Bernoulli-Experiment und Binomialverteilung
|
|
|
- Tristan Hausler
- vor 9 Jahren
- Abrufe
Transkript
1 IV Beroulli-Exerimet ud Biomialverteilug Beroulli-Exerimet ud Beroulliette Defiitio: Zufallsexerimete, bei dee ma sich ur für das Eitrete ( Treffer, Symbol ) oder das Nichteitrete ( Niete, Symbol 0 ) eies Ereigisses iteressiert, et ma Beroulliexerimet. Ω = {0,} Ist ei Beroulliexerimet automatisch ei Lalaceexerimet? Nei. z.b. Sechser oder Nichtsechser beim Würfel Beisiele: Müzwurf (Kof/ Nicht-Kof (Zahl)) Würfel (6, Nicht-6) Olaf, go (lis/rechts) Ure (weiße Kugel, icht-weiß) Qualitätsrüfug, gut autt Beachte:. Ei Beroulliexerimet ist icht otwedig ei Lalace-Exerimet.. Trefferwahrscheilicheit => q = Nietewahrscheilicheit Müdliches Beisiel: Jetzt 5 mal acheiader würfel, Treffer bei 6: P ( Treffer) = 5 ( )² Defiitio: Eie Folge vo uabhägige Beroulli-Exerimete mit gleicher Trefferwahrscheilicheit heißt Beroulliette der Läge. Beisiel: Ei 8-öfiger LK trifft sich zum Uterricht. Die Aweseheit wird durch ei 8- Tuel (0 0...) beschriebe. Jedem Tuel des Ergebisraums wird durch die Zufallsgröße X die Azahl der awesede Schüler zugeordet. Ist user Beisiel eie Beroulliette? Was muss vorausgesetzt werde? Auftauchwahrscheilicheite müsse alle gleich groß sei. Also icht: We eier gere ausschläft oder die Oma flege muss, ommt er selteer. Also: Gleich große Tristesse der verschiedee Schülerlebe vorausgesetzt. Darüber hiaus muss jeder mit der gleiche W. uabhägig vo alle adere auftauche. Also icht: We der Igor ommt, omme ich icht. Deshalb: Jeder Schüler ommt zum Kurs mit eier Wahrscheilicheit vo = 80% ubeeiflusst vo alle adere. (also Beroulli-Kette der Läge ) ) Wie groß ist die Wahrscheilicheit, dass die erste füf Schüler des 8-Tuels icht omme, der Rest jedoch awesed ist? Trefferwahrscheilicheit = 0,8 Nietewahrscheilicheit: q = - = 0, Lösug: 0, 5 0,8 3 ) Wie groß ist die Wahrscheilicheit, dass a dem Abed Schüler awesed sid? Wir iteressiere us also ur für die Werte der Zufallsgröße X, die agibt, wie viele Awesede (Treffer) ei -Tuel hat. Die Wahrscheilicheitsverteilug für diese Zufallsgröße heißt Biomialverteilug: 8 6 P(X = ) = 0,8 (0,) Damit ist die Wahrscheilicheit für zum Beisiel 4 awesede Schüler: 4
2 8 B(8;0,8;4) = 0, , 4 = ,8 4 0, 4 = 0,. Biomialverteilug Allgemei: Eie Zufallsgröße X heißt biomial verteilt ach B(;) falls X ur Werte aus {0,,..., } aimmt ud es gilt: P(X = ) = B(,,) = ( ) Die zu B(,,) gehörige Verteilugsfutio F hat für {0,,..., } folgede Wert F = () B(,,i) i= 0 Beisiel zur Verwedug des Tafelwers Wie groß ist die Wahrscheilicheit, dass i eier Kollegstufe vo 00 uabhägige Persoe, die zu 90% awesed sid, a) geau b) höchstes 9 Persoe awesed sid? Mit Tafelwer: B(00;0,9;9) =,48% F0,8 00 (9) = 79,395% Eigeschafte der Biomialverteilug ud ihrer Verteilugsfutio ) B(,,) = B(, q, -) ) F () = - F -(--) 3) Erwartugswert E(X) = Variaz Var(X) = q Beweise:!! zu ) = =, also ( )!( )! ( )!! ürzer: geau Treffer geau Niete = ( ) = q ( q) zu ) P(Höchstes Treffer)=P( Midestes Niete) = P (Höchstes Niete) zu 3) Mit der Formel (I) (X + Y) = (X) + (Y) aus 4. betrachte wir die Elemete der Beroulliette. Jedes der Exerimete liefert mit Wahrscheilicheit de Ausgag ud mit Ausgag 0. Der Erwartugswert ist also jeweils, aufsummiert. Aufgrud der Uabhägigeit lässt sich ei Additiosgesetz auch für die Variaz verwede. Die Variaz eies Exerimets ist da ( )² + (0 )² q = - ² + ³ + ² ( ) = - ² + ³ + ² ³ = - ² = ( ) = q Isgesamt mit Summeregel: Var X = q 4
3 3 Das Gesetz der große Zahle Sei X eie biomialverteilte Zufallsgröße. Da gilt die Tschebyschow-Ugleichug: Var(X) P( X µ a) a q P( X a) a Da sich a der Aussage der iere Ugleichug ichts ädert, we ma die Ugleichug durch teilt, folgt: X a q P a mit de Abürzuge b := a/ ud H := X/ für die relative Häufigeit gilt: q P( h b) b da q = (-) <= ¼ folgt: Für die relative Häufigeit h der Treffer eier Beroulliette der Läge gilt die Tschebyschow- Ugleichug: FS 07 P( h b) 4b b b Das Tschebyschow-Risio (Term auf der lie Ugleichugsseite) wurde hier durch abgeschätzt. 4b Für das Gegeereigis gilt da: P( H < b) 4b Im Grezfall -> folgt: Schwaches Gesetz der große Zahle vo Jaob Beroulli (FS 06) Sei b > 0 beliebig lei, da gilt: lim P( h < b) = I Worte: Die Wahrscheilicheit, dass sich bei eier Beroulliette die relative Häufigeit H für eie Treffer vo der Trefferwahrscheilicheit um weiger als eie beliebig (leie!!!) vorgegebee Wert b uterscheidet, strebt gege, we die Azahl der Exerimete gege uedlich geht. Ma sagt: h overgiert stochastisch ach. 43
4 Bemerug:. Das Gesetz der große Zahle zeigt, dass der Wahrscheilicheitsbegriff, der allgemei ach Kolmogorow defiiert wurde, sivoll ist. Große Abweichuge vo der Wahrscheilicheit sid für große uwahrscheilich.. Die Betrachtug des Falles b = 0 ist icht sivoll. I diesem Fall ergäbe sich das Gegeteil: lim P (h = ) = 0 3. Im Itervall ] b, + b[ der Läge b liege für großes sehr viele mögliche Werte für H da die mögliche Werte im Abstad / liege, gibt es isgesamt b/(/) = b davo. Jeder Wert a eie sehr leie Wahrscheilicheit habe, zusamme ergebe sie aber beiahe. Ma darf also icht schließe: lim h = Beisiel: I 678 Lottoziehuge fiel die 389 mal, 53 mal öfter als zu erwarte. Für die relative Häufigeit bedeutet dies eie Abweichug vo 53/678 =,9% vom Sollwert. Stares Gesetz der große Zahle vo Borel - Catelli: P(lim h = ) = Srich: Die relative Häufigeit overgiert fast sicher gege die Wahrscheilicheit. 44
5 4 Veraschaulichug der Biomialverteilug durch Exerimete Beisiel : Utersuchug vo B(0, ½ ) Exerimet: 0 mal Würfel ud mere, wie oft Zahl. Jeder Schüler führt das Exerimet drei mal durch, hat also da drei Zahle vo 0 bis Abs. Häuf. Rel. Häuf. B(0,½,) 0, , , ,78 0, , , ,78 0, , Beisiel : Galtobrett Betrueer geht ach Hause i Ameria (immer dem Soeaufgag etgege) 0 q Wahrscheilicheit, dass ma i der 6. Zeile i der vierte Salte ladet: P(A) = 6 6 ( ) Nehme wir a = 0,5. Galtobrett vorführe. 45
Klassifizierung der Verteilungen. Streuung der diskreten Verteilung
Wichtigste Verteiluge der Biostatisti Disrete Zur Erierug Klassifizierug der Verteiluge Kotiuierliche Disrete Gleichverteilug Kotiuierliche Gleichverteilug Biomialverteilug Normalverteilug Poisso Verteilug
3 Wichtige Wahrscheinlichkeitsverteilungen
26 3 Wichtige Wahrscheilicheitsverteiluge Wir betrachte zuächst eiige Verteilugsfutioe für Produtexperimete 31 Die Biomialverteilug Wir betrachte ei Zufallsexperimet zum Beispiel das Werfe eier Müze, bei
Empirische Verteilungsfunktion
KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,
Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.
Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady
R. Brinkmann Seite
R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde
Tests statistischer Hypothesen
KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir
5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung
Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder
Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 5
TUM, Zetrum Mathematik Lehrstuhl für Mathematische Physik WS 13/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weider Tutoraufgabe: Eiführug i die Wahrscheilichkeitstheorie Lösugsvorschläge zu Übugsblatt
FORMELSAMMLUNG. re-wi. A. Ableitungsformeln und Integralformeln. Funktion ƒ(x) Ableitung ƒ'(x) Stammfunktion F(x) = 1 1. B. Ableitungsregeln.
FORMELSAMMLUNG A. Ableitugsformel ud Itegralformel Futio ƒ( Ableitug ƒ'( Stammfutio F( IR, ( IN) + + l ( ) + ( + ) + ( + ) + + + + + + + + r r, (r R \ {}) r r r + si os os os si si ta + (ta l os ot [ +
Prof. Dr. Roland Füss Statistik II SS 2008
1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl
Die notwendigen Verteilungstabellen finden Sie z.b. hier:
Fakultät für Mathematik Istitute IAG ud IMO Prof. Dr. G. Kyureghya/Dr. M. Hödig Schätz- ud Prüfverfahre Die otwedige Verteilugstabelle fide Sie z.b. hier: http://www.ivwl.ui-kassel.de/kosfeld/lehre/zeitreihe/verteilugstabelle.pdf
Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5
Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe
Wahrscheinlichkeit & Statistik
Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch [email protected] 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege
Stochastik: Binomialverteilung Stochastik Bernoulli-Experimente, binomialverteilte Zufallsvariablen Gymnasium ab Klasse 10
Stochastik Beroulli-Experimete, biomialverteilte Zufallsvariable Gymasium ab Klasse 0 Alexader Schwarz www.mathe-aufgabe.com November 203 Hiweis: Für die Aufgabe darf der GTR beutzt werde. Aufgabe : Ei
Testen statistischer Hypothesen
Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über
Kapitel 6 : Punkt und Intervallschätzer
7 Kapitel 6 : Pukt ud Itervallschätzer Puktschätzuge. I der Statistik wolle wir Rückschlüsse auf das Wahrscheilichkeitsgesetz ziehe, ach dem ei vo us beobachtetes Zufallsexperimet abläuft. Hierzu beobachte
Klausur zu,,einführung in die Wahrscheinlichkeitstheorie. Musterlösungen
Istitut für agewadte Mathematik Witersemester 9/ Adreas Eberle, Matthias Erbar, Berhard Hader. (Reelle Zufallsvariable) Klausur zu,,eiführug i die Wahrscheilichkeitstheorie Musterlösuge a) Die Verteilugsfuktio
1 Vollständige Induktion
1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die
1. Folgen ( Zahlenfolgen )
. Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide
Stochastisches Integral
Kapitel 11 Stochastisches Itegral Josef Leydold c 26 Mathematische Methode XI Stochastisches Itegral 1 / 2 Lerziele Wieer Prozess ud Browsche Bewegug Stochastisches Itegral Stochastische Differetialgleichug
15.4 Diskrete Zufallsvariablen
.4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet
Übungsblatt 1 zur Vorlesung Angewandte Stochastik
Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche
Innerbetriebliche Leistungsverrechnung
Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der
KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).
KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio
Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit
- 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete
7.2 Grundlagen der Wahrscheinlichkeitsrechnung
7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet
( ) Formelsammlung. Kombinatorik. Permutation: ohne Wiederholung. n! = n (n - 1) (n - 2)... 3 2 1 n= alle Elemente. Permutation: mit Wiederholung
Formelsammlug Kombiatori Permutatio: ohe Wiederholug! = ( - 1) ( - 2).... 3 2 1 = alle Elemete Permutatio: mit Wiederholug!! P, = = usw. = gleiche Elemete! 1! K 2! Stichprobe (SP) = geordete Auswahl Geordete
Lösungsvorschlag Probeklausur zur Elementaren Wahrscheinlichkeitsrechnung
Prof. Dr. V. Schmidt WS 200/20 G. Gaiselma, A. Spettl 7.02.20 Lösugsvorschlag Probeklausur zur Elemetare Wahrscheilichkeitsrechug Hiweis: Der Umfag ud Schwierigkeitsgrad dieser Probeklausur muss icht dem
Kapitel 2. Zahlenbereiche
Kapitel 2. Zahlebereiche 2.1. Natürliche Zahle Die Mege N {1, 2, 3,... } der atürliche Zahle wird formal durch die Peao Axiome defiiert: (A1) 1 N (A2) N ( + 1) N (A3) m ( + 1) (m + 1) (A4) N ( + 1) 1 (A5)
Einführung in die Stochastik 10. Übungsblatt
Eiführug i die Stochastik. Übugsblatt Fachbereich Mathematik SS M. Kohler.7. A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 37 (4 Pukte) Ei Eremit am Südpol hat sich für die eibrechede polare Nacht mit
Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 4: Aufgaben zu den Kapiteln 7 und 8
1 Lösuge ausgewählter Übugsaufgabe zum Buch Elemetare Stochastik (Spriger Spektrum, 2012) Teil 4: Aufgabe zu de Kapitel 7 ud 8 Aufgabe zu Kapitel 7 Zu Abschitt 7.1 Ü7.1.1 Ω sei höchstes abzählbar, ud X,
1 Analysis T1 Übungsblatt 1
Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.
Fundamentale Prinzipien der Kombinatorik und elementare Abzählkoeffizienten Wolfram Koepf
Fudametale Prizipie der Kombiatori ud elemetare Abzähloeffiziete Wolfram Koepf Die abzählede Kombiatori beschäftigt sich vor allem mit der Auswahl eier Teilmege, die ma häufig eie Stichprobe et (aus Wahrscheilicheitsrechug
Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME
Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassug vom 13. Februar 2006 Mathematik für Humabiologe ud Biologe 129 9.1 Stichprobe-Raum 9.1 Stichprobe-Raum Die bisher behadelte Beispiele vo Naturvorgäge oder Experimete
Wahrscheinlichkeitstheorie und Statistik vom
INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste
Parameter von Häufigkeitsverteilungen
Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige
10 Aussagen mit Quantoren und
0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits
Zusammenfassung: Folgen und Konvergenz
LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele
2 Vollständige Induktion
8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes
18 2 Zeichen, Zahlen & Induktion *
18 2 Zeiche, Zahle & Idutio * Ma macht sich z.b. sofort lar, dass das abgeschlossee Itervall [ 3, 4] die Eigeschafte if[ 3, 4] 3 mi[ 3, 4] ud sup[ 3, 4]4max[ 3, 4] besitzt, währed das offee Itervall 3,
Gesetz der großen Zahlen
KAPITEL 0 Gesetz der große Zahle 0.. Zwei Beispiele Beispiel 0... Wir betrachte ei Beroulli-Experimet, das uedlich oft wiederholt wird. Die Wahrscheilichkeit für eie Erfolg sei p. Die Zufallsvariable,
Übungsaufgaben II. Übungsaufgaben II. f) Wie groß ist die Wahrscheinlichkeit, dass er mindestens 1 richtige Antworten. ankreuzt?
Berufsolleg Marieschule Lippstadt Schuljahr /7 Kurs: Mathemati AHR. Berufsolleg Marieschule Lippstadt Schuljahr /7 Kurs: Mathemati AHR. Aufgabe Ei Multiple-Choise-Test besteht aus Frage für die jeweils
Stochastik für WiWi - Klausurvorbereitung
Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F
Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz
Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:
Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge
1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege
Übungen zu QM III Mindeststichprobenumfang
Techische Hochschule Köl Fakultät für Wirtschafts- ud Rechtswisseschafte Prof. Dr. Arreberg Raum 221, Tel. 39 14 [email protected] Übuge zu QM III Mideststichprobeumfag Aufgabe 12.1 Sie arbeite
Höhere Mathematik für die Fachrichtung Physik
Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug
Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39
Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle
BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008
Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe
Elemente der Mathematik - Winter 2016/2017
4 Elemete der Mathemati - Witer 201/2017 Prof. Dr. Peter Koepe, Regula Krapf Übugsblatt 8 Aufgabe 33 ( Pute). Beweise Sie folgede Idetitäte durch vollstädige Idutio: (a) 0 2 (1)(21), N. (b) 2 (1 1 ) 1
2 Konvergenz von Folgen
Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge
Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.
Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich
Wirksamkeit, Effizienz. Beispiel: Effizienz. Mittlerer quadratischer Fehler (MSE) Konsistenz im quadratischen Mittel
3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Wirksamkeit, Effiziez 3 arameterpuktschätzer Eigeschafte vo Schätzfuktioe 3.3 Beispiel: Effiziez Defiitio 3.5 (Wirksamkeit, Effiziez Sei W eie parametrische
1 Aussagenlogik und vollständige Induktion
Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme
Folgen und Reihen. 23. Mai 2002
Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2
4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa
20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle
4-1 Elementare Zahlentheorie
4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle
Wissenschaftliches Arbeiten Studiengang Energiewirtschaft
Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:
Kapitel 9: Schätzungen
- 73 (Kapitel 9: chätzuge) Kapitel 9: chätzuge Betrachte wir folgedes 9. Beispiel : I eiem Krakehaus wurde Date über Zwilligsgeburte gesammelt. Bei vo 48 Paare hatte die beide Zwillige verschiedees Geschlecht.
LGÖ Ks VMa 12 Schuljahr 2017/2018
LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge
Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt
2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:
Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8
Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir
Kapitel 4: Stationäre Prozesse
Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud
Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr
Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:
Praktikum Vorbereitung Fertigungsmesstechnik Statistische Qualitätskontrolle
Praktikum Vorbereitug Fertigugsmesstechik Statistische Qualitätskotrolle Bei viele Erzeugisse ist es icht möglich jedes Werkstück zu prüfe, z.b.: bei Massefertigug. Hier ist es aus ökoomische Grüde icht
6. Übung - Differenzengleichungen
6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf
