Wissensmanagement WS 2010/2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wissensmanagement WS 2010/2011"

Transkript

1 Wissensmanagement Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 WS 2010/2011

2 Motivation Wie wird Wissen repräsentiert? verarbeitet? erworben? ausgetauscht? Wissen über Eigenschaften und Beziehungen von Objekten und Gruppen von Objekten Aktionsmöglichkeiten und deren Folgen Nutzung von Wissen zum Lösen von Problemen Planen von Handlungen gemeinsamen Handeln

3 Einordnung in die Informatik Informatik Lehre von Darstellung und Verarbeitung von Information Information (neue) Auskunft über ein Ereignis, einen Tatbestand oder einen Sachverhalt, Beseitigung von Ungewissheit Einordnung in die Teilgebiete der Informatik: theoretische Informatik: Grundlagen formale Sprachen, klassische Logiken technische Informatik: Anwendung technische Diagnose, z.b. Hardware praktische Informatik: Grundlagen Algorithmen für Suche, Planen, Regelauswertung angewandte Informatik: Grundlagen und Anwendung nichtklassische Logiken, Wissensverarbeitende Systeme

4 Inhalt der Lehrveranstaltung Daten, Information, Wissen intelligente Agenten Wissensrepräsentation und -verarbeitung Wiederholung klassische Aussagen- und Prädikatenlogik Unvollständiges Wissen nichtmonotones Schließen Modale Logiken Temporallogiken, Beschreibungslogik Ontologien Formale Begriffsanalyse Handlungsplanung Koordination gemeinsamen Wissens und Handelns, Multi-Agenten-Systeme

5 Literatur Folien zur aktuellen Vorlesung unter http: //wwwstud.fh-zwickau.de/~sibsc/lehre/ws10/wms/ Bücher zu wissensbasierten Systemen: Stuart Russell, Peter Norvig: Künstliche Intelligenz (Pearson 2004) Ingo Boersch, Jochen Heinsohn, Rolf Socher: Wissensverarbeitung (Spektrum, 2007) Ronald Brachman, Hector Levesque: Knowledge Representation and Reasoning (Morgan Kaufmann 2004) George Luger: Künstliche Intelligenz (Pearson 2001)

6 Organisation der Lehrveranstaltung 7 Termine zu je Vorlesung Beispiele und schriftliche Übungen mit unterschiedlichen Zeit-Anteilen evtl. Vorträge

7 Agenten Agent: selbständig handelnde Einheit Funktionen: Wahrnehmung der Umwelt Reaktion auf Umwelt Anpassung, Lernen Kommunikation mit anderen Agenten Beispiele: z.b. Spieler Mensch Roboter Computer Software

8 Agent und Umgebung Wahrnehmung Sensoren Agent Steuerung Umgebung Aktoren Aktion Mögliche Interaktion abhängig von vorhandenen Sensoren z.b. Sinnesorgane, Kamera, Thermometer, Aktoren z.b. Hand, Motor, Regler Steuerung z.b. Planung, Reaktion auf Störungen

9 Intelligente Agenten Eigenschaften: reaktiv: regelmäßige Wahrnehmung der Umweltsignale, jede Aktionen abhängig vom Weltzustand aktiv: handelt zielgerichtet sozial: Interaktion mit anderen Agenten Agent hat und verwendet Wissen über aktuellen Weltzustand von eigenen Aktionen unabhängige Änderungen des Weltzustandes (z.b. Nachts wird es dunkel.) von eigenen Aktionen abhängige Änderungen des Weltzustandes (z.b. Ein von einer Stelle weggenommener Gegenstand befindet sich nicht mehr dort.)

10 Typische Anwendungen künstlicher Agenten Spiele (z.b. Schachprogramm) autonome Steuerung (z.b. autonome Fahrzeuge, Autopilot) autonome Planung (z.b. Zeitpläne) Diagnose (z.b. Anlagenüberwachung) Entscheidungsunterstützung (z.b. Konfigurationen) Robotik (z.b. Reinigungsroboter, Roboterfußball)

11 Roboter als Agenten Industrieroboter: Einsatz in der industrielle Fertigung (z.b. Automobilbau) meist stationäre Modelle (Roboterarm) Sensoren zur Überwachung Reaktionsmuster für Abweichungen, Fehlerkorrektur meist keine eigene Handlungsplanung Autonome mobile Roboter: Sensoren zur Wahrnehmung von Umwelt (z.b. Berührung, Kamera) Interpretation der Wahrnehmungen autonome Handlungsplanung Wissensrepräsentation (z.b. Position, Handlungsziel) (Kommunikation mit Umwelt und anderen Agenten)

12 Einsatz autonomer mobiler Roboter aktuelle und potentielle Einsatzfelder: Dienstleistungen z.b. Hausarbeiten (Reinigung, Rasenmähen) Gesundheitswesen und Pflege Einsatz und Assisenz bei Operationen Dienstleistungen (Lieferung, Datenaufnahme) körperlich schwere Pflegemaßnahmen (Umlagern) Katastrophengebiete z.b. Sondierung, Rettung, Räumung Luft- und Raumfahrt Unterhaltung z.b. Haustier-Ersatz, Roboter-Fußball Überblick über aktuellen Stand der zivilen Forschung bieten Robotik-Wettbewerbe, z.b. Robocup

13 Was ist (künstliche) Intelligenz? Turing-Test (1950): eine Person A, 2 verschlossene Räume R1 und R2, in einem Raum befindet sich ein Mensch B, im andern eine Maschine C Kommunikation über neutrales Medium A stellt Fragen, B und C antworten Maschine besteht Turing-Test (ist intelligent), wenn A durch Fragen nicht herausfinden kann, in welchem Raum sich die Maschine befindet These: Intelligenz = intelligentes Verhalten Chinese-Room-Test (Searle 1980): eine (nicht chinesisch verstehende) Person B in einem Zimmer mit einem (riesigen) Regelbuch mit chinesischen Fragen und passenden Antworten. A stellt Fragen, B antwortet. B antwortet immer passend, ohne die Frage verstanden zu haben. These: (anscheinend) intelligentes Verhalten ist noch keine Intelligenz, wenn Verständnis fehlt. Beispiel: Psychotherapeutin Eliza

14 Ansätze zur Modellierung von Wissen / Intelligenz verschiedene Abstraktionsstufen: Modellierung der menschlichen Reizaufnahme und -verarbeitung und des menschlichen Verstehens (kognitive Methoden) Modellierung des menschlichen Handelns Turing Test Modellierung des rationalen Denkens (abstrahiert von biologischem Vorbild) Regelsysteme, Logiken

15 Ziele wissensverarbeitender Systeme Simulation menschlichen Verhaltens (Verständnis und eigenes Denken nicht notwendig) schwache künstliche Intelligenz Simulation des menschlichen Denkens (Verständnis und eigenes Denken notwendig) starke künstliche Intelligenz

16 Wissen, Information, Daten Umwelt Eindrücke, Reize System Wahrnehmen, Beobachten Daten Erkennen, Verstehen Anwenden, Können Lernen, Reflektieren Information Wissen Intelligenz

17 Wissen, Information, Daten Daten Darstellungsform (Syntax) Zeichenketten, Symbole, Ton,... Information Bedeutung der Daten (Semantik) in einem bestimmten Kontext Wissen Information mit einem Nutzen trägt zur Lösung eines Problemes bei Beispiel: Daten: 39.7 Information: Körpertemperatur= 39.7 Wissen: Fieber (behandeln)

18 Wissen zur Problemlösung Beispiele: Daten: 39.7 Information: Körpertemperatur= 39.7 Kontextwissen: Körpertemperatur> 39.0 ist Fieber Wissen: Fieber Problemlösung: Fieberbehandlung Daten: FRUEFPUJRERFCEBOYRZ Information: FRUEFPUJRERFCEBOYRZ ist eine unverständliche, also wahrscheinlich verschlüsselte Nachricht Kontextwissen: verschiedene Chiffrierverfahren, Buchstabenhäufigkeiten Wissen: FRUEFPUJRERFCEBOYRZ ist eine mit dem?-verfahren und den Schüssel? verschlüsselte Nachricht Problemlösung:?

19 Arten von Wissen deklarativ statisches Wissen Fakten, Aussagen, Zusammenhänge, z.b. Fliegenpilze sind ungenießbar. Es existieren gerade Primzahlen. Eine Liste (x 1,..., x n ) ist genau dann aufsteigend sortiert, wenn sie leer ist oder (x 1 x 2 und (x 2,..., x n ) aufsteigend sortiert ist). prozedural dynamisches Wissen (über Zustandsübergänge) Regeln, Algorithmen, Funktionen, z.b. Kochrezept Euklidischer Algorithmus aussagenlogisches Resolutionsverfahren Sortierverfahren Ist die folgende Aussage deklarativ? Jedes Kind eines Kindes einer Person X ist ein Enkel von X. Also: Repräsentationen von Regeln, Algorithmen und Funktionen lassen sich auch als deklarativ auffassen.

20 Explizites und implizites Wissen explizites Wissen bildet die Wissensbasis deklarativ, z.b. Fakten, Aussagen, Zusammenhänge Beispiel: implizit kann zur Problemlösung (z.b. durch Herleitung neuen Wissens) angewendet werden prozedural, z.b. Regeln, Algorithmen, Funktionen Faktenwissen (explizit): Tom ist ein Kind von Paul. Paul ist ein Kind von Anton. Regelwissen (implizit): Jedes Kind eines Kindes einer Person X ist ein Enkel von X.

21 Programmierung und Wissensrepräsentation Programmierung Entwurf eines Algorithmus zur Lösung des Problemes Identifikation des zur Lösung des Problemes relevanten Wissens Implementierung in einer geeigneten Programmiersprache Problemlösung durch Ausführung des Programmes Wissensrepräsentation Darstellung des relevanten Wissens in einer geeigneten Repräsentationssprache Problemlösung durch Anwendung eines Standardverfahrens

22 Beispiel: n-damen-problem Aufgabe: Setze n Damen ohne gegenseitige Bedrohungen auf ein n n-spielfeld Programmierung Wissensrepräsentation Entwurf geigneter Datenstrukturen und eines Algorithmus zur Lösungssuche Identifikation der Bedingungen an Aufgabe und Lösung Implementierung Repräsentation von Spielfeld und Bedingungen an eine Lösung als logische Formeln (z.b. CNF) Problemlösung durch Ausführung des Programmes Problemlösung durch logisches Inferenzverfahren (z.b. Resolution, SAT-Solver, Prolog)

23 Programmierung und Wissensrepräsentation Programmieren Wissensrepräsentation Erklärung der Lösung: Verfolgen der Zustandsänderung bei Programmausführung (Debugging) vom Inferenzverfahren verwendete Voraussetzungen Fehlerbehandlung: Debugging Codeänderung fehlendes Wissen einfügen falsches Wissen löschen Wissenserweiterung: neuer Entwurf, Neuimplementierung neues Wissen in Wissensbasis einfügen

24 Darstellung von Wissen formale Repräsentation des Wissens in einer Wissensbasis: spezielle Form der Daten in der Wissensbasis abhängig von Problembereich geplante Verwendung Wissen in Wissensbasis ist immer Abstraktion, beschreibt Modelle der Realität Auswahl von (für den Anwendungsbereich) wichtigem Wissen Vernachlässigung unwichtiger Details Beispiele: Liniennetzplan Grundriss Stundenplan Kostenplan

25 Wissensverarbeitung Problemlösen algorithmische Suche in Zustandsräumen logisches Schließen Beispiel: n-damen-problem, kürzeste Wege in Graphen Planen Finden einer Folge von Aktionen zum Erreichen eines Zieles Beispiel: früh Anziehen, Fertigungsroboter Klassifikation Finden von Klassen (Diagnosen) anhand der Merkmalswerte (Symptome) Beispiel: Fahrzeuge, Fehlfunktionen teilweise bekannt aus den Lehrveranstaltungen Grundlagen der Wissensverarbeitung Wissensbasierte Diagnosesysteme (Fuzzy Logik und künstliche neuronale Netze)

26 Problemlösen Modellierung des Problems Zustandsübergangssystem Menge logischer Formeln Verfahren zur Lösung Suche (vollständig oder heuristisch) Deduktion

27 Beispiele Finden von Wegen in einem Graphen Aufgabe: gegeben: Graph G (Tafel) gesucht: Weg (Pfad) in G von Knoten u zu Knoten v Lösungsidee: Wege als Knoten eines Suchbaumes 3 Krüge Aufgabe: gegeben: 3 volle Krüge mit verschiedenem Volumen: 4l, 7l, 9l, gesucht: genau 6l in einem der 3 Krüge Lösungsidee: Zustände als Knoten eines Suchbaumes Missionare + Kannibalen Schiebefax

28 Darstellung von Problem und Lösung Problem: gegeben: gesucht: Menge V von Zuständen (evtl. unendlich) Startzustand s V Menge Z V von Zielzuständen (oder formale Beschreibung der Zielzustände) mögliche Übergänge zwischen Zuständen Weg von einem Start- zu einem Zielzustand Lösung: Folge von Zuständen (Mitunter interessiert nur der erreichte Endzustand.) Repräsentation als Graph G = (V, E) (Zustandsübergangssystem): Knotenmenge V : Zustände (gerichtete) Kanten: Zustandsübergänge Entfaltung des Graphen zu einem Baum: Pfade im Graphen = Knoten im Baum

29 Wissensrepräsentation durch Zustandsübergangssysteme Problem: gegeben: gesucht: Menge V von Zuständen (evtl. unendlich) Startzustand s V Menge Z V von Zielzuständen (oder formale Beschreibung der Zielzustände) Weg vom Start- zu einem Zielzustand

Wissensmanagement WS 2011/2012

Wissensmanagement WS 2011/2012 Wissensmanagement Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de WS 2011/2012 Motivation Wie wird Wissen

Mehr

Wissensbasierte Diagnosesysteme

Wissensbasierte Diagnosesysteme Wissensbasierte Diagnosesysteme Prof. Dr. Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://www.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de WS 2012/2013 Motivation

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Nichtmonotones Schließen

Nichtmonotones Schließen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen klassischer Aussagenlogik: Entscheidungstabellen, -bäume, -diagramme Wissensrepräsentation und -verarbeitung durch

Mehr

Seminar Künstliche Intelligenz Wintersemester 2013/14

Seminar Künstliche Intelligenz Wintersemester 2013/14 Seminar Künstliche Intelligenz Wintersemester 2013/14 Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 31.10.2013 2 / 13 Überblick Teilgebiete der KI Problemlösen,

Mehr

Wintersemester 2010/2011 Rüdiger Westermann Institut für Informatik Technische Universität München

Wintersemester 2010/2011 Rüdiger Westermann Institut für Informatik Technische Universität München Informatik 1 Wintersemester 2010/2011 Rüdiger Westermann Institut für Informatik Technische Universität München 1 0 Allgemeines Zielgruppen Siehe Modulbeschreibung Studierende anderer (nicht Informatik)

Mehr

Methoden der KI in der Biomedizin Logische Agenten 1

Methoden der KI in der Biomedizin Logische Agenten 1 Methoden der KI in der Biomedizin Logische Agenten 1 Karl D. Fritscher Organisatorisches Voraussetzungen: Lehrstoff zu den Themengebieten: a. Einführung in die KI, Expertensysteme b. Problemlösung durch

Mehr

Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung

Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung Wintersemester 2009/10 Prof. Dr. Dr. h.c. Manfred Broy Unter Mitarbeit von Dr. K. Spies, Dr. M. Spichkova, L. Heinemann, P.

Mehr

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Diagnoseziel Klassifikation

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Diagnoseziel Klassifikation Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Diagnoseziel Klassifikation sicher heuristisch überdeckend Entscheidungstabellen

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Probleme der Navigation von Rehabilitationsroboter: Intelligenter Rollstuhl

Probleme der Navigation von Rehabilitationsroboter: Intelligenter Rollstuhl 16.04.2013 Advanced Seminar "Computer Engineering" WS2012/2013 Probleme der Navigation von Rehabilitationsroboter: Intelligenter Rollstuhl Sandrine Michele Chouansu Lehrstuhl für Automation; Universität

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung

Kapitel 3: Problemformulierungen in der KI. oder das Problem ist die halbe Lösung Kapitel 3: Problemformulierungen in der KI oder das Problem ist die halbe Lösung Lernziele: eine Struktur für die Definition eines problemlösenden Agenten kennen die wichtige Rolle von Abstraktionen in

Mehr

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher:

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher: Quellen: Towards a Human Computer InteractionPerspective von B.K. & B.K. LV: Visuelle Sprachen (03-763) Universität Bremen WS 2001/02 Visual Language Theory: Towards a Human- Computer Perspective; N. Hari

Mehr

Spezielle Themen der KI Wissensrepräsentation und Lernen Einleitung

Spezielle Themen der KI Wissensrepräsentation und Lernen Einleitung Spezielle Themen der KI Wissensrepräsentation und Lernen Einleitung Marc Erich Latoschik AI & VR Lab, Faculty of Technology marcl@techfak.uni-bielefeld.de Übersicht der Vorlesung Ergänzung und Vertiefung

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de Beschreibungslogiken Daniel Schradick 1schradi@informatik.uni-hamburg.de Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining

Mehr

Logische Programmierung

Logische Programmierung Logische Programmierung B-82 Deklaratives Programmieren in Prädikatenlogik: Problem beschreiben statt Algorithmus implementieren (idealisiert). Grundlagen: Relationen bzw. Prädikate (statt Funktionen);

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 6 Information Engineering TU Dortmund Wintersemester 2008/09 G. Kern-Isberner (TU Dortmund) DVEW 1 / 38 Kapitel 1 Einführung und

Mehr

1. Einführung Einführung in die Programmierung (fbw) Sommersemester 2008 Prof. Dr. Bernhard Humm Hochschule Darmstadt, fbi

1. Einführung Einführung in die Programmierung (fbw) Sommersemester 2008 Prof. Dr. Bernhard Humm Hochschule Darmstadt, fbi 1. Einführung Einführung in die Programmierung (fbw) Sommersemester 2008 Prof. Dr. Bernhard Humm Hochschule Darmstadt, fbi 1 Prof. Dr. Bernhard Humm, Hochschule Darmstadt, FB Informatik: Einführung in

Mehr

Reaktive und Hybride Agenten

Reaktive und Hybride Agenten Reaktive und Hybride Agenten Seminar: Multiagentensysteme SS07 Veranstalter: Prof. Dr. Ipke Wachsmuth Dipl. Inform. Kirsten Bergmann Vortrag von Daniel Nagel und Alexander Wecker 03.05.2007 Mars Vortrag

Mehr

Schulinternes Curriculum für Informatik (Q2) Stand April 2015

Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Unterrichtsvorhaben Q2-I Thema: Modellierung und Implementierung von Anwendungen mit dynamischen, nichtlinearen Datenstrukturen Modellieren

Mehr

VBA-Programmierung WS 2008/09

VBA-Programmierung WS 2008/09 VBA-Programmierung Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de WS 2008/09 Organisation der Lehrveranstaltung

Mehr

Inhaltsverzeichnis: Definitionen Informationssysteme als Kommunikationssystem Problemlösende Perspektiven Allgemeine System Annäherung Fazit

Inhaltsverzeichnis: Definitionen Informationssysteme als Kommunikationssystem Problemlösende Perspektiven Allgemeine System Annäherung Fazit Informationssysteme Inhaltsverzeichnis: Definitionen Informationssysteme als Kommunikationssystem Problemlösende Perspektiven Allgemeine System Annäherung Fazit Definitionen: Informationen Informationssysteme

Mehr

1. Übersicht, Einführung und Motivation

1. Übersicht, Einführung und Motivation Kapitel 1 Übersicht, Einführung und Motivation 1. Übersicht, Einführung und Motivation 8 Struktur der Vorlesung 1 Übersicht, Einführung und Motivation 2 Wissensrepräsentation 3 Klassische und nichtklassische

Mehr

Verteilte Systeme CS5001

Verteilte Systeme CS5001 CS5001 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Einführung Administratives Unterlagen Verwendbar: Master of Science (Informatik) Wahlpflichtfach (Theorie-Pool) Unterlagen Folien:

Mehr

Thema. Intelligente Agenten im Web

Thema. Intelligente Agenten im Web Thema Intelligente Agenten im Web Einführendes Beispiel Suchmaschine Probleme: - Immer mehr falsche Informationen - Anwender werden überfordert - Zeitaufwand erhöht sich - Zunehmendes Sicherheitsrisiko

Mehr

Zusammenfassung KI (von Marco Piroth)

Zusammenfassung KI (von Marco Piroth) Zusammenfassung KI (von Marco Piroth) Definition: KI ist das Teilgebiet der Informatik, das sich damit beschäftigt, menschliche, intelligente Verhaltensweisen auf einer Maschine nachzuvollziehen. Softwaretechnische

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Programmieren Formulierung eines Algorithmus in einer Programmiersprache

Programmieren Formulierung eines Algorithmus in einer Programmiersprache Zum Titel der Vorlesung: Programmieren Formulierung eines in einer Programmiersprache Beschreibung einer Vorgehensweise, wie man zu jedem aus einer Klasse gleichartiger Probleme eine Lösung findet Beispiel:

Mehr

B.SC. INFORMATIK TIM JUNGNICKEL

B.SC. INFORMATIK TIM JUNGNICKEL ABOUT ME (21) 5. SEMESTER B.SC. INFORMATIK TU-BERLIN SEIT 2008 2 AGENDA Was ist Informatik? Wie geht es weiter? Was kann ich an der Uni machen? 1 2 3 4 Struktur des Studiums Was lernt man an der Universität?

Mehr

Lehrpläne NRW Sek.stufe 2. Lernen im Kontext

Lehrpläne NRW Sek.stufe 2. Lernen im Kontext Lehrpläne NRW Sek.stufe 2 Lernen im Kontext Fachliche Inhalte Lernziele Informatik NRW Fähigkeit, komplexe Zusammenhänge mit gedanklicher Schärfe zu durchdringen (Problemanalyse) Überblick über unterschiedliche

Mehr

Bereiche der KI. KI und das Web Eine Übersicht. Allgemeines zur KI. Einfluss der KI auf die Informatik. Herausforderungen im Web

Bereiche der KI. KI und das Web Eine Übersicht. Allgemeines zur KI. Einfluss der KI auf die Informatik. Herausforderungen im Web Bereiche der KI KI und das Web Eine Übersicht Web Site Engineering, Vorlesung Nr. 13 Neuronale Netze Suchverfahren Expertensysteme Fallbasiertes Schließen (Case-Based Reasoning) Planen Maschinelles Lernen

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Universität Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Prof. Dr.-Ing. M. Weyrich. Softwaretechnik I

Universität Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Prof. Dr.-Ing. M. Weyrich. Softwaretechnik I Universität Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Prof. Dr.-Ing. M. Weyrich Softwaretechnik I Wintersemester 2015 / 2016 www.ias.uni-stuttgart.de/st1 st1@ias.uni-stuttgart.de

Mehr

Informatik und Informationstechnik (IT)

Informatik und Informationstechnik (IT) Informatik und Informationstechnik (IT) Abgrenzung Zusammenspiel Übersicht Informatik als akademische Disziplin Informations- und Softwaretechnik Das Berufsbild des Informatikers in der Bibliothekswelt

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 2. Agenten, Umgebungen und Lösungsverfahren Malte Helmert Universität Basel 4. März 2013 Rationale Agenten Heterogene Einsatzgebiete KI-Systeme erfüllen sehr unterschiedliche

Mehr

Leseprobe. Uwe Lämmel, Jürgen Cleve. Künstliche Intelligenz ISBN: 978-3-446-42758-7. Weitere Informationen oder Bestellungen unter

Leseprobe. Uwe Lämmel, Jürgen Cleve. Künstliche Intelligenz ISBN: 978-3-446-42758-7. Weitere Informationen oder Bestellungen unter Leseprobe Uwe Lämmel, Jürgen Cleve Künstliche Intelligenz ISBN: 978-3-446-42758-7 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42758-7 sowie im Buchhandel. Carl Hanser Verlag,

Mehr

Übersicht. Prädikatenlogik höherer Stufe. Syntax der Prädikatenlogik 1. Stufe (mit Gleichheit)

Übersicht. Prädikatenlogik höherer Stufe. Syntax der Prädikatenlogik 1. Stufe (mit Gleichheit) Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlussfolgern 7. Logische Agenten 8. Prädikatenlogik 1. Stufe 9. Schließen in der Prädikatenlogik 1. Stufe 10. Wissensrepräsentation IV

Mehr

Motivation und Geschichte. Geschichte der Logik Logik und Informatik

Motivation und Geschichte. Geschichte der Logik Logik und Informatik Motivation und Geschichte Geschichte der Logik Logik und Informatik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 2.1 Motivation und Geschichte Geschichte der Logik 13 Aufgaben der Logik

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS5 Slide 1 Wissensbasierte Systeme Vorlesung 5 vom 17.11.2004 Sebastian Iwanowski FH Wedel WBS5 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen. Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.de Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Künstliche Intelligenz

Künstliche Intelligenz George F. Luger 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Künstliche Intelligenz Strategien zur Lösung komplexer

Mehr

Woher Methoden der KI stammen Gebiete der Künstlichen Intelligenz wissensbasierte Systeme

Woher Methoden der KI stammen Gebiete der Künstlichen Intelligenz wissensbasierte Systeme Woher Methoden der KI stammen Gebiete der Künstlichen Intelligenz (induktives) Lernen Aus einer anwendungsorientierten Sicht spielen in der Künstlichen Intelligenz insbesondere folgende Gebiete eine Rolle:

Mehr

Program = Logic + Control

Program = Logic + Control Program = Logic + Control Prozedurale/imperative Sprachen: Abläufe formulieren Computer führt aus von-neumann-maschine Idee von deklarativen/logischen/funktionalen Programmiersprachen: Zusammenhänge formulieren

Mehr

Markus Krötzsch DIAMOND. Data Integration and Access. by Merging. Ontologies and Databases. 13. Juni 2013

Markus Krötzsch DIAMOND. Data Integration and Access. by Merging. Ontologies and Databases. 13. Juni 2013 Data Integration and Access by Merging Ontologies and Databases 13. Juni 2013 Zielstellung Verbesserter Zugriff auf große, heterogene und dynamische Datenmengen Seite 2 Seite 3 Seite 4 Wikidata Offizielle

Mehr

IT-Basics 2. DI Gerhard Fließ

IT-Basics 2. DI Gerhard Fließ IT-Basics 2 DI Gerhard Fließ Wer bin ich? DI Gerhard Fließ Telematik Studium an der TU Graz Softwareentwickler XiTrust www.xitrust.com www.tugraz.at Worum geht es? Objektorientierte Programmierung Konzepte

Mehr

Informatik eine spannende Berufsperspektive

Informatik eine spannende Berufsperspektive Informatik eine spannende Berufsperspektive Was ist Informatik? Was bietet das Studium der Informatik bzw. eine Berufsausbildung? Welche Berufsperspektiven gibt es? Referentin: Prof. Dr. Ing. Birgit Vogel-Heuser

Mehr

Bachelor-Arbeiten am Lehrstuhl Informatik VII. Dr. Frank Weichert. frank.weichert@tu-dortmund.de. technische universität dortmund

Bachelor-Arbeiten am Lehrstuhl Informatik VII. Dr. Frank Weichert. frank.weichert@tu-dortmund.de. technische universität dortmund Bachelor-Arbeiten am Lehrstuhl Dr. Frank Weichert frank.weichert@tu-.de F. Weichert Juli 2013 Bachelor Arbeiten am Lehrstuhl 1 Übersicht zum Lehrstuhl / Thematische Einordnung F. Weichert Juli 2013 Bachelor

Mehr

2 Psychische Determinanten des Konsumentenverhaltens

2 Psychische Determinanten des Konsumentenverhaltens Gliederung 2 Psychische Determinanten des Konsumentenverhaltens 2.1 Aktivierende Konstrukte/Prozesse 2.2 Kognitive Konstrukte/Prozesse 2.4 Komplexe Konstrukte/Prozesse 1 2.2 Kognitive Konstrukte/Prozesse

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Kapitel 8: Semantische Netze

Kapitel 8: Semantische Netze Kapitel 8: Semantische Netze Teil 1 (Dieser Foliensatz basiert auf Material von Mirjam Minor, Humboldt- Universität Berlin, WS 2000/01) Wozu brauchen wir Begriffe? Mit dieser Frage beginnt J. Hoffmann

Mehr

Case-Based Reasoning und anderen Inferenzmechanismen

Case-Based Reasoning und anderen Inferenzmechanismen Case-Based Reasoning und anderen Inferenzmechanismen Daniel Müller 21 April 2006 DM () CBR und Inferenz 21 April 2006 1 / 31 Contents 1 Einleitung 2 Inferenzmechanismen Statistische Verfahren Data Mining

Mehr

Frieder Nake: Information und Daten

Frieder Nake: Information und Daten Frieder Nake: Information und Daten Mit Grundlagen der Zeichentheorie nach Morris Seminar 31120: Information Philosophische und informationswissenschaftliche Perspektiven, SS 2004 Frieder Nake: Information

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Wissensrepräsentation Vorlesung

Wissensrepräsentation Vorlesung Wissensrepräsentation Vorlesung Sommersemester 2008 1. Sitzung Dozent Nino Simunic M.A. Computerlinguistik, Campus DU Wissensrepräsentation, SS 2008 (1) Organisatorisches (2) Überblick: Inhalte Organisatorisches

Mehr

Architektur verteilter Anwendungen

Architektur verteilter Anwendungen Architektur verteilter Anwendungen Schwerpunkt: verteilte Algorithmen Algorithmus: endliche Folge von Zuständen Verteilt: unabhängige Prozessoren rechnen tauschen Informationen über Nachrichten aus Komplexität:

Mehr

Regelungs- und Systemtechnik 1. Kapitel 1: Einführung

Regelungs- und Systemtechnik 1. Kapitel 1: Einführung Regelungs- und Systemtechnik 1 Kapitel 1: Einführung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Luft- und Raumfahrtindustrie Zu regelnde Größen: Position Geschwindigkeit Beschleunigung

Mehr

Die Informatik als junge Wissenschaft

Die Informatik als junge Wissenschaft Die Informatik als junge Wissenschaft Die Informatik ist die Wissenschaft von der automatischen Informationsverarbeitung. Die Informatik befasst sich mit den Gesetzmäßigkeiten und Prinzipien informationsverarbeitender

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm 1 Vom Problem zum Programm Ein Problem besteht darin, aus einer gegebenen Menge von Informationen eine weitere (bisher unbekannte) Information zu bestimmen. 1 Vom Problem zum Programm Ein Algorithmus ist

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr Einführung Information Retrieval Norbert Fuhr 13. Oktober 2011 IR in Beispielen Was ist IR? Daten Information Wissen Dimensionen des IR Rahmenarchitektur für IR-Systeme Adhoc-Suche: Web IR in Beispielen

Mehr

Künstliche Intelligenz Softwaretechnologie: Prolog

Künstliche Intelligenz Softwaretechnologie: Prolog Künstliche Intelligenz Softwaretechnologie: Prolog Stephan Schwiebert Institut für Linguistik Abt. Sprachliche Informationsverarbeitung Universität zu Köln sschwieb@spinfo.uni-koeln.de Organisatorisches

Mehr

Einführung in die Angewandte Informatik

Einführung in die Angewandte Informatik I: Kognitive Systeme und Kognitive Psychologie Fakultät WIAI, Otto-Friedrich Universität Bamberg Angewandte Informatik/Kognitive Systeme WS 2006/2007 Was sind Kognitive Systeme? Intelligentes System: löst

Mehr

Künstliche Intelligenz Logische Agenten & Resolution

Künstliche Intelligenz Logische Agenten & Resolution Künstliche Intelligenz Logische Agenten & Resolution Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Inferenz-Algorithmus Wie könnte ein

Mehr

Softwareanforderungsanalyse

Softwareanforderungsanalyse Softwareanforderungsanalyse Evolution von Anforderungen Burkhardt Renz Institut für SoftwareArchitektur der Technischen Hochschule Mittelhessen Wintersemester 2015/16 Evolution von Anforderungen Anforderungen

Mehr

Simulation als epistemologische Grundlage für intelligente Roboter

Simulation als epistemologische Grundlage für intelligente Roboter 1 Simulation als epistemologische Grundlage für intelligente Roboter Andreas Tolk The MITRE Corporation Umut Durak Deutsches Zentrum für Luft- und Raumfahrt e.v. (DLR) Public Release No. 17-0085 2017 The

Mehr

Programmieren I. Überblick. www.kit.edu. Institut für Angewandte Informatik

Programmieren I. Überblick. www.kit.edu. Institut für Angewandte Informatik Programmieren I Überblick KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Übersicht Programmieren Programmieren I (1. Semester)

Mehr

Modellierungstechniken im Softwaredesign. Praxisprojekt [ai] Control WS 2011/2012 Lara Baschour und Anne Heiting

Modellierungstechniken im Softwaredesign. Praxisprojekt [ai] Control WS 2011/2012 Lara Baschour und Anne Heiting Modellierungstechniken im Softwaredesign Praxisprojekt [ai] Control WS 2011/2012 Lara Baschour und Anne Heiting Was ist Modellierung? Modell = Ein Modell ist eine Repräsentation eines Systems von Objekten,

Mehr

ShopBot, ein Software-Agent für das Internet

ShopBot, ein Software-Agent für das Internet Software-Agenten p.1/20 ShopBot, ein Software-Agent für das Internet Eine Einführung in (Software-)Agenten Madeleine Theile Software-Agenten p.2/20 Aufbau des Vortrags grundlegende Theorie Definition Autonomy,

Mehr

Einführung in Petri-Netze. Modellierung von Abläufen und Prozessen (1) Abhängigkeitsgraphen: Motivation. Petri-Netze

Einführung in Petri-Netze. Modellierung von Abläufen und Prozessen (1) Abhängigkeitsgraphen: Motivation. Petri-Netze Einführung in Petri-Netze Modellierung von Abläufen und Prozessen () Motivation Abhängigkeitsgraphen: A B 6 C 5 D Petri-Netze Markierungen Invarianten Credits: L. Priese, H. Wimmel: Petri-Netze, Theoretische

Mehr

Prädikatenlogik - Micromodels of Software

Prädikatenlogik - Micromodels of Software Prädikatenlogik - Micromodels of Software Philipp Koch Seminar Logik für Informatiker Universität Paderborn Revision: 30. Mai 2005 1 Inhaltsverzeichnis 1 Motivation 3 2 Modelle 3 2.1 Definition eines Modells.......................

Mehr

KiRo - Tischfußball gegen den Roboter

KiRo - Tischfußball gegen den Roboter KiRo - Tischfußball gegen den Roboter Universität Ulm Fakultät für Informatik Proseminar Künstliche Intelligenz - KiRo - Tischfußball gegen den Roboter Referat am 17.07.2006 von Thomas Schnattinger Proseminar

Mehr

Seminar Künstliche Intelligenz Wintersemester 2014/15

Seminar Künstliche Intelligenz Wintersemester 2014/15 Seminar Künstliche Intelligenz Wintersemester 2014/15 Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 15.10.2014 2 / 14 Überblick Teilgebiete der KI Problemlösen,

Mehr

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren) Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Motivation und Geschichte. Geschichte der Logik Logik und Informatik

Motivation und Geschichte. Geschichte der Logik Logik und Informatik Motivation und Geschichte Geschichte der Logik Logik und Informatik Logik für Informatiker, M. Lange, IFI/LMU: Motivation und Geschichte Geschichte der Logik 12 Aufgaben der Logik Logik (aus Griechischem)

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Bildverstehen. Vorlesung an der TU Chemnitz SS 2013

Bildverstehen. Vorlesung an der TU Chemnitz SS 2013 Bildverstehen Vorlesung an der TU Chemnitz SS 2013 Johannes Steinmüller 1/B309 Tel.: 531 35198 stj@informatik.tu-chemnitz.de Seite zur Vorlesung: http://www.tu-chemnitz.de/informatik/ki/edu/biver/ Buch

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

Wissensbasierte Systeme II

Wissensbasierte Systeme II Wissensbasierte Systeme II Peter Becker FH Bonn-Rhein-Sieg Fachbereich Informatik peter.becker@fh-bonn-rhein-sieg.de Vorlesung Wintersemester 2003/04 Sicherer Umgang mit Datenstrukturen und Algorithmen

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Übersicht. 20. Verstärkungslernen

Übersicht. 20. Verstärkungslernen Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI Lernen 18. Lernen aus Beobachtungen 19. Lernen in neuronalen & Bayes

Mehr

!!!!T!!! Systems!() Multimedia Solutions

!!!!T!!! Systems!() Multimedia Solutions Inhalt. Was ist das semantische Web? Wie findet man einen Arzttermin mit Hilfe des semantischen Web? Wie gibt man Inhalten einen Sinn? Welche Werkzeuge stehen zur Verfügung? Wo können strukturierte Inhalte

Mehr

Formale Methoden: Ein Überblick

Formale Methoden: Ein Überblick Formale Methoden, Heinrich Rust, Lehrstuhl für Software-Systemtechnik, BTU Cottbus, 2004-09-16, p. 1 Formale Methoden: Ein Überblick Heinrich Rust Lehrstuhl für Software-Systemtechnik BTU Cottbus 2004-09-16

Mehr

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten)

Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Expertensysteme (Aufgaben, Aufbau, Komponenten) Wissensrepräsentation und -verarbeitung in klassischer Aussagenlogik: Entscheidungstabellen,

Mehr

Autonome Mobilität - Was wir von biologischen Systemen lernen können. Georg Färber Realzeit Computer - Systeme Technische Universität München

Autonome Mobilität - Was wir von biologischen Systemen lernen können. Georg Färber Realzeit Computer - Systeme Technische Universität München Autonome Mobilität - Was wir von biologischen Systemen lernen können Georg Färber Realzeit Computer - Systeme Technische Universität München Autonome Mobilität Lernen von der Biologie Merkmals- Erkennung

Mehr

Software-Engineering SS03. Zustandsautomat

Software-Engineering SS03. Zustandsautomat Zustandsautomat Definition: Ein endlicher Automat oder Zustandsautomat besteht aus einer endlichen Zahl von internen Konfigurationen - Zustände genannt. Der Zustand eines Systems beinhaltet implizit die

Mehr

Modulbeschreibung: Master of Education Informatik

Modulbeschreibung: Master of Education Informatik Modulbeschreibung: Master of Education Informatik Die Gewichtung der Einzelnoten bezieht sich im Folgenden auf eine Gesamtpunktzahl von 34 zu erbringenden Leistungspunkten. Nichtbenotete Leistungspunkte

Mehr

Informatik I. Grundlagen der systematischen Programmierung. Peter Thiemann WS 2008/09. Universität Freiburg, Germany

Informatik I. Grundlagen der systematischen Programmierung. Peter Thiemann WS 2008/09. Universität Freiburg, Germany Informatik I Grundlagen der systematischen Programmierung Peter Thiemann Universität Freiburg, Germany WS 2008/09 Organisatorisches Vorlesung Di und Do, 11-13 Uhr, HS 101-00-036 Dozent Prof. Dr. Peter

Mehr

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik)

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik) Vortrag Suchverfahren der Künstlichen Intelligenz Sven Schmidt (Technische Informatik) Suchverfahren der Künstlichen Intelligenz Grundlagen Zustandsraumrepräsentation Generische Suche Bewertung von Suchstrategien

Mehr

I. Einführung. 1. Ziel und Motivation. Ingenieur, Programmieren?? Ingenieur, Programmieren?? Technische Informatik für Ingenieure (TIfI) WS 2005/2006

I. Einführung. 1. Ziel und Motivation. Ingenieur, Programmieren?? Ingenieur, Programmieren?? Technische Informatik für Ingenieure (TIfI) WS 2005/2006 Technische Informatik für Ingenieure (TIfI) WS 2005/2006 I. Einführung Ekkart Kindler Ziel und Motivation Grundbegriffe Praxis Zwischendurch: Organisatorische Hinweise und Ablauf der Veranstaltung 1. Ziel

Mehr