Ferienkurs Analysis 1 für Physiker Integration - Aufgaben

Größe: px
Ab Seite anzeigen:

Download "Ferienkurs Analysis 1 für Physiker Integration - Aufgaben"

Transkript

1 Ferienkurs Analysis für Physiker Integration - Aufgaben Jonas Funke

2 Bemerkung Bemerkung Es sollten zuerst die Aufgaben, die nicht mit einem * versehen sind bearbeitet werden. Die Aufgaben die mit einem * versehen sind, bieten inhaltlich nicht viel Neues aber dienen zur Verbesserung des Rechenkalküls und können zu hause oder -wenn noch Zeit bleibt - nach den anderen Aufgaben bearbeitet werden. 2 Partielle Integration 2. Aufgabe Aufgabe Man berechne die folgenden Integrale: x 2 e a x mit a * x 2 cos(x) e x cos(5x) Lösung Zweimaliges partielles Intgerieren führt auf: ( x 2 e a x = a x2 2 a 2 x + 2 ) a 3 e ax Zweimaliges partielles Intgerieren führt auf: x 2 cos ( x) = (x 2 2) sin(x) + 2 cos(x) Zweimaliges partielles Intgerieren führt auf: e x cos(5x) = e x cos(5x) + 5e x sin(5x) 25 e x cos(5x) und damit erhält man durch Umstellen: e x cos(5x) = (5 sin(5x) cos(5x))e x 26 2

3 2 Partielle Integration 2.2 Aufgabe Aufgabe Man gebe eine Rekursionsformel für C n = * π/2 cos n (x) () an. L n = e ln n (x) (2) Lösung Mit Partieller Integration (u = cos(x) und v = cos n (x)) erhält man π/2 C n = cos n (x) = sin(x) cos n (x) π/2 + (n ) sin 2 (x) cos n 2 (x) = + (n ) ( cos 2 (x)) cos n 2 (x) = (n )(C n 2 C n ) C n = n n C n 2 Mit u = und v = ln(x) n folgt 2.3 Aufgabe L n = e ln(x) n = x ln(x) n e e n ln(x) n = e nl n Mit n, m N berechne man (zunächst rekursiv und damit dann explizit) I n,m = 2.4 Lösung x n ( x) m Mit der Substitution u = x n und v = ( x) m erhält man: I n,m = x n ( x) m = xn+ n + ( x)m + = m n + I n+,m = = m n + m n n + m m n + m n + m n + 2 I n+2,m 2 =... I n+m, }{{} /(n+m+) = m! n! (n + m + )! x n+ ( x) m (3) 3

4 3 Substitution 3 Substitution 3. Aufgabe Aufgabe Man berechne das Integral sin(x) (Substitution: u = tan( x ) und sin(x) = 2 2 tan(x/2) + tan 2 (x/2) ) + cosh(x) (Substitution: u = e x, cosh(x) = 2 (ex + e x )) cos(x) sin(2x) Lösung Mit u = tan( x 2 ), = 2( + u2 )du und sin(x) = 2u +u 2 folgt: 2 +u 2 2u du = u du = ln u + c = ln tan(x 2 ) + c +u 2 Mit der Substitution u = e x + cosh(x) = u + 2 (u + u )du = 2 du ( + u) 2 = 2 + u +c = 2 + e x +c Mit sin(2x) = 2 sin(x) cos(x) und der Substitution u = cos(x) erhält man: cos(x) sin(2x) = 2 cos 2 (x) sin(x) = 2 u 2 du = 2 3 cos3 (x)+c 4 Partialbruchzerlegung 4. Aufgabe Aufgabe Man berechne die Integrale: 3x x 3 + 3x 2 4 4

5 4 Partialbruchzerlegung x 7 + x 5 + x 3 x 4 x 3 + x d)* x 4 ( + x) e)* x 2 ( + x 2 ) 2 (Hinweis: Man verwende für das Integral I n =, dass I (+x 2 ) n n = 2(n ) ( (2n 3)I n ) (kann durch partielle Integration von I n gezeigt werden) und I = arctan(x) gilt.) x + (+x 2 ) n Lösung Erste NST durch x = und Polynomdivision ergibt: 3x x 3 + 3x 2 4 = 3x (x )(x + 2) 2 = A x + B x C (x + 2) 2 Also Koeffizienten erhält man A = /3, B = /3 und C = 2. Es folgt: F (x) = 3 ln x 3 Nach Polynomdivision erhält man x 7 + x 5 + x 3 = x2 + x3 + x 3 (x 2 + ) Die Partialbruchzerlegung ergibt: Und damit ln x x c x 7 + x 5 + x 3 = x2 x + x 3 + x + x 2 + F (x) = x3 3 x + ln x 2x ln x2 + + arctan(x) + c 5

6 Die Partialbruchzerlegung ergibt: x 4 x 3 + x = x 4 x(x 2 + ) = A x + Bx + 3 x 2 + Es folgt A = 4, B = 4 und C =. Integration der Einzelterme liefert: 4 x + 4x + x 2 + = 4 x 4 x x x 2 + = 4 ln x + 2 ln x arctan(x) + c = 2 ln x2 + x 2 + arctan(x) + c d) Die Partialbruchzerlegung ergibt: x 4 ( + x) = A x + A 2 x 2 + A 3 x 3 + A 4 x 4 + B + x A = ; A 2 = ; A 3 = ; A 4 = ; B = F (x) = ln x x + 2x 2 + ln x + + c 3x3 e) Man erhält: x 2 ( + x 2 ) 2 = + x x ( + x 2 = arctan(x)+ ) 2 + x 2 +arctan(x)+c = x + x 2 +c wobei ( + x 2 ) 2 = I 2 = ( ) x 2 + x 2 + I = ( ) x 2 + x 2 + arctan(x) verwendet wurde. 5 Gemischte Aufgaben 5. Aufgabe Man berechne die Stammfunkionen von Aufgabe * x 2 * + x 2 6

7 * x 2 (Hinweis: cos(arccos(x)) = x 2, cosh(arcsinh(x)) = + x 2, sinh(arccosh) = x 2 ) Lösung Partielle Integration mit v = ergibt: x 2 = x x 2 + x 2 x 2 Nun substituier man u = sin(x) erhält für das Integral: x 2 = x 2 sin 2 (u)du = (x sin(x) cos(x)) 2 Mit cos(arcsin(x)) = ( x 2 ) erhält man: x 2 = 2 (x x 2 + arcsin(x)) Partielle Integration mit v = ergibt: + x 2 = x + x 2 x 2 + x 2 Nun substituier man u = sinh(x) und cosh 2 (x) sinh 2 (x) = erhält für das Integral: x 2 = + x 2 sinh 2 (u)du = (x + sinh(x) cosh(x)) 2 Mit cosh(arcsinh(x)) = + x 2 erhält man: + x 2 = 2 (x + x 2 + arcsinh(x)) Wie und nur mit der Substitution u = arccos(x) und sinh(arccosh) = x 2. x 2 = 2 (x x 2 arccosh(x)) 7

8 5.2 Aufgabe Aufgabe Man berechne folgende Integrale: e 3x e 2x (Hinweis: Substitution x = ln(t) und evtl. Partialbruchzerlegung) sin(2x) 3 + sin 2 (x) tan(x) + tan(x) d) Mit a, b > : π/2 a 2 sin 2 (x) + b 2 cos 2 (x) Lösung Mit der angegeben Substitution erhält man e 3x e 2x = t 2 t 2 dt Mit Polynomdivision und Partialbruchzerlegung vereinfacht sich der Integrand wie folgt: t 2 t 2 = /2 t + + /2 t Nach Integration und Rücksubstitution ergibt sich: F (x) = e x + 2 ln ex e x + + c Mit sin(2x) = 2 sin(x) cos(x) und der Substitution u = sin(x) erhält man: sin(2x) 3 + sin 2 (x) = 2u 3 + u 2 du Mit der Substitution t = u 2 erhält man nun: 2u 3 + u 2 du = dt 3 + t = ln 3 + t + c =... = ln 3 + sin2 (x) + c 8

9 Mit der Substitution u = tan(x) und du = ( + u 2 ) erhält man ( tan(x) + tan(x) = u ( + u) ( + u 2 ) du = /2 + u + 2 u + ) 2 + u 2 du = 2 ln + u + 4 ln + u2 + arctan(u) + c = 2 (ln cos(x) + sin(x) ln cos(x) ) + 4 ( ln cos2 (x) ) + x 2 + c = 2 ln cos(x) + sin(x) + x 2 + c d) π/2 π/2 a 2 sin 2 (x) + b 2 cos 2 (x) = = ab / cos 2 (x) a 2 tan 2 (x) + b 2 dt a 2 t 2 + b 2 = du u 2 + du = ab arctan(u) = π ab Mit der ersten Substitution t = tan(x) und der zweiten Substitution u = a b t. 5.3 Uneigentliche Integrale Aufgabe Untersuchen Sie die folgenden uneigentlichen Integrale auf Konvergenz und berechnen Sie gegebenenfalls ihren Wert. x( + x) ln(x) π/2 sin 2 (x) (sin(x) für x [, π/2]) d) 3 x + 9

10 e) sin(x) Lösung Mit x = u 2 und = 2udu folgt x( + x) = ln(x) = x ln(x) 2 du + u 2 = 2 arctan(u) = π Mit sin(x) x für x [, π/2] folgt π/2 π/2 sin 2 (x) x 2 = lim (a ln() = a + }{{} = l Hospital d) ( 3 3 = lim x + a 2 ( 3 ) x + ) 2 a = 3 2 e) Mit der gleichen Abschätzung aus folgt ebenfalls 5.4 Aufgabe Aufgabe Zeigen Sie e sin(x) x x (ln(x)) α = Lösung Mit u = ln(x) folgt e x (ln(x)) α = du u α = (Vergleiche Vorlesung) { konvergent für α > divergent für α { konvergent für α > divergent für α

11 5.5 Ableitung von Integralen Aufgabe Lösung d 2 2 x d x 2 2 d x e t2 dt x d 2 2 x d x 2 2 cos 2 (t) + cos(t) dt tf(t)dt cos 2 (t) + cos(t) dt = d (F (x2 ) F (2)) = F (x 2 ) 2x = 2x cos2 (x 2 ) + cos(x 2 ) d x e t2 dt = e x2 e x2 ( ) = 2e x2 x tf(t)dt = d2 2 (tf (t) x x F (t)dt) = d (x f(x)+f (x) F (x)) = f(x)+x f (x)

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 7. Bestimmen Sie eine Stammfunktion von sinx 4 und für alle n N π π sin nxdx. Lösung. Die Rekursionsformel lautet sinx n

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

d dy f 1 (y) = 1 d dy x = 1 (f 1 ) (y) Ein bekannter Satz zur Inversionsregel lautet: Ableitung = 1 durch Ableitung der Umkehrfunktion.

d dy f 1 (y) = 1 d dy x = 1 (f 1 ) (y) Ein bekannter Satz zur Inversionsregel lautet: Ableitung = 1 durch Ableitung der Umkehrfunktion. Inversionsregel Motivation Eine eher sonderbare, jedoch sehr praktische Ableitungsregel, gerade beim Ableiten von Arkusfunktionen stellt die sogenannte Inversionsregel dar. Sie ermöglicht es, eine Funktion

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Anleitung zu Blatt 4, Analysis II

Anleitung zu Blatt 4, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. Hanna Peywand Kiani Anleitung zu Blatt 4, Analysis II SoSe 1 Potenzreihen III, Integration I Die ins Netz gestellten Kopien der Anleitungsfolien sollen

Mehr

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx =

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = Übung 3 Aufgabe 48) Integrieren Sie die folgenden Funktionen a) tan(x)dx b) e x cos(x)dx c) +ax dx Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = sin(x)

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Meine persönliche Einschätzung der Aufgaben der Klausur vom :

Meine persönliche Einschätzung der Aufgaben der Klausur vom : Meine persönliche Einschätzung der Aufgaben der Klausur vom.9.: a) h) Einige leicht, andere Standard, einige zum (kurzen) Nachdenken. ) Standard. Vergleiche Aufgabe 9, Bonusaufgabe a) Standard. Vergleiche

Mehr

Mathematik für Chemiker Aufgabenblatt 1 Abgabe bis vor Beginn der Vorlesung im Fach 123 (grüner Kasten auf Ebene D1)

Mathematik für Chemiker Aufgabenblatt 1 Abgabe bis vor Beginn der Vorlesung im Fach 123 (grüner Kasten auf Ebene D1) Hansen / Päschke 19.10.2016 Aufgabenblatt 1 Abgabe bis 26.10.2016 vor Beginn der Vorlesung im Fach 123 (grüner Kasten auf Ebene D1) Aufgabe 1 Vereinfache folgende Ausdrücke: (a) z n+1 z 2n 2 z 2 (b) (

Mehr

3. Übungsblatt zur Analysis II

3. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 9/ 9..9 3. Übungsblatt zur Analysis II Gruppenübung Majorantenkriterium für uneigentliche Riemann-Integrale: Es seien f : [, ) [, ) und g

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heielberg Mathematischer Vorkurs zum Stuium er Physik Übungen Aufgaben zu Kapitel 5 aus: K. Hefft, Mathematischer Vorkurs zum Stuium er Physik, sowie Ergänzungen Aufgabe 5.: Differenzierbarkeit

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Mathematik n 1

Mathematik n 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 0 Mathematik + Übung 6 Besprechung der Aufgaben ) - ) des Übungsblatts am jeweils ersten Übungstermin zwischen Montag, 7..0 und Donnerstag,

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer

Mehr

Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:...

Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:... RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung Höhere Mathematik II Prüfung: Klausur zur Höheren Mathematik II Prüfer: Prof. Dr. E. Triesch Termin: 24.02.2009

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Die elementaren Funktionen (Überblick)

Die elementaren Funktionen (Überblick) Die elementaren Funktionen (Überblick) Zu den elementaren Funktionen zählen wir die Potenz- und die Exponentialfunktion, den Logarithmus, sowie die hyperbolischen und die trigonometrischen Funktionen und

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge zum 11. Übungsblatt Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 7.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc. Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Diplomvorprüfung HÖHERE MATHEMATIK I und II für Maschinenwesen und Chemie-Ingenieurwesen ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

8. Übungsblatt zur Mathematik I für Chemiker

8. Übungsblatt zur Mathematik I für Chemiker Fachbereich Mathematik PD Dr. P. Ne WS 007/008 6.1.007 8. Übungsblatt zur Mathematik I für Chemiker Zur Erinnerung, die Formel für die Taylorreihe um die Stelle x 0 lautet f(x) n0 f (n) (x 0 ) (x x 0 )

Mehr

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester

Mathematik für Betriebswirte II (Analysis) 1. Klausur Sommersemester Mathematik für Betriebswirte II (Analysis). Klausur Sommersemester 04 5.07.04 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten

Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II. am , Zeit: 120 Minuten Musterlösung zur Klausur zur Vorlesung Mathematik für Wirtschaftswissenschaftler II am 5.8.25, Zeit: 2 Minuten Aufgabe (3 Punkte Eine Bakterienkultur hat eine stetige Wachstumsrate von % pro Stunde. Wie

Mehr

Integralrechnung. Petra Grell, WS 2004/05

Integralrechnung. Petra Grell, WS 2004/05 Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 9. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 6. Gegeben ist

Mehr

9. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester x 3 + 4x 2 + 4x + 1 d x (d) x ln(x) d x. lim tan(a/2) + 1

9. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester x 3 + 4x 2 + 4x + 1 d x (d) x ln(x) d x. lim tan(a/2) + 1 O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani, F. Kissling B. Krinn, J. Schmid 9. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 3 Lösungshinweise zu den Hausaufgaben: π Dr. M. Künzer Prof.

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Kettenregel. 1 Motivation. 2 Die Kettenregel. 2.1 Beispiel: f(x) = ( 2 x 2) 3

Kettenregel. 1 Motivation. 2 Die Kettenregel. 2.1 Beispiel: f(x) = ( 2 x 2) 3 Kettenregel 1 Motivation Eine sehr praktische Ableitungsregel ist die sogenannte Kettenregel. Sie ermöglicht kompliziertere Funktionen, etwa verschachtelte Funktionen wie f 1 x = sin cosx 2 oder f 2 x

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Variante A Musterlösung

Variante A Musterlösung RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung Höhere Mathematik II / III Variante A Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Kapitel 5. Differenzialrechnung für Funktionen einer Variablen

Kapitel 5. Differenzialrechnung für Funktionen einer Variablen Kapitel 5. Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Die Bedeutung der Areafunktionen

Die Bedeutung der Areafunktionen Die Bedeutung der Areafunktionen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 8. März 003 Die Umkehrfunktionen der hyperbolischen Funktionen heißen Areafunktionen. Woher dieser Name kommt, und

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Integrationsregeln, Integration durch Substitution. 1-E1 Ma 1 Lubov Vassilevskaya

Integrationsregeln, Integration durch Substitution. 1-E1 Ma 1 Lubov Vassilevskaya Integrationsregeln, Integration durch Substitution 1-E1 Ma 1 Lubov Vassilevskaya 1-E2 Ma 1 Lubov Vassilevskaya 1-E3 Ma 1 Lubov Vassilevskaya Integrationsregeln Faktorregel: b a b C f x dx = C a f x dx

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen

Vorkurs Mathematik Übungsaufgaben. Dozent Dr. Arne Johannssen Vorkurs Mathematik Übungsaufgaben 2 Dozent Dr. Arne Johannssen Lehrstuhl für Betriebswirtschaftslehre, insbesondere Mathematik und Statistik in den Wirtschaftswissenschaften Neues Logo: ie gesamte Universität

Mehr

4.1 Stammfunktionen: das unbestimmte Integral

4.1 Stammfunktionen: das unbestimmte Integral Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung

Mehr

Übungen Ingenieurmathematik

Übungen Ingenieurmathematik Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel 5. 0. 0 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Kapitel 12. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 12. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel Aufgaben Verständnisfragen Aufgabe. Als Umkehrung welcher Rechenregeln ergeben sich Substitution und partielle Integration? Aufgabe. Man bestimme das Integral π sinh cos I π + d Aufgabe. Substituieren

Mehr

2. Teilklausur. Analysis 1

2. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 2. Teilklausur Analysis 4. Februar 2006 4. Iteration Name: Vorname: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppen-Nr.:

Mehr

Aufgabe 2-1: Berechnen Sie die folgenden unbestimmten / bestimmten Integrale mittels Substitution.

Aufgabe 2-1: Berechnen Sie die folgenden unbestimmten / bestimmten Integrale mittels Substitution. . Übung zur Höheren Mathemati Abgabe: 6..8, 8: Uhr Aufgabe -: Berechnen Sie die folgenden unbestimmten / bestimmten Integrale mittels Substitution. sin d cos d tan tan 4 sinh 7 sinh 5 e) f) 8 d 4 ln()

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Integralrechnung. integral12.pdf, Seite 1

Integralrechnung. integral12.pdf, Seite 1 Integralrechnung Beispiel Zusammenhang WegGeschwindigkeit: Ist F (t) der zur Zeit t zurückgelegte Weg und v(t) die Geschwindigkeit, so ist v(t) = F (t) Geometrisch: Steigung der Tangente an der Kurve y

Mehr

Trigonometrische und hyperbolische Funktionen

Trigonometrische und hyperbolische Funktionen Trigonometrische und hyperbolische Funktionen Üben und Vertiefen durch Analogien Thilo Steinkrauß Herder-Gymnasium Berlin 9.09.203 / 22 Felix Klein 2 Kreis: Sinus und Cosinus Hyperbel: Sinus hyperbolicus

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Beispiel zu Umkehrfunktionen des Sinus

Beispiel zu Umkehrfunktionen des Sinus Beispiel zu Umkehrfunktionen des Sinus Die Funktion f : [ π, π ] [, ], x sin(x) besitzt die Umkehrfunktion f Arcsin (Hauptzweig des Arcussinus). Wir betrachten die beiden Funktionen g : [ 3 π, 5 π] [,

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Skript zur Vorlesung. Mathematik 1. für Studierende der Bachelorstudiengänge Chemie und Biophysik. Dr. Caroline Löbhard

Skript zur Vorlesung. Mathematik 1. für Studierende der Bachelorstudiengänge Chemie und Biophysik. Dr. Caroline Löbhard Skript zur Vorlesung Mathematik 1 für Studierende der Bachelorstudiengänge Chemie und Biophysik Dr. Caroline Löbhard 1. Februar 2016 Inhaltsverzeichnis 1 Folgen und Konvergenz 5 1.1 Folgen reeller Zahlen.............................

Mehr

Analysis I. Vorlesung 27. Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion

Analysis I. Vorlesung 27. Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion Prof. Dr. H. Brenner Osnabrück WS 03/04 Analysis I Vorlesung 7 Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion Nachdem wir nun rationale Funktionen integrieren können, können wir auch

Mehr

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015

Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften. 1 Übungsblatt Mengen. Dr. Jörg Horst WS 2014/2015 Dr. Jörg Horst WS 04/05 Aufgaben zum Vorkurs Mathematik für Natur- und Ingenieurwissenschaften Übungsblatt Mengen Aufgabe : Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 0 < x

Mehr

Musterlösungen zu Blatt 14

Musterlösungen zu Blatt 14 Musterlösungen zu Blatt 4 Aufgabe 79 Sei F eine Stammfunktion von f (eistiert, da f stetig ist). Dann ist b() a() f(t)dt = F (b()) F (a()) nach dem Hauptsatz der Differential- und Integralrechnung. Man

Mehr

8.2. Integrationsregeln

8.2. Integrationsregeln 8.. Integrationsregeln Jeder Differentiationsregel entspricht wegen der Beziehung F ( x ) f( x ) F( x ) + C f( x ) dx eine Integrationsregel. Wir kennen schon die Additionsregel c f( x ) + d g( x )

Mehr

Lösung zur Übung 7. Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems

Lösung zur Übung 7. Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems Lösung zur Übung 7 Aufgabe 25) Leiten Sie die Ableitung der Tangensfunktion aus dem Grenzwert des Differenzenquotienten unter Verwendung des Additionstheorems her. tan(α + β) tan(α) + tan(β) tan(α) tan(β)

Mehr

Übungsaufgaben mit Lösungen

Übungsaufgaben mit Lösungen Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben mit Lösungen im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen

Mehr

1 Übungszettel. Höhere Mathematik 2 SS Z dx. Übung 1.1. Berechnen Sie. x 2 für a > 0. h HINWEIS: x 2 + a 2 = a 2 x

1 Übungszettel. Höhere Mathematik 2 SS Z dx. Übung 1.1. Berechnen Sie. x 2 für a > 0. h HINWEIS: x 2 + a 2 = a 2 x Höhere Mathematik SS 0 Übungszettel Übung.. Berechnen Sie dx x für a > 0. + a + i. h HINWEIS: x + a = a x a Übung.. Berechnen Sie sin (x) dx. HINWEIS: Sie können artielle Integration verwenden oder den

Mehr

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10

Mathematik für Wirtschaftswissenschaften I Wintersemester 2015/16 Universität Leipzig. Lösungvorschläge Präsenzaufgaben Serien 1-10 Mathematik für Wirtschaftswissenschaften I Wintersemester 05/6 Universität Leipzig Lösungvorschläge Präsenzaufgaben Serien -0 Inhaltsverzeichnis Serie Serie 5 3 Serie 8 4 Serie 9 5 Serie 3 6 Serie 6 7

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

KOMPETENZHEFT ZU STAMMFUNKTIONEN

KOMPETENZHEFT ZU STAMMFUNKTIONEN KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2

Mehr

Übungsaufgaben mit Lösungen

Übungsaufgaben mit Lösungen Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben mit Lösungen im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen

Mehr

Lösung der Übungsaufgaben vom SS 2011

Lösung der Übungsaufgaben vom SS 2011 Inhaltsverzeichnis Lösung der Übungsaufgaben vom SS Aufgabe Nr. Seite Aufgabe Nr. Seite 3 3 3 3 3 33 3 4 3 34 4 5 3 35 5 6 4 36 6 7 4 37 8 8 4 38?? 9 5 39 3 5 4 34 6 7 3 8 4 9 5 6 7 8 9 3 3 3 4 4 5 5 6

Mehr

f(y) f(x) = lim y x y x = 0.

f(y) f(x) = lim y x y x = 0. Analysis, Woche Differentialrechnung II. Mittelwertsatz und Folgen Satz. (Rolle) Sei a, b R mit a < b und f : [a, b] R eine Funktion. Nehmen wir an, dass f stetig ist, dass f (a,b) : (a, b) R differenzierbar

Mehr

1, 0 < y < x 2 0, sonst f besitzt alle Richtungsableitungen in (0, 0), ist aber unstetig dort

1, 0 < y < x 2 0, sonst f besitzt alle Richtungsableitungen in (0, 0), ist aber unstetig dort ANALYSIS II Lösung der. Klausur vom /7 (von D. Reding Aufgabe (a Richtig sind die Aussagen (iii, (iv und (vii. (b Gegenbeispiel zu (i: f: R R, (x, y x ist stetig, aber nicht partiell differenzierbar nach

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)

Mehr

Funktionen. Kapitel Der Funktionsbegriff

Funktionen. Kapitel Der Funktionsbegriff Kapitel 6 Funktionen 6. Der Funktionsbegriff Eine Funktion f(x) ist durch eine Vorschrift f definiert, die jedem Element x D (Definitionsbereich) ein Element f(x) W (Wertebereich) zuordnet. Für reelle

Mehr

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung

Beispiel. Die Reihe ( 1) k k + 1 xk+1 für 1 < x < 1 konvergiert auch für x = +1. Somit ist nach dem Abelschen Grenzwertsatz insbesondere die Gleichung Beispiel. Die Reihe log + x) = ) k k + xk+ für < x < konvergiert auch für x = +. Somit ist nach em Abelschen Grenzwertsatz insbesonere ie Gleichung log + ) = gültig. Daraus folgt ie Darstellung log2) =

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

Lösung zur Übung 8 vom

Lösung zur Übung 8 vom Lösung zur Übung 8 vom 02.2.204 Aufgabe 29 Leiten Sie die nachfolgenden Funktionen ab: a) y(x) = cos(x) c) y(x) = cos 3 (x) e) y(x) = x3 b) y(x) = cos 2 (x)e x d) y(x) = tanh(x) f) y(x) = cos(x) + tan(x)

Mehr

Wintersemester 2016/2017, Universität Rostock Abgabetermin: spätestens , 13:00 Uhr

Wintersemester 2016/2017, Universität Rostock Abgabetermin: spätestens , 13:00 Uhr Serie Abgabetermin: spätestens 8.0.06, 3:00 Uhr Aufgabe.: Aussagen und Quantoren 6+4 P a Für beliebige Aussagen A, B und C gelten die folgenden Äquivalenzen: Doppelte Negation: A A Kommutativgesetz: A

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 5. September 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Im R 3 wird eine Fläche T durch die Abbildung

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx

I 1. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (d) 4cosxdx (e) 3e x dx (f) ( e x + x 2) dx Integralrechnung: I. Ermittle von den folgenden Funktionen jeweils Stammfunktionen: (a) y =,5 (b) y = + (c) y = 5 (d) y = 3 (e) y = (f) y = (g) y = 3 (h) y = (i) y = 3 4 4 (j) y = 6 + 3 (k) y = 3 + 4 (l)

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

Abgabe: KW 11. Aufgabe 2-0a: Berechnen Sie die Grenzwerte der Funktionen. x 2 x. lim. lim

Abgabe: KW 11. Aufgabe 2-0a: Berechnen Sie die Grenzwerte der Funktionen. x 2 x. lim. lim . Übung zur Höheren Mathemati Abgabe: KW Aufgabe -a: Berechnen Sie die Grenzwerte der Funtionen 5 4 lim ln ln lim e lim sin lim (sin ) Aufgabe -b: Bestimmen Sie Definitionsbereich, Nullstellen, Polstellen,

Mehr

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 O. Alaya, R. Bauer K. Sanei Kashani, F. Kissling, B. Krinn, J. Schmid, T. Vassias. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den

Mehr

Höhere Mathematik II

Höhere Mathematik II PD Dr. R. Dietmann Dipl.-Math. M. Pfeil. Gruppenübung zur Vorlesung Prof. Dr. M. Stroppel Höhere Mathematik II Sommer 2007 Aufgabe P. Seien S n := n k= 00k und S n := n ( ) k k=. 00k (a) Bestimmen Sie

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Blatt 0 A.Dessai / A.Bartels Keine Abgabe Dieses Blatt wird in den Übungen in der zweiten Semesterwoche besprochen. Aufgabe 0.1 Zeigen Sie: Für jede natürliche Zahl n ist n(n + 5) durch 3 teilbar. Aufgabe

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr