Hans Walser, [ ] Lemniskate 1 Worum geht es Es werden Konstruktionen der Lemniskate mit Hilfe von Ellipsen und deren Brennpunkten

Größe: px
Ab Seite anzeigen:

Download "Hans Walser, [ ] Lemniskate 1 Worum geht es Es werden Konstruktionen der Lemniskate mit Hilfe von Ellipsen und deren Brennpunkten"

Transkript

1 Hans alser, [ ] Lemniskate 1 orum geht es s werden Konstruktionen der Lemniskate mit Hilfe von llipsen und deren Brennpunkten besprochen. 2 Das Vorgehen ir zeichnen den inheitskreis mit Mittelpunkt (0, 0) und die Punkte (1, 0), ( 1, 0), (0, 1), (0, 1) (Abb. 1). Auf dem inheitskreis wählen wir einen beliebigen Punkt P. P Abb. 1: in Punkt P auf dem inheitskreis un zeichnen wir die llipse mit den konjugierten Halbmessern und P sowie deren Brennpunkte F 1 und F 2 (Abb. 2).

2 Hans alser: Lemniskate 2 / 10 P F 1 F 2 Abb. 2: llipse mit Brennpunkten Die beiden Brennpunkte liegen auf der zu den Punkten und gehörenden Lemniskate (Abb. 3). P F 1 F 2 Abb. 3: Brennpunkte auf Lemniskate

3 Hans alser: Lemniskate 3 / 10 Durch Variation von P erhalten wir so alle Punkte der Lemniskate (rtslinie). 3 Lemniskate inige Fakten zur Lemniskate (Abb. 4). L 1 1 Abb. 4: Lemniskate Für einen Punkt L auf der Lemniskate gilt (definierende igenschaft): L L = 1 (1) In Polarkoordinaten hat die Lemniskate die Gleichung: r = 2cos( 2ϕ ) (2) In kartesischen Koordinaten hat die Lemniskate die Gleichung: ( ) 2 2( 2 2 ) = 0 (3) 4 Beweis der Brennpunkteigenschaft Der Punkt P (Abb. 2) habe die Koordinaten:

4 Hans alser: Lemniskate 4 / 10 ( ( )) (4) P cos( 2t),sin 2t Der Faktor 2 beim Parameter t ist aus technischen Gründen dabei. r vereinfacht die Formeln. Da die beiden konjugierten Halbmesser und P die gleiche Länge haben, sind die Hauptachsenrichtungen der llipse die inkelhalbierenden der Halbmesser. Die Halbachsen a und b haben die Länge: a = 2 cos( t), b = 2 sin( t) (5) Daraus erhalten wir die halbe Brennpunktweite c: c = a 2 b 2 = 2 cos 2 ( t) sin 2 ( t) = 2 cos( 2t) (6) Vergleich mit (2) beweist die Behauptung. 5 Umriss Die Hüllkurve der sich durch die Variation von P ergebenden llipsenschar (rote llipse in Abb. 2 und 3) ist ihrerseits eine llipse (Abb. 5). P F 1 F 2 Abb. 5: Umrissellipse

5 Hans alser: Lemniskate 5 / 10 ie hat die Punkte und als Brennpunkte und verläuft durch die Punkt und. Die lange Halbachse ist 2, die kurze Halbachse ist 1. ir können das durch eine kartografische Überlegung einsehen. 6 chrägbild der rdkugel ir stellen die rdkugel auf den Tisch (Projektionsebene) und beleuchten von recht oben unter einem inkel von 45 (Abb. 6a, Aufriss). In der Projektionsebene erhalten wir so ein chrägbild der rdkugel (Abb. 6b, Grundriss).

6 Hans alser: Lemniskate 6 / 10 a) b) Abb. 6: chrägbild der rdkugel Die Abbildung 7 zeigt das chrägbild allein.

7 Hans alser: Lemniskate 7 / 10 Abb. 7: o ist das schöne Tirol? Die Breitenkreise sind in diesem chrägbild als Kreise dargestellt. Der Äquator erscheint als inheitskreis in der Mitte. Der Kartenumriss ist eine llipse mit der langen Halbachse 2 und der kurzen Halbachse 1 (chrägschnitt des sich durch die Projektionsstrahlen ergebenden Umrisszlinders). Die Brennpunkte dieser llipse sind die Bilder der beiden Pole (Überlegung mit Kugeln von Dandelin). Die Meridiane erscheinen als llipsen durch die beiden Pole, welche die Umrissellipse von innen berühren. Die Abbildung 8 zeigt das etz (15 -Maschenweite) der Meridiane und Breitenkreise ohne die rde. egen der Projektionsrichtung 45 und der Maschenweite 15 berühren sich die Bilder der Breitenkreise.

8 Hans alser: Lemniskate 8 / 10 Abb. 8: Meridiane und Breitenkreise Die Figur der Abbildung 8 passt genau auf die Figur der Abbildung 5. Die rote llipse in der Abbildung 5 entspricht einem Meridianbild im chrägbild. omit erhalten wir eine Variante der Lemniskaten-Konstruktion. 7 Variante der Lemniskaten-Konstruktion ir zeichnen die Punkte (1, 0), ( 1, 0), (0, 1), (0, 1) und dazu die llipse mit den Brennpunkten und durch. Auf der llipse wählen wir einen beliebigen Punkt Q (Abb. 9).

9 Hans alser: Lemniskate 9 / 10 Q Abb. 9: tart mit llipse un zeichnen wir eine zweite llipse mit dem Mittelpunkt durch, welche die erste llipse in Q berührt (Abb. 10). benso zeichnen wir die Brennpunkte G 1 und G 2 dieser llipse. Q G 2 G 1 Abb. 10: Berührende Inellipse

10 Hans alser: Lemniskate 10 / 10 Die Brennpunkte G 1 und G 2 liegen auf unserer Lemniskate (Abb. 11). Q G 2 G 1 Abb. 11: Brennpunkte auf Lemniskate ebsites Kartenprojektionen ( ): ikipedia, Lemniskate ( ):

Winkelteilung 1 Worum geht es? 2 Mit Zirkel und Lineal 3 Winkeldrittelung 3.1 Konstruktion einer Kurve

Winkelteilung 1 Worum geht es? 2 Mit Zirkel und Lineal 3 Winkeldrittelung 3.1 Konstruktion einer Kurve Hans Walser, [208084] Winkelteilung Anregung: Jo Niemeyer, Berlin Worum geht es? Es wird eine Methode besprochen, einen Winkel in eine ungerade Anzahl gleicher Teile zu unterteilen. 2 Mit Zirkel und Lineal

Mehr

Eine anallagmatische Kurve. Eckart Schmidt

Eine anallagmatische Kurve. Eckart Schmidt Eine anallagmatische Kurve Eckart Schmidt Man bezeichnet eine Kurve als anallagmatisch, wenn sie durch eine Inversion auf sich abgebildet werden kann. Eine anallagmatische Kurve kann als Inverses eines

Mehr

Die Kugel. Mathematische Betrachtungen von Peter Franzke

Die Kugel. Mathematische Betrachtungen von Peter Franzke Die Kugel Mathematische Betrachtungen von Die Einheitssphäre S 1. Die Kugel Geometrie: gekrümmte geschlossene Fläche, deren Punkte von einem festen Punkt M (Kugelmittelpunkt) einen festen Abstand r (Kugelradius)

Mehr

Kartografie I. Hans Walser. Koordinatensysteme und Transformationen

Kartografie I. Hans Walser. Koordinatensysteme und Transformationen Kartografie I Hans Walser Koordinatenssteme und Transformationen Hans Walser: Koordinatenssteme und Transformationen ii Inhalt Koordinatenssteme.... Kartesische Koordinaten....2 Polarkoordinaten... 2.3

Mehr

Abb. 1: Stereografische Projektion

Abb. 1: Stereografische Projektion Hans Walser, [20160808] Stereografische Projektion 1 Ausgangslage Wir projizieren die Erde (Geodaten) vom Nordpol aus auf die Tangentialebene im Südpol. Die Abbildung 1 zeigt die Projektion exemplarisch

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

Ebene Schnitte einer Kugel

Ebene Schnitte einer Kugel Ebene Schnitte einer Kugel Eine Kugel Φ(M,r) und eine Ebene Σschneiden sich in einem Kreis k(σ, M k, r k ), falls der Abstand d des Kugelmittelpunkts von Σ kleiner r ist. Φ Φ k r=r k d M k r k M=M k k

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Hans Walser, [ a] Grafische Lösung einer quadratischen Gleichung Anregung: D. M. und M. P.

Hans Walser, [ a] Grafische Lösung einer quadratischen Gleichung Anregung: D. M. und M. P. Hans Walser, [007067a] Grafische Lösung einer quadratischen Gleichung Anregung: D. M. und M. P. Problemstellung Wir lösen die Gleichung: x px + q = 0 Die Gleichung ist in einer in den Schulen unüblichen

Mehr

A = Eine symmetrische Matrix ist gleich ihrer transponierten Matrix: A t = A

A = Eine symmetrische Matrix ist gleich ihrer transponierten Matrix: A t = A Hans Walser, [07] Smmetrische Matri Die Matri Wir arbeiten mit der smmetrischen Matri: A = 3 6 Eine smmetrische Matri ist gleich ihrer transponierten Matri: A t = A Die Abbildung. Verzerrungsellipse Wir

Mehr

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen.

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. 10.1. Ebene Kurven Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. Parameterdarstellungen einer Kurve sind stetige

Mehr

Parallelprojektion. Das Projektionszentrum liegt im Unendlichen. Projektionsebene. Projektionsrichtung. Quader. Bild des Quaders

Parallelprojektion. Das Projektionszentrum liegt im Unendlichen. Projektionsebene. Projektionsrichtung. Quader. Bild des Quaders Parallelprojektion Das Projektionszentrum liegt im Unendlichen. Projektionsebene Projektionsrichtung Quader Bild des Quaders Zentralprojektion Auge und Kamera Sowohl das Sehen mit dem Auge als auch das

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen):

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen): Übungsaufgaben 1. Übung: Woche vom 17.-21.10.16 (komplexe Zahlen): Heft Ü1: 3.9 (a,b); 3.10, 3.12 (a-c); 3.13 (a-c); 3.2 (a,b,d); 3.3 (c,d,f) Wiederholung Komplexe Zahlen Definition (Imaginäre Einheit,

Mehr

Computational Geometry, MU Leoben

Computational Geometry, MU Leoben Computational Geometry, MU Leoben www.unileoben.ac.at Computational Geometry Lehrveranstaltung: Darstellende Geometrie I, Übungen SS 2011 http://institute.unileoben.ac.at/anggeom/dg1 Übungsleiterin: S.

Mehr

Kegelschnitte - Teil 7

Kegelschnitte - Teil 7 7.1 Kegelschnitte - Gemeinsame Gleichung Kegelschnitte - Teil 7 Die verschiedenen Kegelschnitte entstehen, indem die Schnittebene eine verschiedene Neigung zur Hauptachse des Kreiskegels hat. Von senkrecht

Mehr

2.1 Steigung 1. Die Geraden mit Steigung ±1 folgen den Diagonalen der Netzquadrate (Abb. 2). Abb. 1: Plattkarte. Abb. 2: Situation auf der Karte

2.1 Steigung 1. Die Geraden mit Steigung ±1 folgen den Diagonalen der Netzquadrate (Abb. 2). Abb. 1: Plattkarte. Abb. 2: Situation auf der Karte Hans Walser, [20131216a], [20140308] Sphärische Spiralen 1 Idee Die Idee ist einfach: Wir zeichnen auf einer Weltkarte eine schräg ansteigende Gerade und studieren deren Bild auf der Kugel. Je nach Kartentyp

Mehr

Es wird versucht, die geometrischen Grundlagen zur Entscheidung dieser Frage aufzuarbeiten.

Es wird versucht, die geometrischen Grundlagen zur Entscheidung dieser Frage aufzuarbeiten. Hans Walser, [20160609] Gestalt der Erde 1 Worum geht es? Im späten 17. Jahrhundert entspann sich ein wissenschaftlicher treit um die Gestalt der Erde (Brotton 2012,. 308): Die Anhänger von Descartes (1596-1650)

Mehr

Koordinatensysteme der Erde

Koordinatensysteme der Erde Koordinatensysteme der Erde Es gibt verschiedene Arten, die Position eines Punktes auf der Oberfläche einer Kugel (manchmal auch Sphäre genannt) darzustellen, jede hat ihre Vor-und Nachteile und ist für

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89

Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89 Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89 Inhaltsverzeichnis Leitfaden... 3 Ellipsoidparameter und abgeleitete

Mehr

Lemniskaten und eine Strophoide des Dreiecks

Lemniskaten und eine Strophoide des Dreiecks Lemniskaten und eine Strophoide des Dreiecks Eckart Schmidt Spiegelt man Umkegelschnitte eines Dreiecks am Umkreis, so erhält man im allgemeinen Kurven vierter Ordnung. Hier werden nur gleichseitige Umhyperbeln

Mehr

Die Abbildung 2 zeigt das Spiegelbild des Innenhofes auf der Kugel in der Bildmitte der Abbildung 1.

Die Abbildung 2 zeigt das Spiegelbild des Innenhofes auf der Kugel in der Bildmitte der Abbildung 1. Hans Walser, [20161017] Reflexion an Kugel Idee und Anregung: W. K., F. 1 Worum geht es? Im Innenhof eines Wiener Hotels sind reflektierende Kugeln aufgehängt (Abb. 1). Abb. 1: Reflektierende Kugeln Die

Mehr

1.5. Relationen, Abbildungen und Flächen

1.5. Relationen, Abbildungen und Flächen .5. Relationen, Abbildungen und Flächen In Verallgemeinerung der reellen Situation nennt man jede Teilmenge F eines kartesischen Produkts A B eine Relation zwischen A und B, und man spricht von einer Abbildung

Mehr

2 Kegelschnitte, Normalformen und Konstruktion

2 Kegelschnitte, Normalformen und Konstruktion Mathematik fur Ingenieure Institut fur Algebra, Zahlentheorie und Diskrete Mathematik Dr. Dirk Windelberg Universitat Hannover Stand: 8. August 008 http://www.iazd.uni-hannover.de/windelberg/teach/ing

Mehr

6.4.3 Frontalperspektive

6.4.3 Frontalperspektive 102 KAPITEL 6. ZENTRALPRJEKTIN 6.4.3 Frontalperspektive Wir wollen den Grundriss des in Abb. 6.26 in Frontalperspektive dargestellten U-förmigen Gebäudes bestimmen. Dabei nehmen wir wieder an, dass das

Mehr

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy)

Übung 1. Man nde die gesuchten Funktionswerte. (ii) f(x, y) = sin(xy) Man nde die gesuchten Funktionswerte. Übung (i) f(, ) = + 3 f(, ) f(, ) f(, 3) f( 3, ) f(, ) = sin() f(, π/6) f( 3, π/) f(π, /) f( π/, 7) Übung Man nde und skizziere den enitionsbereich und nde den Wertebereich

Mehr

7 Beziehungen im Raum

7 Beziehungen im Raum Lange Zeit glaubten die Menschen, die Erde sei eine Scheibe. Heute zeigen dir Bilder aus dem Weltall sehr deutlich, dass die Erde die Gestalt einer Kugel hat. 7 Beziehungen im Raum Gradnetz der Erde Längengrade

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Hans Walser. Raumgeometrie. Modul 1 Der Würfel Lernumgebung, Teil 1

Hans Walser. Raumgeometrie. Modul 1 Der Würfel Lernumgebung, Teil 1 Hans Walser Raumgeometrie Modul 1 Der Würfel Lernumgebung, Teil 1 Hans Walser: Modul 1, Der Würfel. Lernumgebung, Teil 1 ii Inhalt 1 Der 12-7-5-Würfel... 1 2 Schnittpunkte am Quader... 2 3 Zwölf oder dreizehn

Mehr

Schwerpunkt homogener ebener Flächen: Teil 2

Schwerpunkt homogener ebener Flächen: Teil 2 Celle, Stadtkirche St. Marien, Fragment Schwerpunkt homogener ebener Flächen: Teil 3 E Ma Lubov Vassilevskaya Flächeninhalt 3 E Ma Lubov Vassilevskaya Schwerpunkt einer homogenen ebenen Fläche: Aufgaben

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 017 Klasse: g Profil: MN / M Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

2.1 Radienverhältnis 2 1 In diesem Fall berühren sich die grünen Kreise untereinander (Abb. 2). Der rote Radius ist 2 1, der grüne Radius 1.

2.1 Radienverhältnis 2 1 In diesem Fall berühren sich die grünen Kreise untereinander (Abb. 2). Der rote Radius ist 2 1, der grüne Radius 1. Hans Walser, [20170526] Kreispackungen Anregung: Heinz Klaus Strick, Leverkusen. Siehe auch (Strick 2017, S. 269f). 1 Ausgangslage Wir arbeiten mit zwei Kreisscharen (Abb. 1). Abb. 1: Zwei Kreisscharen

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

2.2A. Das allgemeine Dreieck

2.2A. Das allgemeine Dreieck .A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (

Mehr

Brückenkurs Mathematik. Freitag Freitag

Brückenkurs Mathematik. Freitag Freitag Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse.

x 1 Da y nur in der 2.Potenz vorkommt, ist die Kurve achsensymmetrisch zur x-achse. .6. Klausur Kurs Ma Mathematik Lk Lösung Gegeben ist die Gleichung x y y x. [] Verschaffen Sie sich einen Überblick über den Kurvenverlauf, indem Sie die Kurve auf Asymptoten und waagrechte sowie senkrechte

Mehr

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1

mathphys-online Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Aufgabe 1 Definition des Feldindex in Vektoren und Matrizen: ORIGIN 1 Aufgaben zur Differentialrechnung - Lösung Tangentenaufgaben Definition es Felinex in Vektoren un Matrizen: ORIGIN Aufgabe Gegeben ist ie Funktion f mit em Funktionsterm f( x) = x x, wobei x IR. a) Bestimmen

Mehr

Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018

Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018 Propädeutikum 018 1. September 018 Denition Trigonometrie Die Trigonometrie beschäftigt sich mit dem Messen (µɛτ ρoν) von dreiseitigen (τ ρίγωνo) Objekten. Zunächst gilt in Dreiecken: A = 1 g h Abbildung:

Mehr

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 05 Schnecken und Spiralen Lernumgebung Hans Walser: Modul 05, Schnecken und Spiralen. Lernumgebung ii Inhalt 1 Spiralen in der Umwelt... 1 Archimedische

Mehr

Weitere Ableitungsregeln. Kapitel 4

Weitere Ableitungsregeln. Kapitel 4 Weitere Ableitungsregeln Kapitel . Die Kettenregel L f() = u(v()) g() = v(u()) a) + + b) cos [( + ) ] (cos + ) c) sin ( ) [sin ()] d) e) ( = _ ) _ ( f) cos [π( + )] cos (π) + g) ( ) = h) ( + ) + = + +

Mehr

Wird ein Kreiskegel von einer Ebene geschnitten, welche zu einer Mantellinie des Kegels parallel ist, so entsteht als Schnittkurve eine Parabel.

Wird ein Kreiskegel von einer Ebene geschnitten, welche zu einer Mantellinie des Kegels parallel ist, so entsteht als Schnittkurve eine Parabel. 1 3 Die Parabel 3.1 Die Parabel als Kegelschnitt Wird ein Kreiskegel von einer Ebene geschnitten, welche zu einer Mantellinie des Kegels parallel ist, so entsteht als Schnittkurve eine Parabel. Sei SP

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.4 2013/06/24 23:05:24 hk Exp hk $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung Wir behandeln gerade die Berechnung sphärischer Dreiecke und haben zu diesem Zweck bereits

Mehr

9.5 Graphen der trigonometrischen Funktionen

9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen. Unter dem Bogenmass eines Winkels versteht man die Länge des Winkelbogens von auf dem Kreis mit Radius (Einheitskreis).

Mehr

[ ] (1) ( ) ( ) ( ) π 2, π 2 ( )

[ ] (1) ( ) ( ) ( ) π 2, π 2 ( ) Hans Walser, [20170718] Kosinusspindel Indirekte Anregung: F. H., B. 1 Worum geht es? Rotationsfläche mit einer Kosinuskurve als Meridian. 2 Parameterdarstellungen 2.1 Einheitskugel Wir gehen aus von der

Mehr

2λx cos(y) + (4 2λ)y sin(y) e x harmonisch in R 2 ist. Dazu berechnen wir. = e x (2λ(x 2) cos(y) + (4 2λ)y sin(y))

2λx cos(y) + (4 2λ)y sin(y) e x harmonisch in R 2 ist. Dazu berechnen wir. = e x (2λ(x 2) cos(y) + (4 2λ)y sin(y)) Mathematik für Ingenieure IV, Kurs-Nr. 094 SS 008 Lösungsvorschläge zu den Aufgaben für die Studientage am 30./3.08.008 Kurseinheit 6: Die Potentialgleichung Aufgabe : Wir untersuchen, für welche λ R die

Mehr

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat.

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat. Hans Walser, [20150318] Brennpunkte der Ellipse 1 Worum geht es? Eine Ellipse sei durh fünf Punkte,...,P 5 gegeben (Abb. 1). P5 P 4 P 3 Abb. 1: Eine Ellipse durh fünf Punkte Gesuht sind die Brennpunkte

Mehr

Abb. 1: St. Galler-Brot. 2.1 Formelsammlung In der Formelsammlung finden wir für den Flächeninhalt A einer Kugelzone: A = 2πRh (1)

Abb. 1: St. Galler-Brot. 2.1 Formelsammlung In der Formelsammlung finden wir für den Flächeninhalt A einer Kugelzone: A = 2πRh (1) Hans Walser, [20180112] Brotkruste Anregungen: Sebastian Baader, Bern, und Anselm Lambert, Saarbrücken 1 Worum geht es? In einigen Gegenden der Schweiz gibt es ein annähernd kugelförmiges Brot, das so

Mehr

Cassini-Kurven Lemniskate

Cassini-Kurven Lemniskate Cassini-Kurven Lemniskate Text Nr. 510 Stand 1. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 510 Cassini-Kurven und Lemniskate Vorwort Der Namen Lemniskate ist sicher bekannter

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Komplexe Zahlen Lösungshinweise. Sei z = + i und z = i. Berechnen Sie z + z, z z, z z, z z, z /z, z + z, z z, z z, z

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt:

Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt: Ein konstantes Abstandsrodukt Eckart Schmidt Zu zwei fest vorgegebenen Punkten sind die Ortslinien für Punkte mit konstanten Abstandssummen, Abstandsdifferenzen oder Abstandsverhältnissen Kegelschnitte;

Mehr

Übungen 3. Vektoren. 1) Gesucht sind alle möglichen Vektoren c mit der Länge 6, die senkrecht auf den Vektoren a und b stehen.

Übungen 3. Vektoren. 1) Gesucht sind alle möglichen Vektoren c mit der Länge 6, die senkrecht auf den Vektoren a und b stehen. Vektoren Übungen ) Gesucht sind alle möglichen Vektoren c mit der Länge, die senkrecht auf den Vektoren a und b stehen. a = ( ); b = ( ) a) Ein Dreieck in R ist durch die Punkte O( ), A( ), B( ) definiert.

Mehr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr

Angewandte Geometrie Semestralprüfung am 5. Juli 2005, Uhr Technische Universität München SS 2005 Zentrum Mathematik Blatt 7 apl. Prof. Dr. J. Hartl Angewandte Geometrie Semestralprüfung am 5. Juli 2005, 12.00-1.0 Uhr 1. In einem dreidimensionalen euklidischen

Mehr

Algebra 3.

Algebra 3. Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Aufgabe 5.1 Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an, w z w z.

Aufgabe 5.1 Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an, w z w z. Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). Zu den komplexen Zahlen mit Polarkoordinaten r 4 ϕ 4 π r

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe OE1: Ein

Mehr

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Funktionen mehrerer Variablen: Integralrechnung ufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya Inhaltsverzeichnis ii Doppelintegrale. Doppelintegrale.. Doppelintegrale mit konstanten Integrationsgrenzen

Mehr

Ein Maß für die Krümmung von Funktionsgraphen Helmut Umla 2015

Ein Maß für die Krümmung von Funktionsgraphen Helmut Umla 2015 Ein Maß für die Krümmung von Funktionsgraphen Helmut Umla 015 Halbkreise Der Kreis mit Mittelpunkt und Radius hat die Gleichung + (Satz des Pythagoras). Die Gleichung nach aufgelöst: ± Der untere Halbkreis

Mehr

Komplexe Zahlen und Geometrie

Komplexe Zahlen und Geometrie Komplexe Zahlen und Geometrie Dr. Axel Schüler, Univ. Leipzig März 1998 Zusammenfassung Ziel dieses Beitrages ist es, die komplexen Zahlen bei einfachen geometrischen Aufgaben einzusetzen. Besonderes Augenmerk

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5. Geben Sie zu folgenden komplexen Zahlen die Polarkoordinatendarstellung an z i z + i z 3 + 3i). r 5 ϕ 5 4 3 π bzw. r 6 3 ϕ 6 4 5

Mehr

Kartografie I. Hans Walser. Kartenprojektionen Lernumgebung

Kartografie I. Hans Walser. Kartenprojektionen Lernumgebung Kartografie I Hans Walser Kartenprojektionen Lernumgebung Hans Walser: Kartenprojektionen. Lernumgebung ii Inhalt Parameterdarstellung der Kugel... 2 Geodätische Linien... 3 Kegelprojektion: Variante mit

Mehr

Normalprojektion. Verlaufen die Projektionsstrahlen s einer Parallelprojektion normal zur Bildebene π, so spricht man von einer Normalprojektion.

Normalprojektion. Verlaufen die Projektionsstrahlen s einer Parallelprojektion normal zur Bildebene π, so spricht man von einer Normalprojektion. 4. Der dreidimensionale Raum 4.5 Hauptrisse Normalprojektion Verlaufen die Projektionsstrahlen s einer Parallelprojektion normal zur Bildebene π, so spricht man von einer Normalprojektion. Zum Beispiel:

Mehr

Mathematik. Abiturprüfung Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten

Mathematik. Abiturprüfung Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten Mathematik Abiturprüfung 2015 Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

A. N. Danilewsky 31. Fortsetzung von Kapitel 2

A. N. Danilewsky 31. Fortsetzung von Kapitel 2 A. N. Danilewsky 31 Fortsetzung von Kapitel 2 2.3 Darstellung von Körpern... 32 2.3.1 Othogonale Parallelprojektion... 32 2.3.2 Stereographische Projektion... 34 2.3.3 Gnomonische Projektion... 42 32 Kristallographie

Mehr

Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89

Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89 Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis...2 2. Leitfaden...3 3.

Mehr

Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt

Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Aufgabe 3 Prof. Dr. Schön und Dr. Eschrig Wintersemester 004/005 Durch Trennung der Veränderlichen und anschließende Integration ergibt sich aus

Mehr

Hans Walser, [ ], [ ], [ b] Zerlegungsgleichheit

Hans Walser, [ ], [ ], [ b] Zerlegungsgleichheit Hans Walser, [20130516], [20130520], [20130525b] Zerlegungsgleichheit 1 Worum es geht In der Ebene sind flächengleiche Polygone immer auch zerlegungsgleich. Wie finden wir bei Dreiecken und Rechtecken

Mehr

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x)

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x) Vertikale Verschiebung a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g() = f() b) Zeichne den Graphen der Funktion h mit h() = f() ein. Oben oder unten? f() +

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Linien- oder Kurvenintegrale: Aufgaben

Linien- oder Kurvenintegrale: Aufgaben Linien- oder Kurvenintegrale: Aufgaben 4-E Das ebene Linienintegral Im Fall eines ebenen Linienintegrals liegt der Integrationsweg C häufig in Form einer expliziten Funktionsgleichung y = f (x) vor. Das

Mehr

Komplexe Zahlen und Funktionen

Komplexe Zahlen und Funktionen Komplexe Zahlen und Funktionen 1. komplexes Gleichungssystem z 1 iz 2 = i 2 z 2 + 3z 3 = 6 6i 2iz 1 3iz 3 = 1 8i 2. komplexe Gleichung Welche z C erfüllen die Gleichung 4z 2 4 z + 1 = 0? 3. konjugiert-komplexe

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

10 Der Satz von Fubini

10 Der Satz von Fubini er Satz von Fubini ie Bezeichnungen seien wie in den Paragraphen 8 und 9. Satz. (Satz von Tonelli Es sei f : d [, + ] messbar. (Aus 8 folgt dann, dass f, f y messbar sind, wobei klar ist, dass f, f y sind.

Mehr

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015 Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 3: Analytische Geometrie Das Modell einer Gartenlaterne kann als Stumpf einer regelmäßigen quadratischen

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 223 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 25. Janua6 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

Ptolemäus (2. Jhdt. n. Chr.) gilt als erster Hersteller eines Globus und führt Längen- und Breitengrade zur Positionsangabe ein.

Ptolemäus (2. Jhdt. n. Chr.) gilt als erster Hersteller eines Globus und führt Längen- und Breitengrade zur Positionsangabe ein. Die Gestalt der Erde Früheste Vorstellung: Ebene ( Erdscheibe ) Spätestens seit Pythagoras (6. Jhdt. v. Chr.) bzw. Aristoteles (4. Jhdt. v. Chr.) setzte sich die Ansicht durch, die Erde sei kugelförmig.

Mehr

Ptolemäus (2. Jhdt. n. Chr.) gilt als erster Hersteller eines Globus und führt Längen- und Breitengrade zur Positionsangabe ein.

Ptolemäus (2. Jhdt. n. Chr.) gilt als erster Hersteller eines Globus und führt Längen- und Breitengrade zur Positionsangabe ein. Die Gestalt der Erde Früheste Vorstellung: Ebene ( Erdscheibe ) Spätestens seit Pythagoras (6. Jhdt. v. Chr.) bzw. Aristoteles (4. Jhdt. v. Chr.) setzte sich die Ansicht durch, die Erde sei kugelförmig.

Mehr

2 Das Bild In Schulbüchern und Arbeitsblättern sieht man oft Würfel -Darstellungen wie etwa in der Abbildung 1. Abb. 1: Was ist denn das?

2 Das Bild In Schulbüchern und Arbeitsblättern sieht man oft Würfel -Darstellungen wie etwa in der Abbildung 1. Abb. 1: Was ist denn das? Hans Walser, [20131013], [20160331], [20160401] Quetschwürfel 1 Worum geht es? Es wird auf die Problematik der in Schulen weitverbreiteten Schrägbilder eingegangen. 2 Das Bild In Schulbüchern und Arbeitsblättern

Mehr

Räumliche Bereichsintegrale mit Koordinatentransformation

Räumliche Bereichsintegrale mit Koordinatentransformation Räumliche Bereichsintegrale mit Koordinatentransformation Gegeben seien ein räumlicher Bereich, das heißt ein Körper K im R 3, und eine von drei Variablen abhängige Funktion f f(,, z). Die Aufgabe bestehe

Mehr