Kapitel 5: Lineare Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "Kapitel 5: Lineare Gleichungssysteme"

Transkript

1 Kaptel 5: Lneare Glechungssysteme Umwandlung von Dfferentaloperator-Glechungen n lneare Glechungssysteme Chemsche Reaktonen A + B C + D können als Streuprozeß beschreben werden: In der Reaktanden-Asymptote (Entfernung A-B und Zet t ) snd de Zustände des Systems A und B durch enen Hamltonoperator Ĥ 0 beschrebbar. Be vorwärtslaufender Zet t treffen Telchen A und B zur Zet t = 0 aufenander und reageren mt ener gewssen Wahrschenlchket zu C und D. Dabe st der reagerende Komplex durch enen Hamltonoperator Ĥ gegeben. Be t snd de Produkte C und D weder unendlch wet vonenander entfernt. Im Experment kann man typscherwese n der Asymptote t de Reaktanden mt ener gewssen Vertelung über wenge Quantenzustände kontrollert präpareren und dann n der Asymptote t de Vertelung über de Produkt-Quantenzustände detekteren, hat aber kenen drekten Zugang zum Reaktonsgeschehen um t = 0. In der Streutheore betrachten wr daher de zu lösende Schrödngerglechung ĤΨ = EΨ (1) für de Gesamtstuaton, sowe ene berets gelöste Schrödngerglechung für de Eduktasymptote t. Dabe se Ensetzen von Gl. 3 n Gl. 1 lefert Unter Verwendung von Gl. 2 wrd daraus: Ĥ 0 Ψ 0 = EΨ 0 (2) Ĥ = Ĥ0 + V, Ψ = Ψ 0 + χ (3) (Ĥ0 + V )(Ψ 0 + χ) = E(Ψ 0 + χ) (4) (Ĥ Eˆ1)χ = V Ψ 0 (5) Für ene gegebene Streu-Gesamtenerge E st der Operator auf der lnken Sete bekannt; aufgrund der Lösung von Gl. 2 st de rechte Sete auch bekannt. Gesucht st der Wellenfunktonsantel χ, der den egentlchen Streuvorgang m Wechselwrkungsgebet wedergbt und desen Berech mt den Edukt- und Produktasymptoten verbndet. Aus dessen Projekton auf de Produktzustände kann man de Reaktonswahrschenlchketen enzelner Eduktzustände n enzelne Produktzustände berechnen, und daraus weder durch geegnete Summatonen/Integratonen de Reaktonsgeschwndgketskonstante k(t). Gl. 5 kann abgekürzt geschreben werden als Âχ = V Ψ 0 (6) Verwenden wr enen geegneten Satz von Bassfunktonen {φ }, können wr sowohl Ψ 0 als auch χ n dese Bass entwckeln χ = x φ, Ψ 0 = a φ (7) 1

2 und dese Entwcklungen n Gl. 6 ensetzen: x Âφ = a V φ (8) Multplkaton deser Glechung von lnks mt φ j lefert x φ j  φ = a φ j V φ (9) Alle Integrale können berechnet werden und lefern jewels ene Zahl für jede Indexkombnaton und j. Im Gegensatz zur lnken Sete snd aber auf der rechten Sete de Entwcklungskoeffzenten {a } bekannt, also kann dort de Summe über ausgeführt werden und wr erhalten: A j x = b j (10) Des st de j-te Zele der folgenden Matrx-Vektor-Glechung A x = b (11) Dabe st de Matrx A auf der lnken Sete und der Vektor b auf der rechten Sete bekannt; gesucht wrd der Vektor x. Es handelt sch um en lneares Glechungssystem. 2

3 Allgemene Formala Grundlegendes En lneares Glechungssystem besteht aus M Glechungen mt lnearen Termen aus N Unbekannten und N M Koeffzenten. Enzelne Terme ohne Unbekannte kann man auf der rechten Sete zusammenfassen: a 11 x 1 + a 12 x a 1N x N = b 1 (12) a 21 x 1 + a 22 x a 2N x N = b 2 (13). (14) a M1 x 1 + a M2 x a MN x N = b M (15) a 11 a 12 a 1N x 1 b 1 a 21 a 22 a 2N x = b 2 (16). a M1 a M2 a MN x N b M Auch möglch snd: A x = b (17) mehrere rechte Seten b be glecher Matrx A: A x = b 1, A x = b 2,... (18) Z.B. en Streuproblem mt mehreren Anfangsbedngungen. Wenn dese b de Spalten der Enhetsmatrx 1 snd, dann snd wegen AA 1 = 1 de zu jedem gehörenden Lösungsvektoren x de Spalten von A 1. Matrxnverson Generelle Lösungstaktken: Formal würde Multplkaton von Gl. 17 von lnks mt A 1 lefern: A 1 A x = A 1 b x = A 1 b (19) Des wrd n der numerschen Praxs ne so gemacht, wel de Matrxnverson nach obgem Schema so aufwendg st we ene N-malge Lösung des Glechungssystems Gl. 17 und nach anderen Schemata de numersch ungünstge Berechnung von Determnanten benötgt. enfacheres Verfahren: Gauß-Jordan Vertauschung und Lnearkombnaton enzelner Glechungen ( = Zelen; n A und b smultan, wobe sch b zu c verändert), bs A = 1 errecht st. Wegen 1 x = c st dann c drekt der Lösungsvektor. Varante: Gauß-Elmnaton Bem Vertauschen und Lnearkombneren von Zelen wrd de Matrx A ledglch auf Dreecksform gebracht. Dann snd de enzelnen Elemente des Lösungsvektors sukzessve aus den enzelnen Zelen konstruerbar. 3

4 Klenes Matrx-Nomenklatur-Lexkon quadratsch: M = N rechteckg: M N dagonal,trdagonal,band-dagonal,block-dagonal Dreecksmatrx symmetrsch (hermtesch): A = A T (A = A H ) alle Egenwerte reell Egenvektoren blden vollständges Orthonormalsystem postv defnt: symmetrsche (hermtesche) Matrzen mt postven Egenwerten haben mmer en Inverses orthogonal (untär): A T = A 1 de Spaltenvektoren blden en Orthonormalsystem be A v blebt de Länge von v erhalten normal: AA H = A H A de Egenvektoren blden en vollständges Orthonormalsystem; be reellen Matrzen snd alle symmetrschen und alle orthogonalen Matrzen normal sngulär: lnear abhängge Zelen (oder Spalten) (entsprcht ener ganzen Zele oder Spalten von Nullen) Lösbarket nhomogene Systeme: b 0 M = N endeutge Lösung, wenn A ncht sngulär: det(a) 0. Wenn det(a) = 0, dann kene Lösung, oder en- oder mehrfach unendlche Lösungsmanngfaltgket, d.h. ene oder mehrere Unbekannte x bleben unbestmmt. M < N: unterbestmmt (effektv auch der Fall, wenn det(a) = 0) Sngulartäten von A analyserbar und Lösungsmanngfaltgket bestmmbar mt Snguläre-Werte-Zerlegung (sngular value decomposton, SVD) M > N: überbestmmt möglche Lösung durch lneare Regresson fnden (Mnmerung der Fehler mt least squares); ggf. auch weder mt SVD machbar. 4

5 Gauß-Jordan-Verfahren mt Telpvotsuche Grunddeen am Bespel Gegeben se das Glechungssystem 4x + 3y + z = 13 (20) 2x y z = 3 (21) 7x + y 3z = 0 (22) De wesentlchen Informatonen daraus können verkürzt als sogenanntes erwetertes Koeffzentenschema notert werden: (23) Zel: De Operatonen Vertauschung von Zelen Multplkaton von Zelen mt Konstanten Lnearkombnaton von Zelen snd für Glechungen erlaubte Operatonen; dadurch ändert sch also der Lösungsvektor ncht. Mt desen Operatonen kann jedoch der lnke Tel (her: 3 3-Matrx) zu ener Enhetsmatrx gemacht werden. Dann steht n der rechten Spalte der Lösungsvektor. Um Dvsonen durch Null zu vermeden und Rundungsfehler zu mnmeren, empfehlt es sch, durch Vertauschung von Zelen zu errechen, daß de zentralen Elemente (Pvots) der folgenden Operatonen de jewels größten hrer Spalte snd (Telpvotsuche). Schrtt 1: Größtes Element n 1. Spalte st her 7 brnge es auf de Dagonale vertausche 1. und 3. Zele: (24) Dvdere 1. Zele durch deses Dagonalelement (her 7) Dagonalelement wrd 1: 1 1/7 3/ (25) Brnge restlche Elemente der 1. Spalte auf Null, durch Lnearkombnatonen: (2. Zele) - 2 (1. Zele) (3. Zele) - 4 (1. Zele) 5

6 1 1/7 3/ /7 1/ /7 19/7 13 (26) Schrtt 2: Vertausche 2. und 3. Zele (Telpvotsuche) und dvdere 2. Zele durch 17/7: 1 1/7 3/ /17 91/17 (27) 0 9/7 1/7 3 Brnge durch Lnearkombnatonen de Außerdagonalelemente der 2. Spalte auf Null: (1. Zele) - 1/7 (2. Zele) (3. Zele) + 9/7 (2. Zele) /17 13/ /17 91/ /17 66/17 (28) Schrtt 3: Dvdere 3. Zele durch 22/17: /17 13/ /17 91/17 (29) Brnge de Außerdagonalelemente der 3. Spalte auf Null: (1. Zele) + 10/17 (3. Zele) (2. Zele) - 19/17 (3. Zele) Also lautet der Lösungsvektor: (Bemerkungen zur Pvotsuche: x = (30) (31) Pvotelement = größtes Element st egentlch nur bedngt rchtg; aber her gbt es kene ganz exakten Bewese egentlch müste man n jedem Schrtt mt ener Totalpvotsuche auf das Dagonalelement a das größte Element rechts der Spalte 1 und unterhalb der Zele 1 brngen. Dazu braucht man jedoch.a. ncht nur Vertauschungen von Zelen sondern auch von Spalten. Letztere brngen aber de Rehenfolge der b-elemente durchenander, was man am Ende des Verfahrens weder rückgängg machen muß. Für unsere Zwecke recht ene Telpvotsuche nach dem betragsmäßg größten Element.) 6

7 Realserung m Programm Durchgängg doppelte Genaugket verwenden und am Ende unbedngt testen, ob en mt der ursprünglchen Matrx A berechnetes A x mt dem vorgegebenen Lösungsvektor b nnerhalb der üblchen Genaugket überenstmmt. Engabe von n n Matrxelementen und n Elementen des Rechte-Seten-Vektors; nach Geschmack n en Rechteck-Feld n (n + 1) oder n ene Matrx A und enen Vektor b Hauptschlefe =1,n (läuft über de Dagonalelemente, bzw. über Zelen und Spalten!) suche Pvotelement (betrags(!)mäßg größtes a j ) mt Schlefe j=,n über Zelen wenn Pvotelement < 10 8 stop: Matrx numersch sngulär tausche aktuelle Zele und Pvotelement-Zele normere neue aktuelle Zele auf Pvotelement=1, mt Schlefe über alle + 1 Elemente auf und rechts von der Dagonalen (nkl. des Rechte-Seten-Elements!) blde a(j,k) = a(j,k) - a(j,)*a(,k) n ener Schlefe über alle Zelen j=1,n außer der aktuellen Zele (j.ne.) und ener Schlefe über alle Spalten k (nkl. des Rechte-Seten-Elements!) 7

8 LU- bzw. LR-Zerlegung Nachtel von Gauß-Jordan bzw. Gauß-Elmnerung: Für mehrere Rechte-Seten-Vektoren muß der komplette Algorthmus jewels von Neuem wederholt werden. Alternatve: Jede quadratsche, ncht-snguläre Matrx A kann (evtl. erst nach geegneter Zelenvertauschung) n ene lnke und ene rechte ( = upper and lower) Dreecksmatrx zerlegt werden: A = LR = LU (32) Dann kann man de ursprünglche Matrx-Vektor-Glechung umformen zu und das Problem n zwe Schrtten lösen: A x = (LU) x = L(U x) = b (33) L y = b forward substtuton (34) U x = y back substtuton (35) Bede Schrtte entsprechen der Lösung enes lnearen Glechungssystems mt ener Dreecksmatrx (we bem 2. Schrtt der Gauß-Elmnaton) und snd daher trval. Wenn de Zerlegung A = LU enmal ermttelt wurde, kann se danach für belebg vele rechte Seten verwendet werden, de noch ncht enmal vorher bekannt sen müssen. (36) Bblotheksroutnen We auch bem Egenwertproblem können her de n der Praxs auftretenden Matrzen bzw. Glechungssysteme sehr groß werden. Dann st es entschedend, erkennen zu können, ob de vorlegende Matrx bestmmte Symmetren und Egenschaften hat, und demgemäß de spezalserteste Routne aus enem größeren Angebot auszusuchen (des st dann n der Regel de deutlch effzenteste Wahl): vgl. de lange Lste von Routnen m LAPACK- Kaptel zu lnearen Glechungssystemen! Zusätzlch exstert de Varante ScaLAPACK für Parallelcomputer. SLATEC betet außerdem spezelle Routnen für große, dünn besetzte Matrzen (sparse) und teratve Verfahren, de auch dann noch anwendbar snd, wenn de Matrx als kompletter, zwedmensonaler array ncht mehr n den Hauptspecher des Computers paßt. 8

9 sngular value decomposton (SVD) Jede(!) M N-Matrx A kann zerlegt werden nach M N A = (37) M N U w 1 w w 3... w N N N V T orthog.spalten orthogonal Zahlreche nützlche Egenschaften: st en oder mehrere w = 0, st A sngulär st en oder mehrere w 0, st A benahe sngulär und damt numersch schlecht kondtonert Probleme be Gauss-Algorthmen und LU-Zerlegung de Spalten j von U mt w j 0 spannen den Lösungsraum von A auf de Spalten von V mt w = 0 spannen den sogenannten Nullraum auf (der leer st, wenn A ncht sngulär st) de Vektoren x = V[dag 1 w ](U T b) (38) lefern vernünftge Lösungen für snguläre und benahe snguläre Matrzen A, wenn man für w 0 ensetzt 1 w = 0 für M < N Informatonen über den Lösungsraum für N < M ene least-squares-lösungsmethode. De Programmerung der SVD-Zerlegung st jedoch ncht-trval... 9

22. Vorlesung Sommersemester

22. Vorlesung Sommersemester 22 Vorlesung Sommersemester 1 Bespel 2: Würfel mt festgehaltener Ecke In desem Fall wählt man den Koordnatenursprung n der Ecke und der Würfel st durch den Berech x = 0 a, y = 0 a und z = 0 a bestmmt De

Mehr

16. Vorlesung Sommersemester

16. Vorlesung Sommersemester 16. Vorlesung Sommersemester 1 Das Egenwertproblem In allgemener Form hat das Egenwertproblem de Form A x = λ x, (1) wobe A ene n n-matrx, x en n-dmensonaler Vektor und λ der Egenwert st (n Englsch: egenvector,

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Teil XIV. Lösung linearer Gleichungssysteme. Scientific Computing in Computer Science, Technische Universität München

Teil XIV. Lösung linearer Gleichungssysteme. Scientific Computing in Computer Science, Technische Universität München Tel XIV Lösung lnearer Glechungssysteme IN8008, Wntersemester 010/011 89 Gauss Algorthmus Zwe Schrtte: Vorwärtselmnaton und Rückwärtssubsttuton Vorwärtselmnaton Erzeugen ener Stufenform Zelen dürfen mt

Mehr

Kapitel 7: Matrixeigenwertproblem

Kapitel 7: Matrixeigenwertproblem Kaptel 7: Matrxegenwertproblem Umwandlung von Dfferentaloperator-Egenwertglechungen n Matrx- Egenwertglechungen: (A) Fnte Dfferenzen: De Schrödngerglechung für de Bewegung enes Telchens der Masse m n ener

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Lineare Gleichungen treten sehr oft in den Naturwissenschaften auf, siehe auch Kap. Interpolation. Die Schreibweise für n Gleichungen lautet.

Lineare Gleichungen treten sehr oft in den Naturwissenschaften auf, siehe auch Kap. Interpolation. Die Schreibweise für n Gleichungen lautet. Kaptel 6 Lneare Glechungen 6.1 Grundlagen Lneare Glechungen treten sehr oft n den Naturwssenschaften auf, sehe auch Kap. Interpolaton. De Schrebwese für n Glechungen lautet. a 11 + a 12... a 1n = b 1 a

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition Informatk II Raner Schrader und Implkanten Zentrum für Angewandte Informatk Köln 27. Oktober 2005 1 / 28 2 / 28 Was bsher geschah: jede Boolesche Funkton kann durch enfache Grundfunktonen dargestellt werden

Mehr

Definition des linearen Korrelationskoeffizienten

Definition des linearen Korrelationskoeffizienten Defnton des lnearen Korrelatonskoeffzenten r xy x y y r x xy y 1 x x y y x Der Korrelatonskoeffzent st en Indkator dafür, we gut de Punkte (X,Y) zu ener Geraden passen. Sen Wert legt zwschen -1 und +1.

Mehr

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY) Bedngte Entrope Kaptel : Bedngte Entrope Das vorherge Theorem kann durch mehrfache Anwendung drekt verallgemenert werden H (... H ( = Ebenso kann de bedngt Entrope defnert werden Defnton: De bedngte Entrope

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13

Mi , Dr. Ackermann Übungsaufgaben Gewöhnliche Differentialgleichungen Serie 13 M. 3. 5-4. 45, Dr. Ackermann 6..4 Übungsaufgaben Gewöhnlche Dfferentalglechungen Sere 3.) Bestmmung ener homogenen Dfferentalglechung zu gegebenen Funktonen y (partkuläre Lösungen) enes Fundamentalsystems.

Mehr

Grundlagen der numerischen Strömungsmechanik, WS 2011/12

Grundlagen der numerischen Strömungsmechanik, WS 2011/12 Lehrstuhl für Aerodynamk und Strömungsmechank Prof H-J Kaltenbach Assstenz: E Lauer Grundlagen der numerschen Strömungsmechank, WS / Lösung zu Übung 5 Aufgabe : Fnte-Elemente-Verfahren De Dfferentalglechung

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Dynamisches Programmieren

Dynamisches Programmieren Marco Thomas - IOI 99 -. Treffen n Bonn - Dynamsches Programmeren - Unverstät Potsdam - 8.02.999 Dynamsches Programmeren 957 R. Bellmann: Dynamc Programmng für math. Optmerungsprobleme Methode für Probleme,.

Mehr

2 Matrizen (A + B) + C = A + (B + C) (A + B)C = AC + BC. Seien A R m n und B = (b (1)... b (p) ) R n p zwei Matrizen. Dann gilt

2 Matrizen (A + B) + C = A + (B + C) (A + B)C = AC + BC. Seien A R m n und B = (b (1)... b (p) ) R n p zwei Matrizen. Dann gilt Lneare Algebra Wel Gao September Gauss sches Elmnatonsverfahren a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mnx n = b m Das LGS mt m Glechungen und n Unbekannten n ene erweterte

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

5.3.3 Relaxationsverfahren: das SOR-Verfahren

5.3.3 Relaxationsverfahren: das SOR-Verfahren 53 Iteratve Lösungsverfahren für lneare Glechungssysteme 533 Relaxatonsverfahren: das SOR-Verfahren Das vorangehende Bespel zegt, dass Jacob- sowe Gauß-Sedel-Verfahren sehr langsam konvergeren Für de Modellmatrx

Mehr

Invariantentheorie. Vorlesung 3. Lineare Operationen

Invariantentheorie. Vorlesung 3. Lineare Operationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invarantentheore Vorlesung 3 Lneare Operatonen Ene Operaton ener Gruppe G auf ener (geometrschen) Menge M st das gleche we en Gruppenhomomorphsmus der Gruppe

Mehr

Die mathematischen Grundlagen der Wellenmechanik

Die mathematischen Grundlagen der Wellenmechanik De mathematschen Grundlagen der Wellenmechank Zustände und deren Darstellung En physkalsches System wrd durch enen Zustand u charaktersert, ndem es durch ene bestmmte expermentelle Präparaton gebracht

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Beschreibung von Vorgängen durch Funktionen

Beschreibung von Vorgängen durch Funktionen Beschrebung von Vorgängen durch Funktonen.. Splnes (Sete 6) a +b c Zechenerklärung: [ ] - Drücken Se de entsprechende Taste des Graphkrechners! [ ] S - Drücken Se erst de Taste [SHIFT] und dann de entsprechende

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

1. Lineare Gleichungssysteme I

1. Lineare Gleichungssysteme I 1. Lneare Glechungssysteme I 1.1 Problemstellung (1.1) Gegeben : A e Ñ m,n und b eñ m Gesucht : 8 x e Ñ n» Ax = b < (1.1) st en lneares Glechungssystem mt m Glechungen und n Unbekannten Beechnungen: ()

Mehr

Rückblick Regression II: Anpassung an Polynome

Rückblick Regression II: Anpassung an Polynome Rückblck Regresson II: Anpassung an Polynome T. Keßlng: Auswertung von Messungen und Fehlerrechnung - Fehlerrechnung und Korrelaton 0.06.08 Vorlesung 0- Temperaturmessung mt Thermospannung Wr erhalten

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 13. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 13. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Folensatz Mchael Brnkmeer Technsche Unverstät Ilmenau Insttut für Theoretsche Informatk Sommersemester 009 TU Ilmenau Sete / Sorteren TU Ilmenau Sete / Das Sorterproblem Das Sorterproblem Daten: ene total

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt Mathematsches Insttut der Unverstät München Wntersemester 3/4 Danel Rost Lukas-Faban Moser Grundlagen der Mathematk I Lösungsvorschlag zum. Tutorumsblatt Aufgabe. a De Formel besagt, daß de Summe der umrahmten

Mehr

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ).

Sei T( x ) die Tangente an den Graphen der Funktion f(x) im Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Taylorentwcklung (Approxmaton durch Polynome). Problemstellung Se T( x ) de Tangente an den Graphen der Funkton f(x) m Punkt ( x 0, f(x 0 ) ) : T( x ) = f(x 0 ) + f (x 0 ) ( x - x 0 ). Dann kann man de

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Das Cutting Stock-Problem

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Das Cutting Stock-Problem 1 Problem Technsche Unverstät München Zentrum Mathematk Dskrete Optmerung: Fallstuden aus der Praxs Barbara Wlhelm Mchael Rtter Das Cuttng Stock-Problem Ene Paperfabrk produzert Paperrollen der Brete B.

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Lösungen aller Aufgaben und Lernkontrollen

Lösungen aller Aufgaben und Lernkontrollen Oft gbt es be den Aufgaben mehr als nur enen rchtgen Lösungsweg. Es st jedoch mest nur ene Lösung dargestellt. Aufgaben u Kaptel Lösung u Aufgabe a) nach Defnton von. b) 4 ( ) ( ). c) 5 4. d) ( ) (( )

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104

Kapitel 4: Unsicherheit in der Modellierung Modellierung von Unsicherheit. Machine Learning in der Medizin 104 Kaptel 4: Unscherhet n der Modellerung Modellerung von Unscherhet Machne Learnng n der Medzn 104 Regresson Modellerung des Datengenerators: Dchteschätzung der gesamten Vertelung, t pt p p Lkelhood: L n

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper

Zweck. Radiometrische Kalibrierung. Traditioneller Ansatz. Kalibrierung ohne Kalibrierkörper Raometrsche Kalbrerung Tratoneller Ansatz Kalbrerung aus mehreren Blern Behanlung von übersteuerten Blern Zweck Das Antwortverhalten es Systems Kamera Framegrabber st ncht mmer lnear Grauwerte sn ncht

Mehr

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation Kaptel 8: Kernel-Methoden SS 009 Maschnelles Lernen und Neural Computaton 50 Ausgangsbass: Perceptron Learnng Rule Δw y = Kf = 0Ksonst K"target" = Kf Rosenblatt (96) Input wrd dazugezählt (abgezogen),

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) permentalphsk II (Kp SS 007) Zusatvorlesungen: Z-1 n- und mehrdmensonale Integraton Z- Gradent, Dvergen und Rotaton Z-3 Gaußscher und Stokesscher Integralsat Z-4 Kontnutätsglechung Z-5 lektromagnetsche

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren

6 Rechnen mit Zahlen beliebig hoher Stellenzahl 7 Intervall-Arithmetik 8 Umsetzung in aktuellen Prozessoren Inhalt 4 Realserung elementarer Funktonen Rehenentwcklung Konvergenzverfahren 5 Unkonventonelle Zahlenssteme redundante Zahlenssteme Restklassen-Zahlenssteme logarthmsche Zahlenssteme 6 Rechnen mt Zahlen

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

7 Schrödingergleichung

7 Schrödingergleichung 36 7 Schrödngerglechung 7 Schrödngerglechung De Schrödngerglechung spelt n der Quantenmechank ene zentrale Rolle. Mt hr wrd de Wellenfunkton des Systems berechnet. Der erste Bestandtel der Schrödngerglechung

Mehr

Der Erweiterungsfaktor k

Der Erweiterungsfaktor k Der Erweterungsfaktor k Wahl des rchtgen Faktors S. Meke, PTB-Berln, 8.40 Inhalt: 1. Was macht der k-faktor? 2. Welche Parameter legen den Wert des k-faktors fest? 3. Wo trtt der k-faktor auf? 4. Zusammenhang

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

Rotation (2. Versuch)

Rotation (2. Versuch) Rotaton 2. Versuch Bekannt snd berets Vektorfelder be denen das Lnenntegral über ene geschlossene Kurve Null wrd Stchworte: konservatve Kraft Potentalfelder Gradentenfeld. Es gbt auch Vektorfelder be denen

Mehr

Übungsblatt 7 Lösungsvorschläge

Übungsblatt 7 Lösungsvorschläge Insttut für Theoretsche Informatk Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Lösungsvorschläge Vorlesung Algorthmentechnk m WS 09/10 Problem 1: Mnmale Schnttbass Approxmatonsalgos relatver Gütegarante

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

8 Numerik von Eigenwertproblemen

8 Numerik von Eigenwertproblemen 8 Numerk von Egenwertproblemen 8 Das Lanczos-Verfahren Mt dem Lanczos-Verfahren bestmmt man für ene hermtesche Matrx A n n ene untäre Matrx U mt U H AU = T, wobe T ene reelle symmetrsche Trdagonalmatrx

Mehr

8 Numerik von Eigenwertproblemen

8 Numerik von Eigenwertproblemen 8 Numerk von Egenwertproblemen 8 Das Lanczos-Verfahren Mt dem Lanczos-Verfahren bestmmt man für ene hermtesche Matrx A n n ene untäre Matrx U mt U H AU = T, wobe T ene reelle symmetrsche Trdagonalmatrx

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Mathematische Grundlagen

INTELLIGENTE DATENANALYSE IN MATLAB. Mathematische Grundlagen INTELLIGENTE DATENANALYSE IN MATLAB Mathematsche Grundlagen Überblck Lneare Algebra: Vektoren, Matrzen, Analyss & Optmerung: Dstanzen, konvexe Funktonen, Lagrange-Ansatz, Stochastk: Wahrschenlchketstheore,

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ).

n y j l j (x) È n. j=0 n (x x j ). f(x) = a y n+1 p n (x n+1 ) (x n+1 x 0 )...(x n+1 x n ). 5 Interpolaton 5.1 De Lagrangesche Interpolatonsaufgabe Mt È n bezechnen wr den Raum der reellen Polynome vom Grad n. Gegeben seen n+1 verschedene Stützstellen x j Ê, j = 0,...,n, und n + 1 ncht notwendg

Mehr

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Resultate / states of nature / mögliche Zustände / möglicheentwicklungen Pay-off-Matrzen und Entschedung unter Rsko Es stehen verschedene Alternatven (Strategen) zur Wahl. Jede Stratege führt zu bestmmten Resultaten (outcomes). Man schätzt dese Resultate für jede Stratege und

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statstk und Wahrschenlchketsrechnung Statstk und Wahrschenlchketsrechnung 5. Vorlesung Dr. Jochen Köhler.03.0 Statstk und Wahrschenlchketsrechnung Wchtg!!! Vorlesung Do 4.03.0 HCI G3 Übung 5 D 9.03.0 Fnk

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

3 Das Lanczos Verfahren

3 Das Lanczos Verfahren Computatonal Physcs III, SS 2014, c Burkhard Bunk, HU Berln 13 3 Das Lanczos Verfahren 3.1 Idee Ausgehend von enem (normerten) Startvektor v 0 soll durch wederholtes Anwenden der (hermteschen) Matrx A

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

e dt (Gaußsches Fehlerintegral)

e dt (Gaußsches Fehlerintegral) Das Gaußsche Fehlerntegral Φ Ac 5-8 Das Gaußsche Fehlerntegral Φ st denert als das Integral über der Standard-Normalvertelung j( ) = -,5 n den Grenzen bs, also F,5 t ( ) = - e dt (Gaußsches Fehlerntegral)

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

5 Quantenmechanische Berechnung von Eigenschaften

5 Quantenmechanische Berechnung von Eigenschaften 4 5 Quantenmechansche Berechnung von Egenschaften 5 Quantenmechansche Berechnung von Egenschaften De Quantentheore ermöglcht es prnzpell, physkalsche Egenschaften vorherzusagen, also das Resultat enes

Mehr

=, grad Z(s) = m n = grad N(s).

=, grad Z(s) = m n = grad N(s). 4 7... Stabltätsprüfung anhand der Übertragungsfunkton (.9) leferte den Zusammenhang zwschen der Gewchtsfunkton g(t) und der Übertragungsfunkton G(s) enes lnearen zetnvaranten Systems G (s) { g ( t)}.

Mehr

Algorithmen und ihre Programmierung -Teil 3-

Algorithmen und ihre Programmierung -Teil 3- Veranstaltung Pr.-Nr.: Algorthmen und hre Programmerung -Tel - Veronka Waue WS / Veronka Waue: Grundstudum Wrtschaftsnformatk WS/ Übung Ersetzen Se n folgendem Bespel de For schlefe durch ene WhleWend-Schlefe

Mehr

5 Gemischte Verallgemeinerte Lineare Modelle

5 Gemischte Verallgemeinerte Lineare Modelle 5 Gemschte Verallgemenerte Lneare Modelle Wr betrachten zunächst enge allgemene Aussagen für Gemschte Verallgemenerte Lneare Modelle. Se y der beobachtbare Zufallsvektor und u der Vektor der ncht-beobachtbaren

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Hauptprüfung Abturprüfung 2014 (ohne CAS) Baden-Württemberg Lneare Optmerung Hlfsmttel: GTR, Formelsammlung beruflche Gymnasen (AG, BTG, EG, SG, TG, WG) Alexander Schwarz www.mathe-aufgaben.com Oktober

Mehr

Lineare Regression - Mathematische Grundlagen

Lineare Regression - Mathematische Grundlagen FKULTÄT FÜR MTHEMTIK U TURWISSESCHFTE ISTITUT FÜR PHYSIK FCHGEBIET EXPERIMETLPHYSIK I r. rer. nat. orbert Sten, pl.-ing (FH) Helmut Barth Lneare Regresson - Mathematsche Grundlagen. llgemene Gerade Wr

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gauslng, M.Sc. C. Hendrcks, M.Sc. Sommersemester 1 Bergsche Unverstät Wuppertal Fachberech C Mathematk und Naturwssenschaften Angewandte Mathematk / Numersche Analyss Enführung

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

Lösungen der Aufgaben zu Kapitel 2

Lösungen der Aufgaben zu Kapitel 2 Lösungen der Aufgaben zu Kaptel Abschntt 1 Aufgabe 1 Wr benutzen de Potenzrechenregeln, um ene Potenz von mt geradem Eponenten n oder mt ungeradem Eponenten n + 1 we folgt darzustellen: n n und n+1 n n

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

1 Finanzmathematik. 1.1 Das Modell. Sei Xt 1.1 Das Modell Se Xt der Pres enes Assets zur Zet t und X = X ) 1 d der Rd +-dmensonale Presprozess. Das Geld kann auch zu dem rskolosen Znssatz r be ener Bank angelegt werden. Der Wert deser Anlage wrd

Mehr

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator

Sortieren. Thomas Röfer. Permutationen Naives Sortieren Sortieren durch Einfügen, Auswählen, Vertauschen, Mischen QuickSort Comparator Unverstät Bremen Sorteren Thomas Röfer Permutatonen Naves Sorteren Sorteren durch Enfügen, Auswählen, Vertauschen, Mschen QuckSort Comparator Unverstät Bremen Rückblck Suchen Identtät/Flache/Tefe Glechhet

Mehr