Tensoren in der Datenanalyse
|
|
|
- Timo Meissner
- vor 9 Jahren
- Abrufe
Transkript
1 Tensoren in der Datenanalyse Edgar Tretschk Universität des Saarlandes 2. Dezember
2 Inhalt 1 Grundlagen 2 Singulärwertzerlegung 3 Ziffernerkennung 4 Bewegungsabläufe 2
3 Tensoren als mehrdimensionale Datenarrays Tensor: Verallgemeinerung von Vektoren und Matrizen auf beliebig viele Dimensionen dreidimensionale Tensoren über R: A = (a ijk ) R l m n Ziffernerkennung n verschiedene Bilder von Ziffern D R n 3
4 Tensoren als mehrdimensionale Datenarrays Tensor: Verallgemeinerung von Vektoren und Matrizen auf beliebig viele Dimensionen dreidimensionale Tensoren über R: A = (a ijk ) R l m n multipliziere Vektoren der d-ten Dimension von A mit M: A d M Ziffernerkennung n verschiedene Bilder von Ziffern D R n 4
5 Frobenius-Norm, Orthogonalität & Untertensoren analog zu Vektoren und Matrizen: inneres Produkt: A, B := i,j,k a ijk b ijk Frobenius-Norm: ( A F := A, A 1/2 = Orthogonalität: A, B = 0 i,j,k a 2 ijk ) 1/2 k-ter (n 1-dimensionaler) Untertensor in der d-ten Dimension (fixiere d-ten Index auf k): S id =k 5
6 Singulärwert-Zerlegung von Matrizen in Tensorschreibweise betrachte M R m n als Tensor: M = U (1) Σ U (2)T = Σ 1 U (1) 2 U (2) Interpretation: U (1) transformiert Spalten (Vektoren der ersten Dimension) von Σ U (2) transformiert Zeilen (Vektoren der zweiten Dimension) von Σ 6
7 Singulärwert-Zerlegung von Tensoren A = S 1 U (1) 2 U (2) 3 U (3) Kerntensor S stellt Singulärwerte dar jede Dimension d hat eigene Singulärwerte: k-ter Singulärwert der d-ten Dimension: σ (d) k := S id =k F Ordnung der Singulärwerte einer Dimension d: σ (d) 1 σ (d) 2... σ (d) I d 7
8 Singulärwert-Zerlegung von Tensoren A = S 1 U (1) 2 U (2) 3 U (3) Kerntensor S stellt Singulärwerte dar jede Dimension d hat eigene Singulärwerte: k-ter Singulärwert der d-ten Dimension: σ (d) k := S id =k F Ordnung der Singulärwerte einer Dimension d: σ (d) 1 σ (d) 2... σ (d) I d S ist nicht diagonal, sondern orthogonal: alle parallelen Scheiben sind paarweise orthogonal 8
9 Berechnung der Singulärwertzerlgung Matrix-Singulärwertzerlegung für Dimension d: setze: A d = U (d) Σ (d) (V (d) ) T S := A 1 (U (1) ) 1 2 (U (2) ) 1 3 (U (3) ) 1 9
10 Optimierte Basis für Ziffern (I) wähle Basis (B k ) mit B k := S i3 =k 1 U (1) 2 U (2) erste Reihe: B 1, B 2 und B 3 zweite Reihe: entsprechende Scheiben S i3 =1, S i3 =2 und S i3 =3 Quelle: Eldén,
11 Optimierte Basis für Ziffern (II) erster/größter Singulärwert in dritter Dimension: S i3 =1 wichtigste Richtung aller Ziffern: B 1 größte Abweichungsrichtung von B 1 : B 2 orthogonale Basis robuste Darstellung von Ziffern 11
12 Darstellung unbekannter Ziffer Z in optimierter Basis Optimierungsproblem via Methode der kleinsten Quadrate: Z n F min z j B j z R n j=1 Ergebnis: z j = Z, B j, j = 1,..., n B j, B j 12
13 Singulärwertzerlegung von Bewegungsabläufen einzelne Bewegung: Vektor b R w von Gelenkwinkeln zu bestimmten Zeiten n Personen führen m verschiedene Bewegungsarten aus: R n m w M 13
14 Singulärwertzerlegung von Bewegungsabläufen einzelne Bewegung: Vektor b R w von Gelenkwinkeln zu bestimmten Zeiten n Personen führen m verschiedene Bewegungsarten aus: R n m w M = S 1 P P enthält die Personenparameter (Signatur) p i jedes Individuums i p T 1 p T n p T P = 2. 14
15 Singulärwertzerlegung von Bewegungsabläufen einzelne Bewegung: Vektor b R w von Gelenkwinkeln zu bestimmten Zeiten n Personen führen m verschiedene Bewegungsarten aus: R n m w M = S 1 P 2 A P enthält die Personenparameter (Signatur) p i jedes Individuums i, A die Bewegungsparameter a j jeder Bewegungsart j p T 1 a T 1 p T P = 2., A = a T 2. p T n a T m 15
16 Singulärwertzerlegung von Bewegungsabläufen einzelne Bewegung: Vektor b R w von Gelenkwinkeln zu bestimmten Zeiten n Personen führen m verschiedene Bewegungsarten aus: R n m w M = S 1 P 2 A 3 J P enthält die Personenparameter (Signatur) p i jedes Individuums i, A die Bewegungsparameter a j jeder Bewegungsart j und J die Eigenbewegungen p T 1 a T 1 p T P = 2., A = a T 2. p T n a T m 16
17 Basis für Bewegungsarten Bewegungsbasis für Bewegungsart j: A j := S 2 a T j 3 J 17
18 Basis für Bewegungsarten Bewegungsbasis für Bewegungsart j: A j := S 2 a T j 3 J Linearkombination der Zeilenvektoren von A j gemäß p i liefert Instanz b i,j der Bewegungsart j für Person i: b i,j = p T i A j 18
19 Bewegungssynthese zu neuer Person u neue Person u führt Bewegungsart j aus: b u,j löse nach Signatur p u auf: b u,j = p T u A j 19
20 Bewegungssynthese zu neuer Person u neue Person u führt Bewegungsart j aus: b u,j löse nach Signatur p u auf: b u,j = p T u A j gemäß p u synthetisierte Bewegungen für Person u: S 1 p T u 2 A 3 J k-ter Vektor der dritten Dimension des Tensors entspricht b u,k 20
21 Basis für Personen Bewegungsbasis für Person i: P i := S 1 p T i 3 J 21
22 Basis für Personen Bewegungsbasis für Person i: P i := S 1 p T i 3 J Linearkombination der Zeilenvektoren von P i gemäß a j liefert Instanz b i,j der Bewegungsart j für Person i: b i,j = a T j P i 22
23 Bewegungssynthese zu neuer Bewegung v bekannte Person i führt neue Bewegungsart v aus: b i,v löse nach Signatur a v auf: b i,v = a T v P i 23
24 Bewegungssynthese zu neuer Bewegung v bekannte Person i führt neue Bewegungsart v aus: b i,v löse nach Signatur a v auf: b i,v = a T v P i gemäß a v synthetisierte Bewegungen für Bewegungsart v: S 1 P 2 a T v 3 J k-ter Vektor der dritten Dimension des Tensors entspricht b k,v 24
25 Haarlose Personen sind synthetisierte Versionen der anderen Quelle: Vasilescu, Human motion signatures: Analysis, synthesis, recognition,
26 Anhand von Treppensteigen synthetisierte Laufbewegung Quelle: Vasilescu, Human motion signatures: Analysis, synthesis, recognition,
27 Anhand von Treppensteigen synthetisierte Laufbewegung Quelle: Vasilescu, Human motion signatures: Analysis, synthesis, recognition,
28 Anhand von Treppensteigen synthetisierte Laufbewegung Quelle: Vasilescu, Human motion signatures: Analysis, synthesis, recognition,
29 Anhand von Treppensteigen synthetisierte Laufbewegung Quelle: Vasilescu, Human motion signatures: Analysis, synthesis, recognition,
30 Quellen I Eldén, L. Matrix methods in data mining and pattern recognition. Volume 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, De Lathauwer, Lieven and De Moor, Bart and Vandewalle, Joos. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4): , Vasilescu, M Alex O. Human motion signatures: Analysis, synthesis, recognition. 16th International Conference on Pattern Recognition. Proceedings, 3: ,
31 Vielen Dank für Ihre Aufmerksamkeit! 31
Reduced-Rank Least Squares Modelle
16.12.2008 Wiederholung Gegeben: Matrix A m n Paar Rechter Eigenvektor x, Eigenwert λ: A x = λ x mit x R n \ 0, λ N Paar Linker Eigenvektor y, Eigenwert λ: y T A = λ y T Singulärwertzerlegung (SVD): A
Singulärwertzerlegung
LMU München Centrum für Informations- und Sprachverarbeitung WS 10-11: 13.12.2010 HS Matrixmethoden im Textmining Dozent: Prof.Dr. Klaus U. Schulz Referat von: Erzsébet Galgóczy Singulärwertzerlegung 1
Singulärwert-Zerlegung
Singulärwert-Zerlegung Zu jeder komplexen (reellen) m n-matrix A existieren unitäre (orthogonale) Matrizen U und V mit s 1 0 U AV = S = s 2.. 0.. Singulärwert-Zerlegung 1-1 Singulärwert-Zerlegung Zu jeder
Überbestimmte Gleichungssysteme
Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare
Lineare Gleichungssysteme und die Methode der kleinsten Quadrate
Ludwig-Maximilians-Universität München Department für Computerlinguistik WS 2010/11 Hauptseminar Matrixmethoden in Textmining Dozent: Prof. Dr. Klaus Schulz Referentin: Sarah Söhlemann Lineare Gleichungssysteme
Vektorräume und Rang einer Matrix
Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung
Matrixprodukt und Basiswechsel bei Abbildungen
Matrixprodukt und Basiswechsel bei Abbildungen 1 Erster Teil: Das Matrixprodukt Wie multipliziert man eine Matrix mit einer Matrix? 2 Zur Erinnerung: Wie multipliziert man einen Zeilenvektor mit einem
9. Vorlesung Lineare Algebra, SVD und LSI
9. Vorlesung Lineare Algebra, SVD und LSI Grundlagen lineare Algebra Vektornorm, Matrixnorm Eigenvektoren und Werte Lineare Unabhängigkeit, Orthogonale Matrizen SVD, Singulärwerte und Matrixzerlegung LSI:Latent
47 Singulärwertzerlegung
47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar
Überbestimmte Gleichungssysteme, Regression
Überbestimmte Gleichungssysteme, Regression 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19 Gliederung 1 Überbestimmte
Orthogonale Matrix. Definition 4.19
Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung
1 Singulärwertzerlegung und Pseudoinverse
Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese
Vektoren und Matrizen
Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching
Lineare Algebra. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v
Ökonometrische Analyse
Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der
Methode der kleinsten Quadrate
Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,
Mathematische Grundlagen
Mathematische Grundlagen 1 / 16 Vektorraum u R n, u = (u 1,..., u n ), u k R Euklidisches Skalarprodukt Euklidische Vektornorm (u, v) = u k v k u 2 = (u, u) = n u 2 k Vektoren u, v R n heißen orthogonal,
Matrixzerlegungen. Überbestimmte Systeme
Matrixzerlegungen. Überbestimmte Systeme 6. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. März 2014 Gliederung 1 Matrixzerlegungen Links-Rechts-Zerlegung
Singular Value Decomposition
Singular Value Decomposition (Singulärwertzerlegung) Seminar Robust Design Vitali Müller 2 Inhalt Was ist die SVD? Interpretationen Anwendungsmöglichkeiten Berechnung 3 Datenmatrix Experiment mit n Objekten
Vortrag 20: Kurze Vektoren in Gittern
Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die
Drehung. Die orthogonale n n-matrix 1 0. c s. Zeile j. s c
Drehung Die orthogonale n n-matrix Q i,j... Zeile i c s... Zeile j s c... mit c = cos ϕ und s = sin ϕ beschreibt eine Drehung um den Winkel ϕ in der x i x j -Ebene des R n. Drehung - Drehung Die orthogonale
Prüfung Lineare Algebra , B := ( ), C := 1 1 0
1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,
Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V.
L5.6 Orthogonale und unitäre Matrizen (invertierbare Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) Reelles inneres Produkt in -Vektorraum [siehe L3.1b]: 'reeller Vektorraum' (i)
Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen
Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen
In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.
Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:
10.2 Linearkombinationen
147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition
, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.
154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =
05. Lineare Gleichungssysteme
05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a
Orthonormalbasis. Orthogonalentwicklung
Orthonormalbasis Eine Orthogonal- oder Orthonormalbasis des R n (oder eines Teilraums) ist eine Basis {v,..., v n } mit v i = und v i, v j = für i j, d. h. alle Basisvektoren haben Norm und stehen senkrecht
Linear Systems and Least Squares
Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November
10 Unitäre Vektorräume
10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;
Euklidische und unitäre Vektorräume
Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
Aufgabenkomplex 3: Vektoren und Matrizen
Technische Universität Chemnitz 15. November 010 Fakultät für Mathematik Höhere Mathematik I.1 Aufgabenkomplex : Vektoren und Matrizen Letzter Abgabetermin: 9. Dezember 010 in Übung oder Briefkasten bei
Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015
Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler
3 Lineare Algebra Vektorräume
3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +
Serie 10: Inverse Matrix und Determinante
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die
1 Matrizenrechnung zweiter Teil
MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten
IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen
Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit
und Unterdeterminante
Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,
und Unterdeterminante
Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,
Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :
Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5
LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017
LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 CAROLINE LASSER Inhaltsverzeichnis 1. Euklidische Vektorräume 2 1.1. Skalarprodukte und Normen (26.4.) 2 1.2. Orthonormalisierung (3.5.) 2 1.3.
Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?
1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2
Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.
Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion
7 Determinanten. D ist alternierend g.d.w. für alle i j gilt:
7 Determinanten Im folgenden betrachten wir quadratische Matrizen Wir schreiben dabei eine n n Matrix A (über dem Körper K) primär als Zeilenvektor, dessen Elemente die Spalten von A sind; also A = (a
Lineare Algebra II 8. Übungsblatt
Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.
Vektoren und Matrizen
Vektoren und Matrizen Die multivariate Statistik behandelt statistische Eigenschaften und Zusammenhänge mehrerer Variablen, im Gegensatz zu univariaten Statistik, die in der Regel nur eine Variable untersucht.
6.1 Definition der multivariaten Normalverteilung
Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen
Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung
Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )
Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen
L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen)
L5.6 Symmetrische, heresche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) In diesem Kapitel kommen Matrizen in Zusammenhang Skalarprodukt vor.
Mathematik I. Vorlesung 14. Rang von Matrizen
Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten
Eigenwerte und Eigenvektoren
Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte
18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive
Spezielle Matrixformen
Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß
Determinanten. I. Permutationen
Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch
Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)
Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen
6. Normale Abbildungen
SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische
Quadratische Formen. und. Symmetrische Matrizen
Quadratische Formen und Symmetrische Matrizen 1 Ouverture: Lineare Funktionen von R n nach R 1 2 Beispiel: n = 2 l : (x 1, x 2 ) T 0.8x 1 + 0.6x 2 = < x, g > mit g := (0.8, 0.6) T. Wo liegen alle x = (x
Lineare Algebra und Numerische Mathematik für D-BAUG
P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen
1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema
1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und
Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24
Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt
7.1 Matrizen und Vektore
7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit
Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen.
Konvex, Konkav, Wendepunkt: Sei f : D R eine Funktion und sei I D ein Intervall. Gilt für alle x 1,x 2 I f ( x1 +x ) 2 2 f(x 1)+f(x 2 ), 2 dann heißt f konvex (linksgekrümmt) in I. Gilt für alle x 1,x
Übersicht Kapitel 9. Vektorräume
Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten
mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"
Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"
MLAN1 1 MATRIZEN 1 0 = A T =
MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente
bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR
LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine
3. Übungsblatt zur Lineare Algebra I für Physiker
Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte
a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:
Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag
Regularisierung in Bildrekonstruktion und Bildrestaurierung
Regularisierung in Bildrekonstruktion und Bildrestaurierung Ulli Wölfel 15. Februar 2002 1 Einleitung Gegeben seien Daten g(x, y), die Störungen enthalten. Gesucht ist das (unbekannte) Originalbild ohne
6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238
6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 Erinnerung: Der Vektorraum F n 2 Schreiben {0, 1} n als F n 2 Definition
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Skalarprodukte (Teschl/Teschl Kap. 13)
Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +
4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).
4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die
4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau
312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind
Proseminar Lineare Algebra SS10
Proseminar Lineare Algebra SS1 Normalform von Matrizen Jordansche Normalform Philip Bauermeister Heinrich-Heine-Universität Betreuung Prof. Dr. Oleg Bogopolski 2 1 Matrizen linearer Abbildungen 1.1 Definition
Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg
Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Epipolargeometrie Die Fundamentalmatrix Korrelation Schätzung der Fundamentalmatrix Homographie infolge einer Ebene Sonderfälle
Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen
Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine
4 Determinanten. 4.1 Eigenschaften der Determinante. ME Lineare Algebra HT
ME Lineare Algebra HT 2008 86 4 Determinanten 4. Eigenschaften der Determinante Anstatt die Determinante als eine Funktion IC n n IC durch eine explizite Formel zu definieren, bringen wir zunächst eine
Einführung in die Kodierungstheorie
Anton Malevich Einführung in die Kodierungstheorie Skript zu einer im Februar 2013 gehaltenen Kurzvorlesung Fakultät für Mechanik und Mathematik Belorussische Staatliche Universität Institut für Algebra
[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.
Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv
Erzeugendensystem und Basis
Erzeugendensystem und Basis Definition Erzeugendensystem und Basis eines Unterraums Sei S F n 2 ein Unterraum. Eine Menge G = {g 1,..., g k } S heißt Erzeugendensystem von S, falls jedes x S als Linearkombination
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
3 Systeme linearer Gleichungen
3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +
