9.2.3 Durchbiegen eines Balkens ******
|
|
|
- Curt Steinmann
- vor 9 Jahren
- Abrufe
Transkript
1 9.2.3 ****** 1 Motivtion Ein einseitig eingespnnter Blken wird m offenen Ende belstet. Die Durchbiegung hängt von der Orientierung und dmit vom Flächenträgheitsmoment des Blkens b. 2 Experiment b b s 1 b s 2 Abbildung 1: mit Querschnitt = 10 mm, b = 20 mm. 1
2 Ein einseitig eingespnnter Holzblken mit Querschnitt = 10 mm, b = 20 mm wird mit einem Gewicht der Msse m = 2 kg m offenen Ende belstet (siehe Abb. 1). Wird der Blken hochknt belstet (oberes Bild), erfährt er die kleine Auslenkung um die Strecke r 1. Liegt er dgegen quer uf (unteres Bild), erfährt er eine grosse Auslenkung r 2. Die Auslenkung s beträgt s = l3 3EJ F, (1) wobei l = 1,5 m die Länge, E = 70 GP den Elstizitätsmodul und J ds Flächenträgheitsmoment des Bretts bedeuten. Die horizontle Achse längs des Bretts sei x, die vertikle y. Dnn sind die Flächenträgheitsmomente für die beiden oben ufgeführten Anordnungen gleich Die Auslenkungen verhlten sich dmit wie J (1) x = b (2) J (2) x = 1 12 b3 (3) s 2 s 1 = 3 Theorie: Grundlgen der Festigkeitslehre 3.1 Verformungen: Elstizität und Plstizität ( ) b 2 = 4 (4) Wir denken uns ein Buelement n einer beliebigen Stelle ufgeschnitten und greifen n der Schnittstelle ds (unendlich klein gedchte) Flächenelement herus 1. Auf dieses Flächenelement wirkt dnn bei Belstung eine Krft df, die wir in eine Normlkomponente df n und eine Tngentilkomponente df t zerlegen (siehe Abb. 2): Wir definieren nun ls Normlspnnung σ, bzw. ls Schubspnnung τ: σ := df n τ := df t (5) Je nch Vorzeichen von σ bezeichnet mn die Normlspnnung uch ls Zug- oder Druckspnnung. Unter der Wirkung dieser Spnnungen treten Deformtionen des festen Körpers uf, die wir im Folgenden besprechen werden. Wählen wir ein kleines Zylinderchen (oder Quderchen) mit der Länge l und üben eine Zugspnnung σ us (siehe Abb. 3), so finden wir in der Regel eine Verlängerung von l 0 um die Strecke l. Für die reltive Verlängerung ε l := l l (6) 1 Wir stellen ds Flächenelement ls Normlenvektor dr. Dieser ist lso senkrecht zur Oberfläche, sein Betrg ist =. 2
3 df t df df n Abbildung 2: Normlkomponente df n und Tngentilkomponente df t einer m Festkörper ngreifenden Krft F. findet mn im Experiment ds folgende Verhlten (siehe Abb. 4): Flls σ > σ B, wobei σ B die Bruchspnnung ist, bricht oder reisst ds Mteril. Bei zähen Mterilien verformt sich ds Werkstück (duernd, plstisch), flls σ > σ F, wobei σ F die Fliessspnnung ist. Im elstischen Bereich finden wir meist bei nicht llzu grossen Verformungen einen lineren Zusmmenhng zwischen ɛ l und σ: ɛ l = l l = σ E Hookesches Gesetz (7) Die Proportionlitätskonstnte E wird ls Elstizitätsmodul bezeichnet. Im SI-System hben σ, τ, σ B, σ F, E lle die Einheit P = N/m 2 ; häufig wird in der Festigkeitslehre ber uch noch mit dem techn. Msssystem gerechnet (Spnnungen etc. in kp/m 2 oder kp/cm 2 ). Typische Werte für diese Grössen sind in der nchstehenden Tbelle ngeben: σ σ l l Abbildung 3: Verlängerung eines mssiven Zylinders durch die Zugspnnung σ. 3
4 ε l Sprödes Mteril ε l Zähes Mteril ε 6 ε 5 ε 4 ε 3 ε 2 ε 1 σ ε 2 ε 1 σ σ 1 σ 2 σ B σ 1 σ 2 Abbildung Abbildung 4: Plstische 6.1: Plstische und elstische und elstische Verformung Verformung unter demunter Einfluss demeiner Einfluss Zugspnnung einer σ. Sprödes Zugspnnung Mteril bricht σ. Sprödes bei der Bruchspnnung Mteril bricht σ B bei. der Bruchspnnung σ b Tbelle 1: Mechnische Eigenschften verschiedener Stoffe (typische Werte). Mteril Dichte Bruch oder Fliess Elstizitätmodul Poissonzhl [kg/m 3 ] Spnnung [MN/m 2 ] [GN/m 2 ] Aluminium ,345 Weicheisen ,293 Sthl ,283 Messing (70/30) ,350 Fichtenholz Qurz , Flächenträgheitsmomente Bevor wir uf Biegung eingehen können, bruchen wir die Definition der Flächenträgheitsmomente J i (siehe dzu Abb. 5): J x := J y := J 0 := y 2 x 2 r 2 = J x + J y (8) Dbei bedeutet r den Abstnd des Flächenstücks von der Drehchse. Ds Flächenstück liegt in einer zur Drehchse senkrechten Ebene. 2 Der longitudinle Elstizitätsmodul beträgt etw E L = GN/m 2, der rdile E R = 0, 4 0, 9 GN/m 2 und der tngentile E T = 0, 4 0, 6 GN/m 2. 4
5 r P Abbildung 5: Zur Definition des Flächenträgheitsmoments. Die Drehchse verläuft senkrecht zur Bildebene und geht durch den Punkt P. Als Beispiele berechnen wir die Flächenträgheitsmomente für ein Rechteck und für einen Kreis 3. Ds Zentrum unseres Koordintensystems soll im Schwerpunkt der jeweiligen Fläche liegen. y y b P r x P r x Abbildung 6: Flächenträgheitsmoment für ds Rechteck und für den Kreis. 3 Übungsufgbe: Wie gross sind J x, J y, J 0 für einen Kreisring mit den Rdien R und R b? 5
6 ) Rechteck J x = dx + b 2 b 2 J y = b 3 12 J 0 = b 12 (2 + b 2 ) dy y 2 = b3 12 (9) b) Kreis 2π R J 0 = dϕ dr r 3 = π 2 R4 0 0 J x = J y = 1 2 J 0 = π 4 R4 (10) Aus Symmetriegründen sind J x und J y gleich gross! Bei den im Buwesen üblicherweise verwendeten Buelementen (z.b. T - und I - Blken 4 ) findet mn die Flächenträgheitsmomente und eine Reihe von ndern i.f. noch nützlichen Angben üblicherweise in den Herstellerktlogen (siehe Anhng IV). Benötigt mn ds Flächenträgheitsmoment einer vorgegebenen Fläche A für eine Achse, die um die Strecke s gegenüber der Achse durch den Schwerpunkt verschoben ist, so gilt wiederum der Stz von Steiner: J y = J y + s 2 A (11) 3.3 Drehmoment und Widerstndsmoment beim einseitig belsteten Blken Wir betrchten einen Blken, der in der (vertiklen) yz-ebene mit verschiedenen Kräften (F ) belstet ist. Wir denken uns diesen Blken n einer beliebigen Stelle z ufgeschnitten (siehe Abb. 7). Aus der Sttik (Gleichgewicht der Kräfte und Momente, Beispiele s.u.) können wir dnn ds in diesem Schnitt wirkende Moment M x usrechnen. Am oberen Ende wird der Blken uf Zug, m untern uf Druck bensprucht (siehe Abb. 8). In der Mitte (y = 0) befindet sich die sog. neutrle Fser, wo keine Spnnungen vorhnden sind. Wir mchen deshlb den Anstz σ(x, y) = c y, (12) 4 Die Form des I-Blkens wurde offensichtlich so gewählt, dss mn ein reltiv grosses Flächenträgheitsmoment J x erhält, ohne dss ds Gewicht pro Länge llzu strk nwächst. 6
7 y x F z Abbildung 7: Einseitig belsteter Blken wobei c ein vorerst unbeknnter, konstnter Fktor ist. Ds Moment M x lässt sich wie folgt mit den Spnnungen verknüpfen: M x = σ(x, y) y = c y 2 = c J x (13) Flls wir ds Flächenträgheitsmoment kennen, können wir drus c und die Spnnungen σ berechnen: Die mximle Spnnung erhlten wir, wenn y mximl ist: c = M x J x (14) σ(x, y) = M x J x y (15) σ mx = M x J x y mx = M x W x (16) Die Grösse W x := J x y mx (17) heisst Widerstndsmoment und ist ebenflls häufig in den Tbellen (neben J x, J y,...) ufgeführt. 7
8 y σ(y) x M z Abbildung 8: Zugspnnung σ(y) und Drehmoment M uf einer Querschnittsfläche des einseitig belsteten Blkens. 8
B005: Baumechanik II
Sommersemester 05 Fkultät für uingenieurwesen und Umwelttechnik Dozent: nsgr Neuenhofer 005: umechnik II 3. März 05 Husübung -ösung ufgbe () Wie hoch könnten wir theoretisch eine Sthlstütze (konstnter
1. Aufgabe: (ca. 16 % der Gesamtpunkte)
Institut für Mechnik Prof. Dr.-Ing. hbil. P. Betsch Prof. Dr.-Ing. hbil. Th. Seelig Prüfung in Festigkeitslehre 0. März 05. Aufgbe: (c. 6 % der Gesmtpunkte) ) Wie viele unbhängige Spnnungskomponenten gibt
2. Grundgleichungen der linearen FEM
. Grundgleichungen der lineren FEM Fchbereich Prof. Dr.-Ing. Mschinenbu Abteilung Mschinenbu. Ekurs Mtrizenrechnung Zum weiteren Verständnis der FEM sind einige Grundkenntnisse in der Mtrizenlgebr erforderlich!
Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.
Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn
9 Üben X Prismen und Zylinder 1401
9 Üben X Prismen und Zylinder 40. Entscheide begründend: ) Gibt es Prismen mit Ecken? b) Gibt es Prismen mit Knten? c) Knn es ein Prism mit 7 Flächen geben?. Bestimme je einen Term, der die Anzhl der Knten
1. Querkraftschub in offenen Profilen
1. Querkrftschub in offenen Profilen 1.1 Schubfluss 1.2 Schubmittelpunkt Prof. Dr. Wndinger 5. Dünnwndige Profile TM 2 5.1-1 Geometrie: Die Profilkoordinte s wird entlng der Profilmittellinie gemessen.
f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.
Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,
11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG
91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
4.6 Integralrechnung III. Inhaltsverzeichnis
4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche
Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze
Rolnd Meissner Bodestrße 7, D-06122 Hlle, E-Mil: [email protected] Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der reltivistischen Krftgesetze Abstrct The reltivistic term of Force
Dynamische und statische Messung des Elastizitätsmoduls (M15)
Dynmische und sttische Messung des Elstizitätsmoduls (M15) Ziel des Versuches Die Ausbreitungsgeschwindigkeit von Schllimpulsen in Stäben us unterschiedlichem Mteril soll mittels eines Piezoelements und
10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.
28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld
Lösungsblatt zur Testklausur Festkörperphysik WS2010/11
Lösungsbltt zur Testklusur Festkörperphysik WS/ Aufgbe : ) Wie groß sind die Energien der drei niedrigsten Zustände in einem zweidimensionlen und einem dreidimensionlen Kstenpotentil? (Kntenlängen jeweils
UNIVERSITÄT BREMEN FACHBEREICH PRODUKTIONSTECHNIK TECHNISCHE MECHANIK - STRUKTURMECHANIK PROF. DR.-ING. R. KIENZLER
UNIVERSITÄT BREMEN FACHBEREICH PRODUKTIONSTECHNIK TECHNISCHE MECHANIK - STRUKTURMECHANIK PROF. DR.-ING. R. KIENZLER Klusur Mechnik I/II vom 14.08.2012 Prüfer: Prof. Dr.-Ing. R. Kienler Teilbereich Mechnik
Werkstoffmechanik SS2011 Baither/Schmitz. 13. Vorlesung
. Vorlesung 05.07. 6.. Die Hftkrft F mx Wie groß ist F mx, wenn Fremdtome ls Hindernis wirken? Wir betrchten ls Beispiel Fremdtome mit einem größeren Volumen ls dem der Mtrixtome in Ww mit Stufenversetzungen
KOMPETENZHEFT ZUM INTEGRIEREN, II. Erkläre elementar, insbesondere ohne den Hauptsatz zu verwenden, weshalb das Ergebnis die quadratische Funktion
KOMPETENZHEFT ZUM INTEGRIEREN, II. Aufgbenstellungen Aufgbe.. Wir untersuchen den Flächeninhlt unter der lineren Funktion f(t) = t + im Intervll [; x]. Kurz: F (x) = x f(t) dt Erkläre elementr, insbesondere
5.1 Charakterisierung relativ kompakter und kompakter
Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine
Lösungsvorschläge zum 9. Übungsblatt.
Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x
1. Stegreifaufgabe aus der Physik Lösungshinweise
. Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt
Umwelt-Campus Birkenfeld Technische Mechanik II
7. 9.4 Stoffgesete Verformungsustnd Der Zusmmenhng wischen Spnnung und elstischer Verformung wird durch ds Hook sche Geset beschrieben und wurde für den einchsigen Fll bereits behndelt. Im folgenden wird
Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)
BINOMISCHE FORMELN FRANZ LEMMERMEYER
BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c
5.5.3 Welle im Messingstab ****** 1 Motivation. 2 Experiment. Welle im Messingstab
5.5.3 ****** Motivation Ein Messingstab wird horizontal bzw. vertikal angeschlagen. Die Geschwindigkeit der dabei jeweils ausgelösten longitudinalen bzw. vertikalen Schallwelle wird gemessen. 2 Experiment
Grundlagen der Integralrechnung
Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe
Rollender Zylinder in Zylinder
Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.
Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen
Probeklausur Mathematik für Ingenieure C3
Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche
Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht
Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)
4 Der Kreisring unter rotationssymmetrischer Belastung
4 Der Kreisring unter rottionssymmetrischer Belstung 4.1 Allgemeines K C HE C, HK? HE C 4 E C JH C A H >? Bild 4.1-1: Beispiele für Kreisringe ls Konstruktionselemente rottionssymmetrischer Flächentrgwerke
3 Hyperbolische Geometrie
Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die
Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 015/16 Bltt 4 09.11.015 Übungen zur Vorlesung Differentil und Integrlrechnung I Lösungsvorschlg 13. Zu betrchten ist die durch 0 = 1 und
Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.
Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.
Aufgabe 1 - Lagerreaktionen
KLAUSUR Technische Mechnik (. Semester 19.07.011 Prof. Volker Ulricht Duer: 10 min. Aufge 1 3 4 5 Σ Punkte 5 1 6 8 5 36 Aufge 1 - Lgerrektionen D F D Gegeen: Längen, =, Streckenlst, Krft F D, Moment Lgerrektionen
Doppel- und Dreifachintegrale
KAPITEL 6 Doppel- und Dreifchintegrle 6. Doppelintegrle................................... 74 6.. Flächeninhlt ebener ereiche.......................... 74 6..2 Definition und Eigenschften des Doppelintegrls..............
ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II
EREBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II Lehrstuhl für Technische Mechnik, TU Kiserslutern SS 2014, 02.08.2014 1. Aufgbe: (TMI,TMI-II,ETMI,ETMI-II) /2 /2 C B S /2 q 0 =
Entwurf von Knoten und Anschlüssen im Stahlbau
Entwurf von Knoten und Anschlüssen im Sthlbu Technische Universität Drmstdt Institut für Sthlbu und Werkstoffmechnik Rlf Steinmnn 1 1 Schweißverbindungen Den Nchweis für die usreichende Trgfähigkeit von
Mathematik 1 für Bauwesen 14. Übungsblatt
Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,
Grundlagen der Integralrechnung
Grundlgen der Integrlrechnung Wolfgng Kippels 8. April 018 Inhltsverzeichnis 1 Vorwort Ds unbestimmte Integrl Ds bestimmte Integrl 5 4 Beispielufgben 8 4.1 Beispielufgbe 1...............................
Technische Mechanik II
Repetitorium Technische Mechnik II Version 3., 09.0.00 Dr.-Ing. L. Pnning Institut für Dynmik und Schwingungen Gottfried Wilhelm Leibniz Universität Hnnover Dieses Repetitorium soll helfen, klssische Aufgbentypen
2 Blatt - Festkörperphysik 2-2D Gitter
Heiko Dumlich April 9, Bltt - Festkörperphysik - D Gitter. (Oberflächen kubisch rumzentrierter Kristlle) ) In Abbildung () befinden sich die drei Drufsichten der (), () und () Ebenen des kubisch-rumzentrierten
7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen
7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen
1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt
Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)
Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM
Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser
t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.
Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die
4.5 Integralrechnung II. Inhaltsverzeichnis
4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der
Crashkurs - Integration
Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).
Lineare Abbildung des Einheitskreises
Linere Abbildung des Einheitskreises Peter Stender 27.06.2017 Peter Stender Linere Abbildung des Einheitskreises 27.06.2017 1 / 14 Mtrix und Dynmik m Kreis Fälle, bei denen B nicht uf der berechneten Prbel
Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)
. Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom
a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x
Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik
Resultat: Hauptsatz der Differential- und Integralrechnung
17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:
ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II
ERGEBNISSE TECHNISCHE MECHANIK I-II ELEMENTE DER TECHNISCHEN MECHANIK I-II Lehrstuhl für Technische Mechnik, TU Kiserslutern WS 1/13, 16.0.013 1. Aufgbe: (TM I) ) A g 3 6 ( q() = q 0 9 G B 60 F = q 0 m
Technische Mechanik 2 Festigkeitslehre
Russell C. Hibbeler echnische Mechnik Festigkeitslehre ehr- und Übungsbuch 8., ktulisierte uflge Übersetzung us dem meriknischen: Nicolet Rdu-Jürgens, Frnk Jürgens, Frnk ngenu Fchliche Betreuung und Erweiterungen:
π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x
Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei
Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck
Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA
. Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder
7.9A. Nullstellensuche nach Newton
7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren
Vorkurs Mathematik DIFFERENTIATION
Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt
Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:
Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:
Tag der Mathematik 2011
Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.
9.6 Parameterabhängige Integrale
Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes
nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei
Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0
8 Längenberechnungen Winkelberechnungen - Skalarprodukt
8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!
Thema 7 Konvergenzkriterien (uneigentliche Integrale)
Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe
2. Flächenberechnungen
Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.
2 Berechnung von Flächeninhalten unter Kurvenstücken
Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,
- 1 - VB Inhaltsverzeichnis
- - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit
Multiplikative Inverse
Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll
Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)
Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:
Theorie der Kondensierten Materie I WS 2016/2017
Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Theorie der Kondensierten Mterie I WS 06/07 Prof. Dr. A. Shnirmn Bltt PD Dr. B. Nrozhny, M.Sc. T. Ludwig Lösungsvorschlg.
12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL
98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und
3 Uneigentliche Integrale
Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,
G2.3 Produkte von Vektoren
G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen
Integralrechnung 29. f(x) dx = F (x) + C
Integrlrechnung 9 5 Integrlrechnung 5. Ds unbestimmte Integrl Wird eine Funktion f bgeleitet, so erhält mn die Ableitungsfunktion f. Nun knn mn sich frgen, ob es einen Weg zurück gibt, d.h. ob mn us der
Blatt 9. Bewegung starrer Körper- Lösungsvorschlag
Fkultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhnov Übungen zu Klssischer Mechnik (T) im SoSe 0 Bltt 9. Bewegung strrer Körper- Lösungsvorschlg Aufgbe 9.. Trägheitstensor
Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001
Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte
Volumen von Rotationskörpern
Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht
Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Dirac sche Deltafunktion: ( =11 Punkte)
Krlsruher Institut für Technologie Institut für Theorie der Kondensierten Mterie Übungen zur Klssischen Theoretischen Physik III (Theorie C Elektrodynmik) WS -3 Prof. Dr. Alexnder Mirlin Bltt : Lösungen
6. Quadratische Gleichungen
6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel
Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2
Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes
