Dynamische Systeme in der Biologie: Beispiel Neurobiologie

Größe: px
Ab Seite anzeigen:

Download "Dynamische Systeme in der Biologie: Beispiel Neurobiologie"

Transkript

1 Dynamische Systeme in der Biologie: Beispiel Neurobiologie Caroline Geisler May 30, 2018

2 Stabilitätsanalyse in 2D Das Modell: Nullkline: dv dt dw dt = f(v) w+i F(V,w) = bv cw G(V,w) F(V,w) = 0 G(V,w) = 0 w = f(v)+i w = b c V Fixpunkte: f(v fix )+I = b c V fix

3 für jeden Fixpunkt: ( F Jakobi-Matrix: M = V G V F w G w ) fix Definition: = det(m) Eigenwertproblem: Eigenwerte: τ = Spur M λ 2 τλ+ =0 λ 1,2 = τ/2± τ 2 /4 mit τ = λ 1 + λ 2 = λ 1 λ 2

4 Dynamische Regime τ 0 eigenvalues saddle (real eigenvalues, different signs) saddle-node bifurcation saddle-node bifurcation (real positive eigenvalues) unstable node unstable focus (complex eigenvalues, positive real part) Andronov-Hopf bifurcation stable focus (complex eigenvalues, negative real part) stable node (real negative eigenvalues) τ2 4 = 0 τ2 4 = 0 0 (Izhikevich 2007) λ 1,2 = τ/2± τ 2 /4 mit λ 1 + λ 2 = τ und λ 1 λ 2 = Die Fixpunkte (V fix,w fix ) hängen von I app ab, damit hängen auch und τ von I app ab. Der Übergang von einer dynamischen Region zur anderen: Bifurkation

5 Neuron Klasse 1 und 2 Klasse 1: Frequenz geht gegen Null Klasse 2: endliche Frequenz (Izhikevich 2007) Definition: Rheobase I θ - kleinster konstanter Strom, der zu Aktionspotentialen führt.

6 Klasse 1 Sattel-Knoten-Bifurkation auf dem invarianten Kreis drei Fixpunkte: stabil, Sattel, instabil I < I θ : der Fluss kommt im stabilen Fixpunkt zum Halt. I = I θ : stabiler Fixpunkt und Sattel treffen und annihilieren sich. Ein Limit-Cycle entsteht um den instabilen Fixpunkt und durch den Sattel-Knoten. I > I θ : Der Fluss fühlt den Geist des stabilen Fixpunkts. Kleine Frequenzen nahe I θ.

7 Klasse 2 Sattel-Knoten-Bifurkation nicht auf dem invarianten Kreis drei Fixpunkte: stabil, Sattel, instabil I < I θ : der Fluss kommt im stabilen Fixpunkt zum Halt. Ein stabiler Limit-Cycle um den instabilen Fixpunkt kann bereits existieren (Bistabilität). I = I θ : stabiler Fixpunkt und Sattel treffen und annihilieren sich. Spätestens jetzt entsteht ein Limit-Cyle. I > I θ : Der Limit-Cycle ist weit weg vom Geist des stabilen Fixpunks. Endliche Frequenzen nahe I θ.

8 Klasse 2 Andronov-Hopf-Bifurkationen ein Fixpunkt, komplex conjugierte Eigenwerte I < I θ : Fixpunkt ist stabil. Subkritisch: Limit-Cycle existiert (Bistabilität). I = I θ : Fixpunkt verliert Stabilität, τ = 0, Eigenwerte λ 1,2 =±i =±iω, superkritisch: Limit-Cyle entsteht. I > I θ : Instabiler Fixpunkt, stabiler Limit-Cycle

9 Bursting Manche Neurone haben ionische Ströme, die rhythmische Bursts in isolierten Neuronen hervorrufen können. Langsame Zeitskala, multi-dimensionales System (a) bursting spiking 20 mv 100 ms ADP (b) increasing ISIs (c) decreasing ISIs 20 mv 20 mv 100 ms 100 ms 500 pa 600 pa Beispiele: (a) layer 5 somatosensory cortex in the rat, (b) cat, (c) visual cortex in rat.

10 Bursts: Beispiele Somatische und dendritische Spike (a) and Burst (b). Dendritisch-somatisches ping-pong. (a) dendritic spike 20 mv 25 ms (b) soma dendrite recorded (in vitro) ADP Spike-Frequenz-Adaptation Kalzium and kalzium-abhängiger Kalium-Strom mit langsamer Zeitkonstante. Die Kalzium-Konzentration steigt mit den Aktionspotentialen und nimmt langsam wieder ab. (Wang 1998) I Ca = g Ca m (V V Ca ), I AHP = g AHP [[Ca 2+ ]/([Ca 2+ ]+K D )](V VK), d[ca 2+ ]/dt = αi Ca [Ca 2+ ]/dτ Ca

11 Bursts: noch mehr Beispiele Spike-Gruppen in Neuronen des Basalhirns und des medialen Septums. Das Modell enthält einen langsam inaktivierenden Kalium-Strom: I KS = g KS pq(v V K ) Sub-threshold Oszillationen: Interaktion von I Na und I KS. (Wang 2002)

12 Bursting im 3D Phasenarum (Izhikevich 2007)

13 Resonanz I Experimentelle Messung Resonanz-Eigenschaften: Sub-Threshold Oszillationen werden mit ZAP -Strom gemessen. Impedanz = FFT(output)/FFT(input). Beispiel: Hippocampus Pyramidenzelle. (Hu 2002)

14 Resonanz II (a) (b) g K n g Nap 1.0 Stable Spontaneous oscillations Voltage output Current input v + v + v + Modellsystem: dv dt = (v v L) g Na (v)(v v Na ) g K n(v v K ) Keine Oszillationen in 1. Gedämpfte Oszillationen in 2. Andauernde Oszillationen in 3 (Limit-Cycle). (Hutcheon & Yarom 2000)

15 Gedämpfte sub-threshold Oszillationen: (Izhikevich 2007)

16 Integrator vs. Resonator Integrator: Neurone nahe Sattel-Knoten-Bifurkation; bevorzugen hochfrequenten exzitatorischen Input; haben wohldefinierten Threshold Resonator: Neurone nahe Andronov-Hopf-Bifurkation; oszillierendes Membranpotential, bevorzugen Resonanz-Frequenz, können Spike nach Inhibition feuern.

17 Was ist ein Spike? membrane potential [mv] time [ms] Schwellenpotential: point of no return, Initiation des Aktionspotentials Zeitpunkt der Spitze des Aktionspotentials

18 Das Integarte-and-Fire-Modell Minimales Modell mit Zurücksetzen: C V = g l (V V L )+I C/g l 10 ms V L -70 mv V R -80 mv V T -40 mv (Izhikevich 2007)

19 Resonate-and-Fire-Modell Ein 2D-Modell (Young Modell): C V Ẇ = g L (V V L ) W+ I = (V V r )/k W Wenn V = V T dann V V R und W W R Wenn Ruhezustand stabiler Fokus: ż =(b + iω)z + I (Izhikevich 2007)

20 Quadratisches-Resonanz-Modell C v u = k(v v r )(v v t ) u+i = a{(b(v v r ) u)} (Izhikevich 2007)

21

22 Gleichmäßig feuerndes Neuron 100 v=0.7(v+60)(v+40) u+i; u=0.03{ 2(v+60) u} Reset: v 50 und u u+100 (Izhikevich 2007)

23 Bursting Neuron 150 v=1.2(v+75)(v+45) u+i; u=0.01{5(v+75) u} Reset: v 56 und u u+130 (Izhikevich 2007)

24 Referenzen (Hu 2002) Hu H., Vervaeke K., Storm J.F. Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol. 2002, 545: (Hutcheon & Yarom 2000) Hutcheon B. and Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 2000, 23(5): (Izhikevich 2007) Izhikevich E.M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT press, 2007 (Wang 1998) Wang X.-J. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 1998, 79: (Wang 2002) Wang X.-J. Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. J. Neurophysiol. 2002, 87,

Dynamische Systeme in der Biologie: Beispiel Neurobiologie

Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dr. Caroline Geisler geisler@lmu.de 13. Juni 2018 Hans Berger (1873-1941) und das EEG Hans Berger zeichnete 1924 das erste EEG (Elektroenzephalogramm)

Mehr

Einfache Modelle der Neurodynamik.

Einfache Modelle der Neurodynamik. Vorlesung Einfache Modelle der Neurodynamik. Anregbarkeit und canards. Wintersemester 2015/16 12.01.2016 M. Zaks Aufbau eines Neurons: Gesamtbild 2 / 16 neuron Aufbau eines Neurons: Axon und Dendriten

Mehr

Dynamische Systeme in der Biologie: Beispiel Neurobiologie

Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dynamische Systeme in der Biologie: Beispiel Neurobiologie Caroline Geisler geisler@lmu.de April 18, 2018 Elektrische Ersatzschaltkreise und Messmethoden Wiederholung: Membranpotential Exkursion in die

Mehr

Spektralanalyse physiologischer Signale

Spektralanalyse physiologischer Signale Spektralanalyse physiologischer Signale Dr. rer. nat. Axel Hutt Vorlesung 1 III. Zeit-Frequenz Analyse Short-time Fourier Transform Gabor Transformation Lineare Filter Wavelet Transformation Konzept des

Mehr

Dynamische Systeme in der Biologie: Beispiel Neurobiologie

Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dr. Caroline Geisler geisler@lmu.de April 11, 2018 Veranstaltungszeiten und -räume Mittwoch 13:00-14:30 G00.031 Vorlesung Mittwoch 15:00-16:30

Mehr

Spektralanalyse physiologischer Signale

Spektralanalyse physiologischer Signale Spektralanalyse physiologischer Signale Dr. rer. nat. Axel Hutt Vorlesung 11 Aktionspotential zeigt Membranpotential in der Zellmembran, doch was sieht man ausserhalb? einzelne Synapse Summe von synaptischen

Mehr

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände Bifurkationstheorie 1. Verzweigungen stationärer Zustände Die Lage, Anzahl und Stabilität der stationären Zustände von nichtlinearen Systemen hängt in der Regel noch von bestimmten Systemparametern ab.

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

Aktionspotentiale im Herzgewebe

Aktionspotentiale im Herzgewebe Vortrag im Seminar Hydrodynamik des Blutes Aktionspotentiale im Herzgewebe Justin Grewe 6. Juli 2014 justin.grewe@tu-dortmund.de 1 Einführung Das Gewebe im Herzen kombiniert die Eigenschaften von Nerven

Mehr

Stabilität linearer Differentialgleichungssysteme 1-1

Stabilität linearer Differentialgleichungssysteme 1-1 Stabilität linearer Differentialgleichungssysteme Ein lineares homogenes Differentialgleichungssystem mit konstanten Koeffizienten u = Au, u = (u 1,..., u n ) t, ist Stabilität linearer Differentialgleichungssysteme

Mehr

Synchronisation: ein universelles Ordnungsprinzip für Rhythmen Michael Rosenblum

Synchronisation: ein universelles Ordnungsprinzip für Rhythmen Michael Rosenblum Synchronisation: ein universelles Ordnungsprinzip für Rhythmen Michael Rosenblum Statistische Physik / Chaos Theorie Institut für Physik und Astronomie Universität Potsdam Schwingungen: wichtig in Wissenschaft

Mehr

Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert

Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert Poincaré-Schnitte Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert Themen 1. Was sind Poincaré-Schnitte?. Anwendung: Poincaré-Schnitte Mathematica-Beispiel: Attraktor

Mehr

Der Duffing-Oszillator

Der Duffing-Oszillator 11.04.2006 Inhalt Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile Ruhelagen. Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile

Mehr

Umsetzung des neuen EL-Lehrplans

Umsetzung des neuen EL-Lehrplans Umsetzung des neuen EL-Lehrplans... für Maschinenbauer... Dipl.-Ing. Dr.techn. Michael Schwarzbart scb@htlwrn.ac.at Salzburg 09.Dezember 2015 Der Weg zu dynamischen Systemen Festigkeitslehre Statik Hydromechanik

Mehr

Biologische Oszillatoren und Schalter - Teil 1

Biologische Oszillatoren und Schalter - Teil 1 Biologische Oszillatoren und Schalter - Teil 1 Elena Süs 11.12.2012 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Motivation 2 Historische Entwicklung

Mehr

1 Einleitung. 1.1 Ablauf

1 Einleitung. 1.1 Ablauf 1 Einleitung 1.1 Ablauf Einleitung Zentrale Unterräume in regulären Netzwerken Lösungszweige Bifurkationen von stabilen, synchronen Lösungen Ziel: Zeigen, dass eine Kodimension 1 Bifurkation von einem

Mehr

3 Zweidimensionale dynamische Systeme Oszillationen

3 Zweidimensionale dynamische Systeme Oszillationen 3 Zweidimensionale dynamische Systeme Oszillationen Lineare Systeme Ein Beispiel für ein zweidimensionales dynamisches System ist die Gleichung ẍ + ω 2 sin x = 0 für ebene Schwingungen eines reibungsfreien

Mehr

Topologische Objektrepräsentationen und zeitliche Korrelation

Topologische Objektrepräsentationen und zeitliche Korrelation Topologische Objektrepräsentationen und zeitliche Korrelation Frank Michler Fachbereich Physik, AG NeuroPhysik Outline 1 2 Stimuli -Neuron und Architektur Lernregel 3 Selektivitäts-Karten Invariante Repräsentation

Mehr

1.3 Zweidimensionale Systeme

1.3 Zweidimensionale Systeme 132 KAPITEL IV. QUALITATIVE THEORIE UND DYNAMISCHE SYSTEME Im Fall a 3 > 0 ist das Gleichgewicht asymptotisch stabil. Für a 2 3 > 4a 1a 2 haben wir < < 0 und es liegt ein stabiler Knoten vor (siehe den

Mehr

Aufgabe 1 (Klassifizierung von Systemen)

Aufgabe 1 (Klassifizierung von Systemen) Prof. L. Guzzella Prof. R. D Andrea 151-0591-00 Regelungstechnik I (HS 07) Musterlösung Übung 3 Systemklassifizierung, Systeme 1. Ordnung im Zeitbereich, Stabilitätsanalyse moritz.oetiker@imrt.mavt.ethz.ch,

Mehr

Stabile periodische Bewegungen (Grenzzyklen)

Stabile periodische Bewegungen (Grenzzyklen) Stabile periodische Bewegungen (Grenzzyklen) 1. Nichtlineare Systeme mit zwei Gleichungen Prinzipiell neu: Alle Systeme mit mindestens 2 unabhängigen DGL können als Lösungen geschlossene Kurven im Phasenraum

Mehr

Erregbarkeit von Zellen. Ein Vortrag von Anne Rath

Erregbarkeit von Zellen. Ein Vortrag von Anne Rath Erregbarkeit von Zellen Ein Vortrag von Anne Rath Gliederung(1) 1.Das Hodgkin-Huxley Modell 1.1 Spannungs- und Zeitabhängigkeit der Leitfähigkeit 1.1.1 Die Kalium-Leitfähigkeit 1.1.2 Die Natrium-Leitfähigkeit

Mehr

Einfache Modelle der Populationsdynamik

Einfache Modelle der Populationsdynamik Vorlesung 4. Einfache Modelle der Populationsdynamik Wintersemester 215/16 1.11.215 M. Zaks allgemeine vorbemerkungen In kleinen Populationen schwanken die Bevolkerungszahlen stochastisch: Geburt/Tod von

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK K. Taubert Universität Hamburg SS8 Linearisierung 2 LINEARISIERUNG und das VERHALTEN VON LÖSUNGEN NICHTLINEARER DIFFERENTIALGLEICHUNGEN

Mehr

C1/4 - Modellierung und Simulation von Neuronen

C1/4 - Modellierung und Simulation von Neuronen C 1 /4 - Modellierung und Simulation von Neuronen April 25, 2013 Motivation Worum geht es? Motivation Worum geht es? Um Neuronen. Motivation Worum geht es? Um Neuronen. Da ist u.a. euer Gehirn draus Motivation

Mehr

Blatt 12.3: Fourier-Integrale, Differentialgleichungen

Blatt 12.3: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Blatt 11.1: Fourier-Integrale, Differentialgleichungen

Blatt 11.1: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:

Mehr

Einführung in Neuronendynamik

Einführung in Neuronendynamik Einführung in Neuronendynamik Alina Bleier 18. Mai 2013 Bachelorseminar Biomedizinische Modellierung und Modellreduktion, SoSe 2013 Fachbereich Mathematik und Informatik, Institut für Numerik und Angewandte

Mehr

Neuroinformatik II. Günther Palm und Friedhelm Schwenker Institut für Neuroinformatik

Neuroinformatik II. Günther Palm und Friedhelm Schwenker Institut für Neuroinformatik Neuroinformatik II Günther Palm und Friedhelm Schwenker Institut für Neuroinformatik Vorlesung (3h) Übungen (1h): Di, Fr 10-12 Uhr H21 (1.Übung: 08.05.09) Schein: 50% der Punkte (6 übungsblätter) + aktive

Mehr

Modelle zur Beschreibung von Schwellwertphänomenen in Nervenmembranen Fitzhugh-Nagumo-Gleichungen

Modelle zur Beschreibung von Schwellwertphänomenen in Nervenmembranen Fitzhugh-Nagumo-Gleichungen Modelle zur Beschreibung von Schwellwertphänomenen in Nervenmembranen Fitzhugh-Nagumo-Gleichungen Katrin Schmietendorf Vortrag im Rahmen der Veranstaltung Numerische Methoden für Dynamische Systeme SoSe

Mehr

Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back )

Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back ) Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back ) A: Schrittweise vorwärts-gerichtete Abbildung: Eingangssignal (Input) r in Ausgansgsignal (Output) r out Überwachtes Lernen (wie z.b.

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Seminarvortrag: Visual Cortex

Seminarvortrag: Visual Cortex Seminarvortrag: Visual Cortex Sören Schwenker 13. Januar 2013 Visual Cortex Inhaltsverzeichnis 13. Januar 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Conductance based models 2 3 Rate-based neural network

Mehr

Übung 4 - Implementierung

Übung 4 - Implementierung Übung 4 - Implementierung 1 PID-Realisierung Das Folgeverhalten eines PID-Reglers durch die Einführung von setpoint weights (a, b und c) verbessert werden kann. 1. P: Sollwertgewichtung a, oft 0 < a

Mehr

2.2. Lineare Systeme. a) A ist diagonalisierbar, oder b) A ist nicht diagonalisierbar.

2.2. Lineare Systeme. a) A ist diagonalisierbar, oder b) A ist nicht diagonalisierbar. .. Lineare Systeme deta < 0 = 0 > 0 SpA Abbildung.9.: Gebiete mit unterschiedlicher Dynamik eines zweidimensionalen linearen dynamischen Systems entsprechend dem Vorzeichen der Diskriminante. a) A ist

Mehr

Neuronale Netzwerke. Niels Pieper, Daniel Janßen-Müller, Daniel Ritterskamp. Betreuer: Michael Wilczek. 7. Februar 2011

Neuronale Netzwerke. Niels Pieper, Daniel Janßen-Müller, Daniel Ritterskamp. Betreuer: Michael Wilczek. 7. Februar 2011 Neuronale Netzwerke Niels Pieper, Daniel Janßen-Müller, Daniel Ritterskamp Betreuer: Michael Wilczek 7. Februar 2011 1 Wiederholung 2 Modell 3 spikeabhängige Plastizität 4 Anwendung 5 Literatur Biologischer

Mehr

Klassifikation planarer Systeme

Klassifikation planarer Systeme Klassifikation planarer Systeme Dieser Vortrag thematisiert die Klassifikation planarer Systeme. Man klassifiziert planare Systeme um einen besseren Überblick über die verschiedenen Verhaltensweisen von

Mehr

Zentrumsmannigfaltigkeiten. Eva Maria Bartram

Zentrumsmannigfaltigkeiten. Eva Maria Bartram Zentrumsmannigfaltigkeiten Eva Maria Bartram 09. Mai 2006 Gliederung 1. Einleitung 1.1 Hartmans Theorem 1.2 Stabile Mannigfaltigkeiten-Theorem für einen Fixpunkt 2. Zentrumsmannigfaltigkeits-Theorem für

Mehr

Metabolismus Modelle. Überblick über Stoffwechselwege aus KEGG Datenbank (Kyoto Encyclopedia of Genes and Genomes)

Metabolismus Modelle. Überblick über Stoffwechselwege aus KEGG Datenbank (Kyoto Encyclopedia of Genes and Genomes) Metabolismus Modelle Überblick über Stoffwechselwege aus KEGG Datenbank (Kyoto Encyclopedia of Genes and Genomes) www.genome.p/kegg Edda Klipp, Humboldt- zu Berlin Reproduktion experimenteller Befunde

Mehr

Synchronisation in Natur und Technik

Synchronisation in Natur und Technik Am Beispiel des Kuramoto-Modells Jan Baumbach Christoph Schöler Christian Barthel 2 Inhalt 1. Einleitung 2. Kuramoto-Modell 3. Simulation und Ergebnisse 3 Die Motivation Das Phänomen Synchronisation tritt

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Computational Neuroscience 2. Neuronenmodelle

Computational Neuroscience 2. Neuronenmodelle Computational Neuroscience 2. Neuronenmodelle Jutta Kretzberg Master-Grundmodul 2009 Download der pdf Version: http://www.uni-oldenburg.de/sinnesphysiologie/ 40426.html Nachtrag: Literatur pdf-version

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Gewöhnliche Differentialgleichungen SS 2017 Klausur

Öffnen Sie den Klausurbogen erst nach Aufforderung! Gewöhnliche Differentialgleichungen SS 2017 Klausur Prof. Dr. Manuel Torrilhon Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Gewöhnliche Differentialgleichungen SS 2017 Klausur 26.09.2017 Dokumentenechtes Schreibgerät, aber

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Spezialisierte adaptive Algorithmen für die Modellprädiktive Regelung von PDEs

Spezialisierte adaptive Algorithmen für die Modellprädiktive Regelung von PDEs Spezialisierte adaptive Algorithmen für die Modellprädiktive Regelung von PDEs Lehrstuhl für Angewandte Mathematik Mathematisches Institut Universität Bayreuth 28.02.2018 12. Elgersburg Workshop (26.02.

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr

Floquet-Theorie IV. 1 Hills Gleichung

Floquet-Theorie IV. 1 Hills Gleichung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.

Mehr

VS : Systemische Physiologie Tierphysiologie für Bioinformatiker WS 2009/10. Neuronenmodelle I

VS : Systemische Physiologie Tierphysiologie für Bioinformatiker WS 2009/10. Neuronenmodelle I Bachelor Program Bioinformatics, FU Berlin VS : Systemische Physiologie Tierphysiologie für Bioinformatiker WS 2009/10 Neuronenmodelle I Ratenkodierung versus Zeitkodierung Integrator versus Koinzidenzdetektor

Mehr

Diskrete Populationsmodelle für Einzelspezies - Teil 2

Diskrete Populationsmodelle für Einzelspezies - Teil 2 Diskrete Populationsmodelle für Einzelspezies - Teil 2 Laura Gemmel 30.10.2012 Literatur, die verwendet wurde: J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Inhaltsverzeichnis

Mehr

Vorlesung #2. Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung. Alexander Gottschalk, JuProf. Universität Frankfurt

Vorlesung #2. Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung. Alexander Gottschalk, JuProf. Universität Frankfurt Vorlesung #2 Elektrische Eigenschaften von Neuronen, Aktionspotentiale und deren Ursprung Alexander Gottschalk, JuProf Universität Frankfurt SS 2010 Elektrische Eigenschaften von Neuronen Elektrische Eigenschaften

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

Fixpunkte und Stabilitätsanalyse

Fixpunkte und Stabilitätsanalyse Fixpunkte und Stabilitätsanalyse 1 Themenüberblick Motivation 1D-Probleme Bifurkationen 2D-Probleme Fixpunkttypen Lotka-Volterra-Modelle 2 Motivation Bisher: Lineare Dynamik Jetzt: Nichtlineare Systeme

Mehr

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen Erregungsübertragung an Synapsen 1. Einleitung 2. Schnelle synaptische Übertragung 3. Schnelle synaptische Hemmung chemische 4. Desaktivierung der synaptischen Übertragung Synapsen 5. Rezeptoren 6. Langsame

Mehr

Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main. Neurobioinformatik

Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main. Neurobioinformatik Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main Neurobioinformatik (Übung NBI, WS 2018/19) M. Huymayer, J. Wang, Dr. A. Nägel, Dr. M. Hoffer Aufgabenblatt 9 Abgabe Montag,

Mehr

3 Modellierung von Neuronen I

3 Modellierung von Neuronen I 3 Modellierung von Neuronen I Im ersten Kapitel über die Modellierung von Neuronen bewegen wir uns von der einfachsten Modelldarstellung von Neuronen, in denen das Neuron als eine Einheit modelliert wird

Mehr

Regelungstechnik II PVK - Lösungen. Nicolas Lanzetti

Regelungstechnik II PVK - Lösungen. Nicolas Lanzetti Regelungstechnik II PVK - Lösungen Nicolas Lanzetti lnicolas@student.ethz.ch Nicolas Lanzetti Regelungstechnik II FS 6 Inhaltsverzeichnis Wiederholung Regelungstechnik I 3 SISO Reglersynthese 3 3 Realisierung

Mehr

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen 4 Schwingungen 41 Pendel 4 Untersuchung von oszillierenden Systemen um was geht es? Schwingungen = Oszillationen Beschreibung von schwingenden Systemen Methoden zur Analyse, Modellierung und Simulation

Mehr

Herzleistung. Pumpleistung Liter/Tag 400 millionen Liter. Erkrankungen: Herzfrequenz: 100 Jahre lang

Herzleistung. Pumpleistung Liter/Tag 400 millionen Liter. Erkrankungen: Herzfrequenz: 100 Jahre lang Herzleistung Pumpleistung 5l/min *5 bei Belastung 7500 Liter/Tag 400 millionen Liter Volumen: 1km*40m*10m 10m Erkrankungen: 30% aller Todesfälle Herzfrequenz: Schlägt 100 000 mal/tag 100 Jahre lang Regulation

Mehr

Motivation Kap. 6: Graphen

Motivation Kap. 6: Graphen Motivation Kap. 6: Graphen Warum soll ich heute hier bleiben? Graphen sind wichtig und machen Spaß! Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Was gibt es

Mehr

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 28. Oktober 2003

Prof. J. Zhang Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 28. Oktober 2003 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 3. Eigenschaften von Sensoren.................... 41 Transferfunktion...........................

Mehr

Mathematische Aspekte der Modellbildung und Simulation in den Neurowissenschaften

Mathematische Aspekte der Modellbildung und Simulation in den Neurowissenschaften Mathematische Aspekte der Modellbildung und Simulation in den Neurowissenschaften Stefan Lang Interdisziplinäres Zentrum für wissenschaftliches Rechnen, Universität Heidelberg SS 2010 Lang (IWR) Numer.

Mehr

Neurale Grundlagen kognitiver Leistungen II

Neurale Grundlagen kognitiver Leistungen II Neurale Grundlagen kognitiver Leistungen II Inhalt: 1. Lernen und Gedächtnis: Hirnregionen und wichtige Bahnen 2. Aufbau der Hippocampusformation 2.1 Anatomie und Mikroanatomie der Hippocampusformation

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

Passive und aktive elektrische Membraneigenschaften

Passive und aktive elektrische Membraneigenschaften Aktionspotential Passive und aktive elektrische Membraneigenschaften V m (mv) 20 Overshoot Aktionspotential (Spike) V m Membran potential 0-20 -40 Anstiegsphase (Depolarisation) aktive Antwort t (ms) Repolarisation

Mehr

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Dozent: Dr. M. V. Barbarossa (barbarossa@uni-heidelberg.de) Vorlesung+ Übung: Mo/Mi/Fr. 8:15-9:45Uhr, SR 1, INF 205 Termin

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche,

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Vierzehnte & Fünfzehnte Woche, Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Vierzehnte & Fünfzehnte Woche, 1672014 10 Determinanten (Schluß) Das folgende Resultat

Mehr

Transport Einführung

Transport Einführung Transport Einführung home/lehre/vl-mhs-1/inhalt/folien/vorlesung/8_transport/deckblatt.tex Seite 1 von 24. p.1/24 1. Einführung 2. Transportgleichung 3. Analytische Lösung Inhaltsverzeichnis 4. Diskretisierung

Mehr

Integrative Leistungen des ZNS, kortikale und thalamischer Verschaltung, Elektroenzephalographie (EEG)

Integrative Leistungen des ZNS, kortikale und thalamischer Verschaltung, Elektroenzephalographie (EEG) Integrative Leistungen des ZNS, kortikale und thalamischer Verschaltung, Elektroenzephalographie (EEG) Teil 1 Dr. Dr. Marco Weiergräber Sommersemester 2006 1 Übersicht Aufbau des Neokortex Neurophysiologische

Mehr

Das Prinzip der Suchmaschine Google TM

Das Prinzip der Suchmaschine Google TM /9 Das Prinzip der Suchmaschine Google TM Numerische Mathematik WS 20/2 Basieren auf dem Paper The $25,000,000,000 Eigenvector: The Linear Algebra behind Google von Kurt Bryan und Tanya Leise (SIAM Review,

Mehr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr

Martin Stetter WS 03/04, 2 SWS. VL: Dienstags 8:30-10 Uhr Statistische und neuronale Lernverfahren Martin Stetter WS 03/04, 2 SWS VL: Dienstags 8:30-0 Uhr PD Dr. Martin Stetter, Siemens AG Statistische und neuronale Lernverfahren Behandelte Themen 0. Motivation

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Modulprüfung: BBio119, Neurowissenschaften und Verhaltensbiologie. Klausur zur Vorlesung: Theoretische Neurowissenschaften.

Modulprüfung: BBio119, Neurowissenschaften und Verhaltensbiologie. Klausur zur Vorlesung: Theoretische Neurowissenschaften. Modulprüfung: BBio119, Neurowissenschaften und Verhaltensbiologie Klausur zur Vorlesung: Theoretische Neurowissenschaften. SoSe 2010 Name Vorname Matrikelnummer Anmerkungen: Sie müssen die Prüfung ohne

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

Neuronale Signalverarbeitung

Neuronale Signalverarbeitung neuronale Signalverarbeitung Institut für Angewandte Mathematik WWU Münster Abschlusspräsentation am 08.07.2008 Übersicht Aufbau einer Nervenzelle Funktionsprinzip einer Nervenzelle Empfang einer Erregung

Mehr

Seltsame Attraktoren

Seltsame Attraktoren 1 Seltsame Attraktoren Proseminar: Theoretische Physik Jonas Haferkamp 9. Juli 2014 Abbildung: Poincaré-Schnitt der Duffing-Gleichungen 2 3 Gliederung 1 Motivation 2 Was ist ein (seltsamer) Attraktor?

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

13. Vorlesung. Lineare Algebra und Koordinatenwechsel.

13. Vorlesung. Lineare Algebra und Koordinatenwechsel. 3. Vorlesung. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation

Mehr

Markov-Paritionen und geometrische Modelle von Attraktoren

Markov-Paritionen und geometrische Modelle von Attraktoren Markov-Paritionen und geometrische Modelle von Attraktoren Jan Christoph Kinne 15. Februar 2003 1 Was sind Markov-Partitionen? Hat man ein diskretes dynamisches System f : M M gegeben, so will man M in

Mehr

Biophysik der Zelle Erregung der Nervenmembran Aktionspotential, Huxley-Hodgkins Gleichung, spannungsabhängige Ionenkanäle

Biophysik der Zelle Erregung der Nervenmembran Aktionspotential, Huxley-Hodgkins Gleichung, spannungsabhängige Ionenkanäle 01.07. Erregung der Nervenmembran Aktionspotential, Huxley-Hodgkins Gleichung, spannungsabhängige Ionenkanäle Biophysik der Zelle aussen C m g K g Na g Cl V m V0,K + - V0,Na + - V0,Cl + - innen (a) 1 w.

Mehr

Biochemische Oszillationen

Biochemische Oszillationen Biochemische Oszillationen Al-Aifari Reema 16. November 2008 Bakkalaureatsarbeit aus Mathematische Modelle in der Technik, Johannes Kepler Universität Linz, WS 2007/08. Name: Al-Aifari Reema Matr.Nr.:

Mehr

a) Name and draw three typical input signals used in control technique.

a) Name and draw three typical input signals used in control technique. 12 minutes Page 1 LAST NAME FIRST NAME MATRIKEL-NO. Problem 1 (2 points each) a) Name and draw three typical input signals used in control technique. b) What is a weight function? c) Define the eigen value

Mehr

2.) Material und Methode

2.) Material und Methode 1.) Einleitung: Wenn man unser Nervensystem und moderne Computer vergleicht fällt erstaunlicherweise auf, dass das Nervensystem ungleich komplexer ist. Dazu ein kurzer Überblick: Das menschliche Nervensystem

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes 6. Nichtlineare Modelle 6.1 Nichtlineare Modelle

Mehr

Physiologische Grundlagen. Inhalt

Physiologische Grundlagen. Inhalt Physiologische Grundlagen Inhalt Das Ruhemembranpotential - RMP Das Aktionspotential - AP Die Alles - oder - Nichts - Regel Die Klassifizierung der Nervenfasern Das Ruhemembranpotential der Zelle RMP Zwischen

Mehr

Zusammenfassung der 7. Vorlesung

Zusammenfassung der 7. Vorlesung Zusammenfassung der 7. Vorlesung Steuer- und Erreichbarkeit zeitdiskreter Systeme Bei zeitdiskreten Systemen sind Steuer-und Erreichbarkeit keine äquivalente Eigenschaften. Die Erfüllung des Kalmankriteriums

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Zu einigen Grundlagen der Stabilitätstheorie dynamischer Systeme

Zu einigen Grundlagen der Stabilitätstheorie dynamischer Systeme Seminar Zu einigen Grundlagen der Stabilitätstheorie dynamischer Systeme 15.4.201 2 Inhaltsverzeichnis 1 Existenz und Eindeutigkeit 7 1.1 Lineare Systeme.................................... 7 1.2 Der Begriff

Mehr

Punktschätzer Optimalitätskonzepte

Punktschätzer Optimalitätskonzepte Kapitel 1 Punktschätzer Optimalitätskonzepte Sei ein statistisches Modell gegeben: M, A, P ϑ Sei eine Funktion des Parameters ϑ gegeben, γ : Θ G, mit irgendeiner Menge G, und sei noch eine Sigma-Algebra

Mehr

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Reaktionskinetik Maximilian Erlacher Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Themen: 1 Basisenzymreaktion 2 Michaelis-Menten-Analyse 3 Selbstauslöschende Kinetik

Mehr

Technische Information / Technical Information

Technische Information / Technical Information Elektrische Eigenschften / Electrical properties Höchstzulässige Werte / Maximum rated values Periodische Spitzensperrspannung T vj = - 25 C...T vj max V RRM 1000 V repetitive peak forward reverse voltage

Mehr

Feigenbaum, Chaos und die RG

Feigenbaum, Chaos und die RG Feigenbaum, Chaos und die RG 9. Juli 27 Lara Becker Bildquelle: [7] Nichtlineare Systeme und Chaos nichtlineare Systeme in letzter Zeit wieder reges Forschungsgebiet Ermöglichung der Untersuchung nicht-integrabler

Mehr

Mathematische Methoden in der Systembiologie WS 2017/2018

Mathematische Methoden in der Systembiologie WS 2017/2018 Mathematische Methoden in der Systembiologie WS 2017/2018 Dozent: Dr. M. V. Barbarossa (barbarossa@uni-heidelberg.de) Tutor: M.Sc. D. Danciu (dpdanciu@math.uni-heidelberg.de) /Übung: Di.+Do. 9:15-10:45Uhr,

Mehr

Elektroenzephalografie - Frequenzanalyse und Synchronisation

Elektroenzephalografie - Frequenzanalyse und Synchronisation Elektroenzephalografie - Frequenzanalyse und Synchronisation Michael Thiele Martin Heinzerling 17. Juni 2008 Inhaltsverzeichnis Einleitung Experimente Auswertung Synchronisation Appendix Arbeitsweise des

Mehr