auch sehr genau vermessen werden, wobei ein Scanner durch seinen äußerst niedrigen Preis das Projektbudget stark entlastet. Man kann noch genauere Ergebnisse erzielen, wenn man die bestehende Möglichkeit nutzt, variierende Abbildungsmaßstäbe des Scanners mit Hilfe einer Kalibrierplatte festzustellen und im aufgenommen Bild später zu korrigieren. Die Software eignet sich hervorragend für Anwender, die bereit sind für die größere Flexibilität eine aufwendigere Bedienung, die natürlich etwas Training benötigt, in Kauf zu nehmen. Speziell Anwender mit sehr guten Visual Basic Kenntnissen sollten die Professional Edition des SAC-Coake in Betracht ziehen, da die Möglichkeiten Prüfprogramme zu erstellen durch die Offenlegung des Quellcodes nahezu unbegrenzt sind, aber dennoch Applikationen von Anwendern ohne Programmierkenntnisse erstellt werden können. Abb. 4-11: Oberfläche des SAC-Coake / Werksbild der Firma SAC, Karlsruhe 60

62 5 Anlagenhersteller In vielen Fällen ist es nicht sinnvoll, eine Applikation mit zugekauften Komponenten selbst zu erstellen. Viele Aufgabenstellungen sind auch für die modernen standardisierten Bildverarbeitungslösungen zu komplex. Dies würde eine vollständige Neuentwicklung nötig machen, die oft viel zu teuer ist. Auch ist nicht immer das nötige Fachwissen für ein solches Projekt vorhanden. Dann ist es günstiger, mit einem Anlagenhersteller zusammenzuarbeiten. Viele Hersteller haben sich auf bestimmte Anwendungen spezialisiert und besitzen dadurch bereits große Erfahrung bei der Durchführung von Projekten in diesen Bereichen. Es existieren auch meistens schon laufende Anlagen oder Produkte, die den Anforderungen des neuen Projektes angepasst werden können. Dies spart einen Großteil der sonst nötigen Entwicklungskosten. Ist keine Lösung vorhanden und daher eine Neuentwicklung notwendig, ist die Zusammenarbeit mit einem solchen Hersteller ebenfalls sinnvoll, da die Erfahrung und das Fachwissen in diesen Firmen ein enormes Einsparpotenzial bei den Entwicklungskosten mit sich bringt. Im Rahmen dieser Arbeit wurde Kontakt zu zwei großen Bildverarbeiterfirmen aufgenommen, die in der Nähe des Standortes der Firma Schott Glas ansässig sind. Die Firma ISRA aus Darmstadt stellt sehr leistungsfähige Systeme für die Oberflächeninspektion, speziell auch für Gläser her. Daher ist sie für die Firma Schott Glas als Spezialglashersteller durch ihre Erfahrung und räumliche Nähe ein sehr interessanter Partner. Auch die Systeme für das Robot Vision zeichnen sich durch hohe Flexibilität und Prozesssicherheit aus. Kontakt wurde ebenfalls mit der Firma Vitronic aus Wiesbaden, einer der größten Bildverarbeiterfirmen Deutschlands, aufgenommen. Neben ihren Standardprodukten bietet Vitronic die Entwicklung von Spezialanwendungen an. Die Firma beschränkt sich in der Regel auf sehr komplexe und schwierige Problemstellungen. Sie zeichnet sich durch ein hervorragendes Fachwissen in allen Bereichen der Bildverarbeitung aus. Beide Firmen bieten fast ausschließlich Anwendungen für den High-End-Bereich an. Weitere kontaktierte Firmen sind im beigefügten Firmenverzeichnis erwähnt. 61

63 6 Durchführung von Projekten Die bis jetzt theoretisch vorgestellten Komponenten werden in der Praxis für die jeweils durchzuführenden Projekte ausgewählt und zusammengestellt. 6.1 Lastenheft Am Anfang eines jeden Projektes steht die genaue Definition der Aufgabenstellung. Es muss genau festgelegt werden, welche Eigenschaften eines Objektes untersucht werden sollen und welche Kriterien das Objekt erfüllen muss. Die gewünschte Genauigkeit der Auswertung sowie die Zeitabläufe bei der Produktion wie z. B. Taktzeiten müssen ermittelt werden. Aus diesen Daten muss ein Lastenheft erstellt werden, das neben den für die Beschaffung von Anlagen üblichen Punkten weitere Bedingungen umfasst. Der spätere genaue Inhalt wird meist in Zusammenarbeit mit dem Lieferanten angepasst, da die Realisierung der Aufgabe sich erheblich vom ersten Ansatz unterscheiden kann. Mögliche Inhalte sind: - Beschreibung des Prüfteils - Bildfeldgöße - Gesamtgröße des Prüfteils - Produktspektrum - Größe des zu untersuchenden Ausschnitts - Material - Transmission - Reflexion - Farbe - Temperatur - Oberflächenbeschaffenheit - Textur - Bedruckung - Verschmutzung der Oberfläche - Bewegung (gleichförmig, ungleichförmig, Schwingungen) - Position im Bildfeld (konstant, nicht konstant) - Definition der Aufgabe - zu erkennende Merkmale - Genauigkeit - Art der Auswertung - Umgang mit Messwerten - variierende Toleranzen - Fehlerkatalog - Umgebungsbedingungen - Taktzeiten - Zeit zum Einrichten neuer Produkte - Hintergrund des Prüfteils - Fördersystem - Raumtemperatur 62

64 - Fremdlicht - Schmutz - Feuchtigkeit - zu Verfügung stehender Platz (Kamera, Beleuchtung, Auswerteeinheit, Bildschirm) - Arbeitsabstand - Abstand zwischen Komponenten (Auswertung, Bildschirm, Kamera, Beleuchtung) - Bedienoberfläche - Passwortschutz der Oberfläche - Eingabe von neuen Toleranzen - Einlernen von neuen Objekten (Musterteile, CAD-Zeichnungen,...) - Anpassung des Programms - Abspeichern von Bildern - Visualisierung - Anlagenanbindung - kontinuierliche Prüfung oder externes Startsignal - Schnittstellen - Kommunikation - Statistiken - Fernwartung - Systemarchitektur - Hardwareaufbau - Betriebsystem - stand alone oder vernetzt - Dokumentation - Schaltpläne - Konstruktionspläne - Handbücher - Musterbilder - Quellcode der Software (gegebenenfalls bei Notar hinterlegen) - Wartungsplan 6.2 Kontaktaufnahme Um einen Lieferanten auszuwählen, muss man Kontakt mit möglichen Anbietern aufnehmen. Dazu eignen sich vor allem Messen. Dort kann das Produktspektrum des Lieferanten begutachtet und die Applikation vor Ort mit den Firmen durchgesprochen werden. Ist der Besuch einer Messe nicht möglich, muss der Kontakt mit Lieferanten auf andern Wegen hergestellt werden. Eine gute Adressenquelle ist die Fachabteilung Industrielle Bildverarbeitung/ Machine Vision im Verband Deutscher Maschinen- und Anlagenbau e.v. (VDMA). Viele Firmen im Bereich der Bildverarbeitung sind Mitglied dieses Verbandes. Sie sind in seiner Jahresbroschüre [VDMA00] mit Adresse und Firmenbeschreibung erwähnt. Dort können sie anhand ihrer Referenzen und Kernkompetenzen ausgewählt werden. Das Internet ist ebenfalls eine hervorragende Informationsquelle für mögliche Lieferanten. Da allein in Deutschland mehr als

65 Bildverarbeiterfirmen am Markt sind, muss bereits bei der Kontaktaufnahme eine Vorauswahl stattfinden. Einige Firmen haben sich auf besondere Anwendungen spezialisiert. Diese Firmen können bereits große Erfahrung im gesuchten Bereich haben. Oder sie haben sogar Standardlösungen im Angebot, die sich leicht an die Anforderungen anpassen lassen. Dadurch verringert sich der Planungs- bzw. Entwicklungsaufwand erheblich. Bereits vor der Kontaktaufnahme sollte feststehen, ob die Anlage von einem Systemlieferanten bezogen werden soll oder ob man mit zugekauften Komponenten die Anlage selbst entwickelt und in Betrieb nimmt. Aspekte bei der Auswahl können sein: - Produkte (Standardlösung vorhanden) - Größe des Unternehmens (Gewährleistung auch in Zukunft) - Erfahrungen (Ähnliche Anlage bereits geliefert) - Referenzen - Kapazität - Persönliche Aspekte - Regionale Lage (kurze Wege und somit schnelle Reaktion und Support) 6.3 Alternative Technologien Neben der Bildverarbeitung werden für einige Anwendungen alternative Technologien angeboten, deren Einsatz auch zu überprüfen ist. Diese Technologien können in einigen Fällen erhebliche Vorteile bringen. Ein Beispiel für solche Technologien ist der Einsatz von Laserscannern. Der Aufbau ähnelt dem einer Zeilenkamera. Ein in eine Richtung oszillierender Laserpunkt rastert die Oberfläche des Objektes ab. Auch hier kann in Reflexion oder Transmission gemessen werden. Der Vergleich des reflektierten oder transmittierten Lasersignals mit einem Sollsignal lässt Rückschlüsse auf mögliche Abweichungen der Eigenschaften des Objektes zu. Durch solche Systeme werden z. B. optische Fehler in Flachglas erkannt. Die Möglichkeit Fehler zu unterscheiden und zu klassifizieren sind allerdings bei solchen Systemen gegenüber der Bildverarbeitung begrenzt. 6.4 Bemusterung Nach der ersten Kontaktaufnahme muss der Lieferant bemustert werden. D. h. ihm müssen für eine Voruntersuchung, bei der er ein Anlagenkonzept erarbeitet, aussagekräftige Musterteile zu Verfügung gestellt werden. Die relevanten Eigenschaften der Teile müssen den Eigenschaften der späteren Prüfteile entsprechen. Dabei handelt es sich nicht nur um die Eigenschaften, die später überprüft werden, sondern auch um Eigenschaften, die ihrerseits die Prüfung beeinflussen. Hier gemachte Fehler können später große Schwierigkeiten hervorrufen. Kann für die Voruntersuchung nur ein Prototyp zur Verfügung gestellt werden, muss sichergestellt sein, dass das spätere Produkt die gleichen Bilder erzeugt. Hat der Prototyp z. B. durch andere Prozessparameter eine vom Produkt abweichende Oberfläche, kann dies einen völlig anderen Aufbau der Beleuchtungen notwendig machen. 64

66 6.5 Angebotsprüfung Nach der Voruntersuchung geben die Hersteller ein Angebot über Komponenten oder Komplettsysteme ab. Neben dem Angebotsvergleich zwischen den Anbietern ist eine genaue Überprüfung aller Angebote nötig. Es ist sicherzustellen, dass die Auswertung der Merkmale und die Prozessanbindung genau den eigenen Wünschen entsprechen. Der Softwareanteil an solchen Anlagen ist sehr hoch und gerade in diesem Bereich sind Verwechselungen schnell möglich. Daher bedarf es hier einer genauen Kontrolle. 6.6 Lieferantenauswahl Nach dem Vergleich der Angebote wird ein Lieferant ausgewählt. Die Aspekte sind die gleichen wie bei der Kontaktaufnahme. Hinzu kommen Aspekte, die die Anlage betreffen: - Leistungsfähigkeit - Genauigkeit - Kosten/Nutzen - Schulungsaufwand - Prozesssicherheit 65

67 7 Beispielprojekte Im Rahmen dieser Arbeit wurden eine Reihe von Projekten im Bereich der Bildverarbeitung durchgeführt. Einige dieser Projekte unterliegen der Geheimhaltung, da es sich um neue Produkte oder Produktionsverfahren handelt. Sie dürfen daher nur ohne Details oder gar nicht veröffentlicht werden. Als Beispiele werden drei Projekte vorgestellt. 7.1 Winkelmessung Lichtleiterstab Ein Produkt der Firma Schott sind faseroptische Lichtleiterstäbe (FST). Diese werden z. B. in die Handstücke von Bohrern aus der Zahnmedizin eingesetzt, um Licht innerhalb des Handstückes an den Bohrerkopf zu leiten. Dem Kunden werden Spezifikationen wie z. B. Maßhaltigkeit dieser FST zugesichert. Während der Produktion werden die Stäbe gebogen und zugesägt. Der Winkel==α dieses Biegevorgangs ist durch die Alterung der verwendeten Biegeformen und Prozessschwankungen fehlerbehaftet. Bisher konnte nur manuell an wenigen Stichproben der Winkel überprüft werden. Infolge der gestiegenen Anforderungen will man aber eine 100%-Kontrolle aller FST einführen. Sie muss schneller und ebenso genau wie die bisherige optische Vermessung mittels eines telezentrischen Projektors sein. Diese telezentrischen Projektoren bilden den Schatten des FST auf eine Mattscheibe ab. Der Schatten kann durch einen x-y-tisch auf der Scheibe verschoben werden. An der Mattscheibe befindet sich ein Sensor, der einen Helldunkelübergang zusammen mit den Koordinaten des Tisches ermitteln kann. So werden pro Schenkel des Winkels drei Koordinaten der Kante ermittelt und mittels linearer Regression eine Geradengleichung errechnet. Zwischen diesen Geraden wird der Winkel berechnet und ausgegeben. Dieser Methode ist sehr umständlich und langsam. Abb. 7-1: Zeichnung des fertigen Stabes α Abb. 7-2: Bild des Stabes während der Produktion 66

68 Folgende Anforderungen wurden formuliert: Der Winkel α soll mit einer Genauigkeit von mindestens 0,05 gemessen werden. Der FST wird manuell ins Bildfeld des Systems gelegt und die Auswertung ebenfalls manuell gestartet. Der Messwert soll auf einem Bildschirm ausgegeben werden. Eine Kommunikation mit weiteren Geräten ist nicht notwendig. Der FST ist zu diesem Zeitpunkt erkaltet. Die Produktionsumgebung ist sehr sauber. Sie entspricht Laborbedingungen. Die Auswertungszeit kann bis zu 10 Sekunden betragen. Messgröße: Winkel α Sollwert: 21 Genauigkeit: α<0,05 Fördertechnik: manuell Zeitanforderung: t<10 sec. Umgebung: Laborbedingungen Kommunikation: keine Die Erstellung eines ausführlichen Lastenheftes war durch die geringen Anforderungen nicht notwendig. Da in der Abteilung das nötige Fachwissen vorhanden war, wurde entschieden, eine Lösung durch zugekaufte Komponenten selbst zu realisieren. Kontaktiert und bemustert wurden die Firmen FiberVision, Cognex, DS-GmbH und Stemmer. Sie wurden gebeten, eine Voruntersuchung durchzuführen. Aus den Ergebnissen sollte ein Angebot über die nötigen Komponenten erstellt werden. Folgende Komponenten wurden angeboten: FiberVision: - Pictor M1004 inkl. VC11-Kamera 740 x 580 Pixel - telezentrisches Objektiv inkl. Tageslichtfilter - IR-Flächenlicht als Durchlicht (96 mm x 46 mm) - VCWin Anschlußmaterial Cognex: - InSight telezentrisches Objektiv - Flächenlicht DS-GmbH: - DS-SG PCI-Karte zur Bilddatenübertragung, pixeltaktkompatibel, asynchron - Asynchron CCD-Kamera 782 x 582 Pixel - verzeichnungsarmes Präzisions-Objektiv - NeuroCheck 5.0 Stemmer: Die Firma Stemmer machte kein Angebot, da ihrer Auffassung nach die Voruntersuchung gezeigt habe, dass diese Genauigkeit mit üblichen Auflösungen (1024 x 1024) nicht zu erreichen wäre. 67

69 Die Angebote unterschieden sich nicht nur im Preis erheblich ( DM bis DM), sondern auch in den verwendeten Komponenten. Unterschiede waren in der Verwendung von Tageslichtfiltern, telezentrischen Optiken und den Kameras festzustellen. Das Argument der Firma DS-GmbH für ihr angebotenes Objektiv war die geringe Tiefe (3,3 mm) des Objektes und der feste Arbeitsabstand. Die Abbildungseigenschaften der Optik seien für diese Aufgabenstellung ausreichend. Für die Verwendung eines Tageslichtfilters in Verbindung mit einem IR-Licht sprach nach Aussagen der Firma FiberVision die Verhinderung von störenden Reflexionen an der Oberfläche des FST. Ein Telefonat mit der Firma Stemmer ergab, dass die Genauigkeit der Kantenantastung durch die Auflösung im geforderten Bereich liegt. Um die geforderte Genauigkeit zu erreichen, sei die Verwendung einer Zeilenkamera notwendig. Sie müsse in Verbindung mit einem Schrittmotor o. Ä. das Objekt mit einer sehr hohen Auflösung abtasten. Die Aussagen bezüglich der erforderlichen Auflösung widersprachen sich. Daher war es notwendig, eine Fehlerabschätzung durchzufuhren. Als Kameraauflösung wurden 1000 x 1000 Pixel angenommen. Der Faserstab hat eine Ausdehnung von ca. 80 mm. Sie muss durch das Bild erfasst werden. Daraus ergibt sich ein Bildfeld von 80 mm x 80 mm. Aus der Bildfeldgröße und der Auflösung erhält man eine Pixeldimension von 80 µm. Die Pixelkoordinaten und somit auch die angetasteten Punkte der Kante können also nur in diesen Schritten angegeben werden. Zwischenwerte sind nur durch Subpixelroutinen möglich. Sie sollen in diesem Fall vernachlässigt werden, da sie bei der Kantenantastung nur eine Abschätzung darstellen Pixel 1000 Pixel Abb. 7-3: angenommenes Bildfeld Eine Hälfte des Schenkels hat eine Länge von 40 mm. Unter der Annahme, dass zur Winkelbestimmung nur der äußerste Punkt als einzelner Stützpunkt angetastet wird, ergibt sich folgendes Dreieck, aus dem der Winkel bestimmt werden kann. Als h wird die Pixeldimension von 0,08 mm angenommen, da die Kante zwischen zwei Pixeln springen kann. Um die Abweichung des Winkels zu bestimmen, muss der zweite Winkel mit dem vergrößerten Schenkel berechnet und vom Sollwert abgezogen werden. Der errechnete Fehler gilt für beide Schenkel und geht somit doppelt in den Gesamtfehler ein. α1 = 10, 5 l 40mm ( ) 40mm 7, mm h1 = tan 10,5 = 4136 h = 0, 08mm h h 1 1 h1 + h α' 1 = tan = 10,61 40mm α 0, 1 0, 2 1 α ges. α 1 α 1 Abb. 7-4: entstehendes Dreieck l 68

70 Die Winkelbestimmung zieht jedoch nicht nur einen Punkt als Grundlage zur Winkelbestimmung heran, sondern es werden viele Punkte angetastet. Die Stützpunkte werden mittels linearer Regression durch eine Ausgleichsgerade angenähert, deren Winkel bestimmt wird. Der mögliche Fehler ist schwer zu berechnen. Daher wird er im Tabellenkalkulationsprogramm Excel abgeschätzt. Wie beschrieben ist die Pixeldimension 8 µm. Es können also nur ganze Vielfache dieses Wertes als Koordinaten vorkommen. Die dafür notwendige Rundung wird durch eine kleines Makro in VBA (Visual Basic for Applications) ausgeführt. Die entstehenden Koordinaten werden in ein Diagramm eingetragen. Durch Einfügen einer linearen Trendlinie erhält man die Geradengleichung der linearen Regression und kann aus den beiden ermittelten Steigungen den Winkel zwischen den Geraden berechnen. Es kommt zu Abweichungen zwischen theoretischem und ermittelten Wert. Diese Berechnung wurde für 40 und für 400 Stützpunkte bei verschiedenen Winkeln der ersten Gerade durchgeführt. Winkel2 Winkel1 Abb. 7-5: Geradenabschnitte des FST x-achse Geradengleichung: y = m x + b tan 1 = ( 1) m tan 1 2 = ( winkel1 21) 1 1 = tan ( m ) tan ( m ) m 1 winkel α Re gerssion Quellcode des Makros: 1 2 Private Sub CommandButton1_Click() aktivetabelle = ActiveSheet.Name pixelanzahl = 400 ' maximale Pixelanzahl pro Geradenabschnitt stützpanzahl = 40 ' Anzahl der Stützpunkte für die lineare Regression winkelgerade1 = 10 ' Winkel der ersten Gerade zur x-achse Pi = m1 = Tan(winkelgerade1 * Pi / 180) ' Berechnung der Steigung Gerade 1 m2 = Tan((winkelgerade1-21) * Pi / 180) ' Berechnung der Steigung Gerade 2 For i = 1 To stützpanzahl ' x-koordinate des Pixels Worksheets(aktivetabelle).Cells(i, 5) = 0.08 * i * pixelanzahl/stützpanzahl ' genaue y-koordinate der Kante an Stelle x Worksheets(aktivetabelle).Cells(i, 6) = 0.08 * i * m1 * pixelanzahl/stützpanzahl ' gerundete y-koordinate der Kante an Stelle x Worksheets(aktivetabelle).Cells(i, 7) = 0.08 * Val(i * m1 * pixelanzahl/stützpanzahl ' genaue y-koordinate der Kante an Stelle x Worksheets(aktivetabelle).Cells(i, 8) = * i * m2 * pixelanzahl/stützpanzahl ' gerundete y-koordinate der Kante an Stelle x Worksheets(aktivetabelle).Cells(i, 9)=0.08*Val(6/0.08+i*m2*pixelanzahl/stützpanzahl) Next i End Sub 69

71 7 Lineare Regression mit 40 Stützpunkten pro Gerade 6 y / mm y = -0,194690x + 5, R 2 = 0, Winkel zwischen den Geraden: 20,978 y = 0,176360x - 0, R 2 = 0, Gerade1 Gerade2 Linear (Gerade1) Linear (Gerade2) x / mm Abb. 7-6 entstandenes Diagramm Tabelle 2: Abschätzung der Fehler durch die begrenzte Auflösung, 40 Stützpunkte 40 Stützpunkte Winkel1 m 1Regression m 2Regeression α Regression Abweichung 20 0, , ,978-0, , , ,945-0, , , ,019 0, , , ,010 0, , , ,995-0,005 Tabelle 3: Abschätzung der Fehler durch die begrenzte Auflösung, 400 Stützpunkte 400 Stützpunkte Winkel1 m 1Regression m 2Regeression α Regression Abweichung 20 0, , ,979-0, , , ,999-0, , , ,011 0, , , ,992-0, , , ,001 0,001 Die Abschätzung zeigte, dass die geforderte Genauigkeit bei ausreichender Stützpunktanzahl erreicht werden kann. Die Werte gehen von idealen Bedingungen aus, d. h. es wird angenommen, dass keine Abbildungsfehler vorhanden sind und die Kante genau gefunden wird. Durch Abbildungsfehler ist ein größerer Fehler nicht auszuschließen. Überlegungen, eine hohe Auflösung durch die Verwendung einer bewegten Zeilenkamera erreichen zu können, führten zur Idee, diesen Aufbau durch einen handelsüblichen Scanner zu realisieren. Der FST hat, wie beschrieben, eine geringe Tiefe und kann auf die Glasplatte eines Scanners gelegt werden. Dessen zeilenförmiger 70

72 CCD-Chip, der durch einen Schrittmotor bewegt wird, erlaubt extrem hohe Auflösungen. Zu Testzwecken wurden Bilder eines FST mit einem Scanner aufgenommen und durch die Software NeuroCheck ausgewertet. Die Bilder zeigten eine scharfe Abbildung der Kante mit sehr gutem Kontrast. Ein Vergleich zwischen alter Methode und den Testbildern ergab eine Abweichung von 0,2. Auch wurde eine Abweichung zwischen den Auswertungen unterschiedlicher Bilder des gleichen FST festgestellt. Dies konnte durch die sowohl in x- als auch in y-richtung unkonstanten Abbildungsmaßstäbe erklärt werden. Daraus ließ sich folgern, dass die Werte von der Lage des FST auf dem Scanner abhängig sind. Um also einen handelsüblichen Scanner verwenden zu können, waren weitere Anpassungen notwendig. Abb. 7-7: Originalbild Abb. 7-8: Bild mit Verzeichnung Durch Messung eines Stabes mit bekanntem Winkel kann ein Umrechnungsfaktor ermittelt werden. Die ermittelten Winkel werden also mit bekannten Winkeln kalibriert. Die Abweichung zwischen den einzelnen Messwerten dürfen die geforderte Genauigkeit nicht überschreiten. Um die Reproduzierbarkeit ermitteln zu können, war eine statistische Untersuchung mit einer hohen Stichprobenanzahl nötig. Dazu wurde die Messung provisorisch automatisiert. Im Internet wurde ein Tool zum Bildeinzug nach TWAIN-Standard gefunden. Dieser Standard definiert eine Softwareschnittestelle, um Bildquellen anzusprechen. Das Tool DaVinci Pro der Firma Herd Software Entwicklung aus Bürstadt kann als ActiveX- Steuerelement in eine eigene Anwendung implementiert werden. Es wurde ein Programm in Visual Basic erstellt, welches den Scanvorgang auslöst und das aufgenommene Bild in einer Datei unter einem festen Pfad auf der Festplatte ablegt. In NeuroCheck wurde ein Prüfprogramm erstellt, das auf diesen Pfad zugreift und das dort abgelegte Bild auswertet. Das Prüfprogramm wird durch die Visual Basic Anwendung gestartet und die in einer Matrix abgelegten Ergebnisse werden ausgelesen und auf dem Bildschirm dargestellt. Programmcode: Deklaration Option Explicit Dim NeuroCheck As Object Dim CheckRoutine As Object Dim SingleCheck As Object Dim CheckFunction As Object Private Sub Command3_Click() Reset des Textfeldes TxtWinkel.Text = "" Aktivierung des Scanvorgang Call DavCtl1.TWAINAquire(True, 0) Abspeichern des Bildes DavCtl1.SaveToFile ("d:\lichtleiterstab\mess_stab_2.bmp") 71

73 Starten von NeuroCheck NeuroCheck.open ("d:\lichtleiterstab\lichtleiterstab_winkel_anschlag.chr ") Set CheckRoutine = NeuroCheck.ActiveCheckRoutine NeuroCheck.OperatingMode = 3 CheckRoutine.Visible = True NeuroCheck.execute Schleife zum Auslesen der Ergebnismatrix For Each SingleCheck In CheckRoutine For Each CheckFunction In SingleCheck If CheckFunction.functionid = 527 Then TxtWinkel = Round(CheckFunction.getresultitem(0, 1), 3) & " " Next CheckFunction Next SingleCheck End Sub Private Sub Form_Load() Objektzuweisung Set NeuroCheck = CreateObject("NeuroCheck.Application") End Sub Private Sub Form_Unload(Cancel As Integer) Schließung NeuroCheck NeuroCheck.quit End Sub Abb. 7-9: durch TWAIN Schnittstelle geöffnetes Scannerprogramm Abb. 7-10: gescanntes Bild und ermittelter Winkel Abb. 7-11: In NeuroCheck erstelltes Prüfprogramm 72

LUMIMAX Beleuchtungsworkshop. iim AG 19.03.2015

LUMIMAX Beleuchtungsworkshop. iim AG 19.03.2015 LUMIMAX Beleuchtungsworkshop iim AG 19.03.2015 Bedeutung der Beleuchtung Der Einfluss der Beleuchtung auf die Bildverarbeitungslösung wird häufig unterschätzt. Jede BV-Applikation benötigt ein optimales

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Polarisation des Lichts

Polarisation des Lichts PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 4: Polarisation des Lichts Polarisation des Lichts Themenkomplex I: Polarisation und Reflexion Theoretische Grundlagen 1.Polarisation und Reflexion

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

O2 PhysikalischesGrundpraktikum

O2 PhysikalischesGrundpraktikum O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in

Mehr

E-10, E-20 und Polfilter

E-10, E-20 und Polfilter 1. Aufgabenstellung E-10, E-20 und Polfilter Klaus Schräder Januar 2002 Polfilter und UV-Sperrfilter zählen zu den meist benutzten Filtern in der Fotografie. Dabei wird häufig geraten, bei Digitalkameras

Mehr

Optik Kontaktlinsen Instrumente Photo

Optik Kontaktlinsen Instrumente Photo Stand 09.04.2015 Seite 1 UV-Filter Die ultraviolette Strahlung sind kurzwellige, elektromagnetische Strahlen, welche eine Streuung erzeugen. Mit einem UV-Filter werden gerade diese Streulichter absorbiert.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Elektronisches Auge wird wachsamer

Elektronisches Auge wird wachsamer Megapixelkameras erhöhen die Sicherheit Elektronisches Auge wird wachsamer Megapixel-Sensoren steigern die Lichtempfindlichkeit von Überwachungskameras deutlich. Das revolutioniert die Videoüberwachung

Mehr

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen!

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen! Kapiteltest Optik 2 Lösungen Der Kapiteltest Optik 2 überprüft Ihr Wissen über die Kapitel... 2.3a Brechungsgesetz und Totalreflexion 2.3b Brechung des Lichtes durch verschiedene Körper 2.3c Bildentstehung

Mehr

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt -II.1- Geometrische Optik Optik: Teilgebiet der, das sich mit der Untersuchung des Lichtes beschäftigt 1 Ausbreitung des Lichtes Das sich ausbreitende Licht stellt einen Transport von Energie dar. Man

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 11. Übungsblatt - 17. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (7 Punkte) a)

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Demonstrations-Laseroptik-Satz U17300 und Ergänzungssatz U17301 Bedienungsanleitung 1/05 ALF Inhaltsverzeichnung Seite Exp - Nr. Experiment Gerätesatz 1 Einleitung 2 Leiferumfang

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

Mikroskopie. Kleines betrachten

Mikroskopie. Kleines betrachten Mikroskopie griechisch μικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Carl Zeiss Center for Microscopy / Jörg Steinbach -1- Mikroskoptypen Durchlicht Aufrechte Mikroskope Stereomikroskope

Mehr

Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit. Vision 2008. Simone Weber

Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit. Vision 2008. Simone Weber Telezentriefehler und seine Auswirkungen auf die Messgenauigkeit Vision 2008 Simone Weber Gliederung 1. Einleitung 2. Eigenschaften der telezentrischen Abbildung 3. Telezentriefehler 2ϕ 4. Quantifizierung

Mehr

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte

Mehr

Telezentrische Meßtechnik

Telezentrische Meßtechnik Telezentrische Meßtechnik Beidseitige Telezentrie - eine Voraussetzung für hochgenaue optische Meßtechnik Autor : Dr. Rolf Wartmann, Bad Kreuznach In den letzten Jahren erlebten die Techniken der berührungslosen,

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

Hauptseminar Autofokus

Hauptseminar Autofokus Hauptseminar Autofokus Hans Dichtl 30. Januar 2007 Wann ist ein Bild fokussiert? Wann ist ein Bild fokusiert? Welche mathematischen Modelle stehen uns zur Verfügung? Wie wird das elektronisch und mechanisch

Mehr

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente 2.Vorlesung IV Optik 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente Versuche Lochkamera Brechung, Reflexion, Totalreflexion Lichtleiter Dispersion (Prisma)

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Astro Stammtisch Peine

Astro Stammtisch Peine Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)

Mehr

Objektive. Auswahl und Montage. Inhalt

Objektive. Auswahl und Montage. Inhalt Objektive Auswahl und Montage Im Folgenden geben wir Ihnen allgemeine Hinweise zur Auswahl und Montage von C- und Objektiven. Weitere Informationen finden Sie im White Paper Optik-Grundlagen. Bitte beachten

Mehr

Farbe blaues ist ein Sinneseindruck. Physikalisch gesehen gibt es nur Licht verschiedener

Farbe blaues ist ein Sinneseindruck. Physikalisch gesehen gibt es nur Licht verschiedener $ Spektrum Info Additive Farbmischung Durch Addition von verschiedenfarbigem kann man das Spektrum erweitern. Z. B. wird aus rotem, grünem und blauem bei Monitoren jeder Farbeindruck gemischt: rotes! grünes

Mehr

Optimales Zusammenspiel von Kamera und Optik. Carl Zeiss AG, Udo Schellenbach, PH-V

Optimales Zusammenspiel von Kamera und Optik. Carl Zeiss AG, Udo Schellenbach, PH-V Trivialitäten Nicht mehr ganz so trivial Geheimwissen Welchen Stellenwert nimmt die Optik bei Bildverarbeitern oft ein? Trivialitäten: Wie groß ist der Sensor der Kamera? Deckt der Bildkreis des Objektivs

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

1. Licht, Lichtausbreitung, Schatten, Projektion

1. Licht, Lichtausbreitung, Schatten, Projektion 1. Licht, Lichtausbreitung, Schatten, Projektion Was ist Licht? Definition: Die Optik ist das Gebiet der Physik, das sich mit dem Licht befasst. Der Begriff aus dem Griechischen bedeutet Lehre vom Sichtbaren.

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Versuch C: Auflösungsvermögen Einleitung

Versuch C: Auflösungsvermögen Einleitung Versuch C: svermögen Einleitung Das AV wird üblicherweise in Linienpaaren pro mm (Lp/mm) angegeben und ist diejenige Anzahl von Linienpaaren, bei der ein normalsichtiges Auge keinen Kontrastunterschied

Mehr

Industrielle Bildverarbeitung

Industrielle Bildverarbeitung Industrielle Bildverarbeitung Übungen 1. Aufgabe Ein Objektiv mit der Brennweite 12.5mm kann auf Entfernungen zwischen 0.5 m und eingestellt werden. Wie gross ist dann jeweils die Bildweite? Dieses Objektiv

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie Theoretische Grundlagen - Physikalisches Praktikum Versuch 11: Mikroskopie Strahlengang das Lichtmikroskop besteht aus zwei Linsensystemen, iv und Okular, die der Vergrößerung aufgelöster strukturen dienen;

Mehr

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch O3 Polarisiertes Licht Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de

Mehr

MODELOPTIC Best.- Nr. MD02973

MODELOPTIC Best.- Nr. MD02973 MODELOPTIC Best.- Nr. MD02973 1. Beschreibung Bei MODELOPTIC handelt es sich um eine optische Bank mit deren Hilfe Sie die Funktionsweise der folgenden 3 Geräte demonstrieren können: Mikroskop, Fernrohr,

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Abb. 1: J.A. Woollam Co. VASE mit AutoRetarder

Abb. 1: J.A. Woollam Co. VASE mit AutoRetarder Charakterisierung von Glasbeschichtungen mit Spektroskopischer Ellipsometrie Thomas Wagner, L.O.T.-Oriel GmbH & Co KG; Im Tiefen See 58, D-64293 Darmstadt Charles Anderson, Saint-Gobain Recherche, 39,

Mehr

Optik-Grundlagen 2003 The Imaging Source Europe GmbH Alle Rechte vorbehalten

Optik-Grundlagen 2003 The Imaging Source Europe GmbH Alle Rechte vorbehalten Optik-Grundlagen 003 The Imaging Source Europe GmbH Alle Rechte vorbehalten http://www.1394imaging.com/ Version: Dezember 003 Optik - kein Problem ist ja einfaches Schulwissen. Aber Hand auf's Herz gelingt

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

Inhalt Phototechnik 24.4.07

Inhalt Phototechnik 24.4.07 Inhalt Phototechnik 24.4.07 4.2.1.5 Abbildungsfehler Klassifikation der Abbildungsfehler Ursachen Fehlerbilder Versuch Projektion Ursachen für Abbildungsfehler Korrekturmaßnahmen 1 Paraxialgebiet Bisher:

Mehr

Zoom-Mikroskop ZM. Das universell einsetzbare Zoom-Mikroskop

Zoom-Mikroskop ZM. Das universell einsetzbare Zoom-Mikroskop Zoom-Mikroskop ZM Das universell einsetzbare Zoom-Mikroskop Die Vorteile im Überblick Zoom-Mikroskop ZM Mikroskopkörper Kernstück des ZM ist ein Mikroskopkörper mit dem Zoom-Faktor 5 : 1 bei einem Abbildungsmaßstab

Mehr

22 Optische Spektroskopie; elektromagnetisches Spektrum

22 Optische Spektroskopie; elektromagnetisches Spektrum 22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen

Mehr

Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation

Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation Es gibt zwei Möglichkeiten, ein Objekt zu sehen: (1) Wir sehen das vom Objekt emittierte Licht direkt (eine Glühlampe, eine Flamme,

Mehr

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Praktikum Klassische Physik I Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Christian Buntin Gruppe Mo-11 Karlsruhe, 30. November 2009 Inhaltsverzeichnis 1 Drehspiegelmethode 2 1.1 Vorbereitung...............................

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Herausforderung Hochauflösende Inspektion. 13./14.11.2013 Thomas Schäffler

Herausforderung Hochauflösende Inspektion. 13./14.11.2013 Thomas Schäffler Herausforderung Hochauflösende Inspektion 13./14.11.2013 Thomas Schäffler Agenda Herausforderung der hochauflösenden Inspektion: Große Sensoren, kleine Pixel und große Abbildungsmaßstäbe Über Qioptiq Einige

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung)

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung) Theoretische Grundlagen hysikalisches raktikum Versuch 5: Linsen (Brennweitenbestimmung) Allgemeine Eigenschaften von Linsen sie bestehen aus einem lichtdurchlässigem Material sie weisen eine oder zwei

Mehr

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet?

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1 Musterprüfung Module: Linsen Optische Geräte 1. Teil: Linsen 1.1. Was besagt das Reflexionsgesetz? 1.2. Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet? 1.3. Eine Fläche bei einer

Mehr

Versuch 17: Geometrische Optik/ Mikroskop

Versuch 17: Geometrische Optik/ Mikroskop Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 12

Grundlagen der Physik 2 Lösung zu Übungsblatt 12 Grundlagen der Physik Lösung zu Übungsblatt Daniel Weiss 3. Juni 00 Inhaltsverzeichnis Aufgabe - Fresnel-Formeln a Reexionsvermögen bei senkrechtem Einfall.................. b Transmissionsvermögen..............................

Mehr

Brechung des Lichtes Refraktion. Prof. Dr. Taoufik Nouri Nouri@acm.org

Brechung des Lichtes Refraktion. Prof. Dr. Taoufik Nouri Nouri@acm.org Brechung des Lichtes Refraktion Prof. Dr. Taoufik Nouri Nouri@acm.org Inhalt Brechungsgesetz Huygenssches Prinzip planen Grenzfläche Planparallele-Parallelverschiebung Senkrechter Strahlablenkung Totalreflexion

Mehr

Technische Raytracer

Technische Raytracer Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Abbildung 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale: 1.30 ORA 03-Jun-13 Abbildung Ein zweidimensionales Bild

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler

18.Elektromagnetische Wellen 19.Geometrische Optik. Spektrum elektromagnetischer Wellen Licht. EPI WS 2006/7 Dünnweber/Faessler Spektrum elektromagnetischer Wellen Licht Ausbreitung von Licht Verschiedene Beschreibungen je nach Größe des leuchtenden (oder beleuchteten) Objekts relativ zur Wellenlänge a) Geometrische Optik: Querdimension

Mehr

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler.

Quelle: Peter Labudde, Alltagsphysik in Schülerversuchen, Bonn: Dümmler. Projektor Aufgabe Ein Diaprojektor, dessen Objektiv eine Brennweite von 90mm hat, soll in unterschiedlichen Räumen eingesetzt werden. Im kleinsten Raum ist die Projektionsfläche nur 1m vom Standort des

Mehr

O10 PhysikalischesGrundpraktikum

O10 PhysikalischesGrundpraktikum O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 8 Mikroskop Gruppe Nr.: 1 Andreas Bott (Protokollant) Marco Schäfer Theoretische Grundlagen Das menschliche Auge: Durch ein Linsensystem wird im menschlichen

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

NÜTZLICHE TIPPS FÜR OPTIMALE SCANS

NÜTZLICHE TIPPS FÜR OPTIMALE SCANS Bedingungen, um gute Scans zu erhalten Die Faktoren, von denen das Ergebnis eines Scans abhängt, sind einerseits die Umgebung sowie die Konfiguration und Kalibrierung des Scanners, aber auch das zu scannende

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Optik. Optik. Optik. Optik. Optik

Optik. Optik. Optik. Optik. Optik Nenne das Brechungsgesetz! Beim Übergang von Luft in Glas (Wasser, Kunststoff) wird der Lichtstrahl zum Lot hin gebrochen. Beim Übergang von Glas (Wasser...) in Luft wird der Lichtstrahl vom Lot weg gebrochen.

Mehr

Konfokale Mikroskopie

Konfokale Mikroskopie Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Versuch 22 Mikroskop

Versuch 22 Mikroskop Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Lichtmikroskopie. 30. April 2015

Lichtmikroskopie. 30. April 2015 Lichtmikroskopie 30. April 2015 1 Gliederung Einführung in die klassische Lichtmikroskopie mechanischer und optischer Aufbau Anwendungsbereiche der Polarisationsmikroskopie Einführung in die Polarisationsmikroskopie

Mehr

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ

Geometrische Optik. Ausserdem gilt sin ϕ = y R. Einsetzen in die Gleichung für die Brennweite ergibt unmittelbar: 1 2 1 sin 2 ϕ Geometrische Optik GO: 2 Leiten Sie für einen Hohlspiegel die Abhängigkeit der Brennweite vom Achsabstand des einfallenden Strahls her (f = f(y))! Musterlösung: Für die Brennweite des Hohlspiegels gilt:

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 11.Januar 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Abbésche Theorie - 1 Ziel: Verständnis der Bildentstehung beim Mikroskop und dem Zusammenhang zwischen

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

www.lichtathlet.de Crashkurs Fotografie

www.lichtathlet.de Crashkurs Fotografie www.lichtathlet.de Crashkurs Fotografie Inhaltsverzeichnis 1. Ziel 2. Vorraussetzung 3. Die wichtigsten Funktionen 4. Blende 5. Belichtungszeit 6. ISO-Empfindlichkeit 7. Brennweite 8. Fokus und Schärfentiefe

Mehr

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM WS 2000 / 2001 Protokoll zum Thema WELLENOPTIK Petra Rauecker 9855238 INHALTSVERZEICHNIS 1. Grundlagen zu Polarisation Seite 3 2. Versuche zu Polarisation Seite 5

Mehr

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2)

Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Staatsinstitut für Schulqualität und ildungsforschung Unterrichtskonzept zum Themenbereich Licht (NT 5.1.2) Lehrplanbezug Ein Teil der Schüler hat möglicherweise bereits in der 3. Jahrgangsstufe der Grundschule

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

Fachartikel. Optimal abgestimmte Optik- und Beleuchtungsbaugruppen für die industrielle Bildverarbeitung

Fachartikel. Optimal abgestimmte Optik- und Beleuchtungsbaugruppen für die industrielle Bildverarbeitung Vision & Control GmbH Mittelbergstraße 16 98527 Suhl. Germany Telefon: +49 3681 / 79 74-0 Telefax: +49 36 81 / 79 74-33 www.vision-control.com Fachartikel Klein und leistungsfähig Optimal abgestimmte Optik-

Mehr

Verbessern Sie Ihre Sichtweise

Verbessern Sie Ihre Sichtweise Patienteninformation Verbessern Sie Ihre Sichtweise Eine Orientierung über asphärische und Blaufilter-Linsenimplantate bei «grauem Star» we care for you So wird der «graue Star» behandelt Die einzige Möglichkeit,

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Lichtwellen und Optik http://www.nanocosmos.de/lietz/mtv Inhalt Lichtwellen Optik Abbildung Tiefenschärfe Elektromagnetische Wellen Sichtbares Licht Wellenlänge/Frequenz nge/frequenz

Mehr

Bildverarbeitung - Inhalt

Bildverarbeitung - Inhalt Bildverarbeitung Bildverarbeitung - Inhalt 1. Anfänge der industriellen Bildverarbeitung 2. Von der Kamera zum Vision Sensor 3. Hardware Konzepte in der BV 4. Beleuchtungssysteme 5. Auswerteverfahren (Software)

Mehr

Fahrzeugbeleuchtung Optik

Fahrzeugbeleuchtung Optik Fahrzeugbeleuchtung Optik Karsten Köth Stand: 2010-10-22 Lichttechnische Optik Berücksichtigt Gesetzmäßigkeiten aus: Wellenoptik Quantenoptik Geometrische Optik Optik Grundlagen zum Bau von Leuchten und

Mehr

Vorbereitung zur geometrischen Optik

Vorbereitung zur geometrischen Optik Vorbereitung zur geometrischen Optik Armin Burgmeier (347488) Gruppe 5 9. November 2007 Brennweitenbestimmungen. Kontrollieren der Brennweite Die angegebene Brennweite einer Sammellinse lässt sich überprüfen,

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Physik-Vorlesung. Optik.

Physik-Vorlesung. Optik. Physik Optik 3 Physik-Vorlesung. Optik. SS 15 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Optik 5 Themen Reflexion Brechung Polarisation Spektroskopie Physik Optik 6 Lehre vom Sehen (1/2) Was ist Sehen physikalisch?

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Fachartikel. Telezentrische Objektive für Kameras größer 1 Zoll

Fachartikel. Telezentrische Objektive für Kameras größer 1 Zoll Vision & Control GmbH Mittelbergstraße 16 98527 Suhl. Germany Telefon: +49 3681 / 79 74-0 Telefax: +49 36 81 / 79 74-33 www.vision-control.com Fachartikel Telezentrische Objektive für Kameras größer 1

Mehr