Curriculum. Lineare Algebra 1.
|
|
|
- Renate Kuntz
- vor 8 Jahren
- Abrufe
Transkript
1 Curriculum Lineare Algebra 1 Dozent: Web: Modul : Umfang: Datum: Dr. Donat Adams [email protected] Lineare Algebra 1 3 ECTS 16. September 017
2 1 Funktion im Rahmen der Gesamtausbildung Leitidee Im ersten Modul zur linearen Algebra werden die Grundlagen der Vektor- und Matrizenrechnung entwickelt. Mit Vektoren lassen sich geometrische Richtungsinformationen sehr effizient formulieren und auswerten. Die dafür entwickelten Rechenmethoden sind auch für die Lösung von linearen Gleichungssystemen geeignet. Dieser überall auftretende Problemtyp wird deshalb auch hier untersucht. Bei der Vektorrechnung liegt besonderes Gewicht darauf, geometrische Situationen, wie sie in technischen Konstruktionen und Abläufen immer wieder auftreten, in mathematischer Form zu beschreiben. Dabei soll auch das räumliche Vorstellungsvermögen trainiert werden. Danach folgt ein Teil über lineare Algebra. Wie wir sehen werden, ist die lineare Algebra stets dann nützlich wenn Koeffizienten (Vorzahlen) gesucht werden. Wir behandeln das Gauss-Eliminationsverfahren von linearen Gleichungssystem, was uns natürlich zur Schreibweise der Koeffizienten als Matrix bringt. Um die Lösbarkeit von linearen Gleichungssystemen zu bestimmen, betrachten wir Determinanten. Für die Anwendung in der Signalverarbeitung (Fourier- Transformation) behandeln wir auch die Basistransformation. Schliesslich besprechen wir Anwendungen in den Naturwissenschaften wie die lineare Regression, RCL-Netzwerke und die diskrete Fouriertransformationen. Dabei kommt auch Matlab zur Anwendung. Das Ziel des Moduls besteht darin, dass die Studierenden mit mehrkomponentigen (vektoriellen) Grössen rechnen und diese im Zusammenhang mit typischen Modellierungen von technischen und physikalischen Aufgabenstellungen anwenden können. Vorausetzungen und empfohlene Vorkenntnisse Berufsmaturität technischer Richtung und die Bereitschaft der Studierenden voraus, sich auf die Materie einzulassen. Unterrichtsorganisation Lern- und Arbeitsformen Die grundlegenden Ideen werden in 4 Kontaktlektionen pro Woche erarbeitet. Im Schnitt arbeitet der/die Studierende h pro Woche individuell: Übungsaufgaben lösen
3 Besprochene Abschnitte aus dem Buch nachlesen Stoff aus Kontaktlektionen repetieren Zeitaufwand für Studierende Kontaktunterricht: 45 h Begleitetes Selbststudium: 15 h Selbststudium, Prüfungsvorbereitung: 30 h Gesamtaufwand: 90h (±50%) Wichtig sind engagiertes Mitarbeiten, das Stellen von Fragen in der Stunde und das Lösen der Übungsaufgaben. 3 Leistungsbeurteilung Hilfsmittel Tests enthalten typischerweise einen Teil, der ohne elektronische Hilfsmittel gelöst werden soll. Es darf eine handgeschriebene Zusammenfassung ( 6 Seiten A4, einseitig) mitgebracht werden. Bücher und kopierte Blätter sind nicht erlaubt. Als Sicherheit ist Matlab und ein Taschenrechner ohne Programmierfunktion immer erlaubt. Zusammenfassung elektr. Hilfsmittel Test 1 Seiten A4 - Test Seiten A4 Matlab (. Teil) MSP 6 Seiten A4 Matlab (. Teil) Leistungsbeurteilung im Semester Allgemein gilt: Die Teilnahme an den Prüfungen ist zwingend, im Krankheitsfall ist ein ärztliches Zeugnis beizubringen. Diese Regeln gelten für die Prüfungen während des Semesters und für die Modulschluss Prüfung. Zwei Tests, Dauer je 60 min, angekündigt. Die Termine der Tests werden zu Beginn des Semesters festgelegt. Die aus den Klausuren resultierenden Noten werden gemittelt und auf 1/10 gerundet. Dies ergibt die Erfahrungsnote. Modulschlussprüfung Schriftliche Prüfung Lineare Algebra von 10 Min. Dauer (Note auf 1/10 gerundet). 3
4 Ein Modul ist bestanden, wenn der gewichtete Durchschnitt aus Erfahrungsnote und Modulschlussprüfungsnote, gerundet auf halbe Noten 4.0 ist. Also ist die Endnote N e (ohne Rundungen) mit N e = E 1 +E + M E i Erfahrungsnoten aus den Tests M Note aus der Modulschlussprüfung 4 Arbeitsmittel Buch Mathematik für Ingenieure und Naturwissenschaftler, Band 1 und, Lothar Papula, Vieweg Verlag und Mathematik verstehen und anwenden Skript mit Übungen Geodreieck, Lineal und Zirkel Taschenrechner ohne Programmierfunktion Matlab (Einführung nach Tests 1) fakultativ: Buch S. Goebbels und S. Ritter, Spektrum Akademischer Verlag 5 Themen der Unterrichtsblöcke Sind im Inhaltsverzeichnis des Skripts angegeben. 6 Drehbuch Das Drehbuch ist unverbindlich und wir an den Fortschritt der Klasse angepasst. In den fett markierten Wochen finden die Tests statt. 4
5 5 Kalenderwoche Datum Inhalt 38 Lineare Abhängigkeit, Trigonometrische Funktionen 39 Skalarprodukt, Matlab I 40 Vektorprodukt, Abstände 41 Darstellung der Ebene, Spiegelung, Projektion 4 Test 1; danach orthogonal Basis 43 Lineare Gleichungssysteme: Rang, Lösbarkeit 44 Lineare Abbildungen, Matrizenkalkül: Operationen, Transponierte 45 MATLAB II 46 RCL-Netzwerke 47 Inverse Matrix; orthogonale Matrizen 48 Projektwoche 49 Determinanten 50 Test ; danach Cramer sche Regel 51 Basistransformation Diskrete Fouriertransformation 3 Signal-Verarbeitung; Einsatz von Matlab Kolloquium MSP
Ingenieurmathematik mit MATLAB
Dieter Schott Ingenieurmathematik mit MATLAB Algebra und Analysis für Ingenieure Mit 179 Abbildungen, zahlreichen Beispielen, Übungsaufgaben und Lernkontrollen Fachbuchverlag Leipzig im Carl Hanser Verlag
1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...
Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und
Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie
Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen
W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004
W. Oevel Mathematik für Physiker I Veranstaltungsnr: 172020 Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 Zeit und Ort: V2 Di 11.15 12.45 D1.303 V2 Mi 11.15 12.45 D1.303 V2 Do 9.15
Höhere Mathematik für Naturwissenschaftler und Ingenieure
Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis
Lineare Algebra. Grundlagen der Vektorrechnung. fsg Verlag
Rolf Stahlberger Alexander Golfmann Lineare Algebra Grundlagen der Vektorrechnung fsg Verlag Impressum Herausgeber: FSG Verlag Alexander Golfmann Augustenstr. 58 80333 München [email protected] www.fsg-verlag.de
Einleitung 19. Teil I Einführung 23. Kapitel 1 Motivation 25
Inhaltsverzeichnis Einleitung 19 Konventionen in diesem Buch 19 Törichte Annahmen über den Leser 20 Was Sie in diesem Buch finden 20 Was Sie in diesem Buch nicht finden 20 Wie dieses Buch aufgebaut ist
Einführung in die höhere Mathematik 2
Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden
DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )
Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon
Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13
Kern- und Schulcurriculum Mathematik Klasse 11/12 Stand Schuljahr 2012/13 UE 1 Wiederholung Funktionen Änderungsrate Ableitung Ableitung berechnen Ableitungsfunktion Ableitungsregeln für Potenz, Summe
Inhaltsverzeichnis. Grundlagen
Grundlagen 1 Logik und Mengen... 1 1.1 Elementare Logik... 1 1.2 Elementare Mengenlehre... 10 1.3 Schaltalgebra... 15 1.3.1 Anwendung: Entwurf von Schaltkreisen... 21 1.4 Mit dem digitalen Rechenmeister...
Fachcurriculum Mathematik Kursstufe Kepler-Gymnasium Pforzheim
Kompetenzen und Inhalte des Bildungsplans - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des CAS bestimmen; Unterrichtsinhalte Analysis Bestimmung von Extrem- und Wendepunkten (ca. 8-11
Lineare Gleichungssysteme Kapitel 5 aus meinem Lehrgang ALGEBRA
Lineare Gleichungssysteme Kapitel 5 aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: [email protected] 19. Oktober 2009 Überblick über die bisherigen
Mathematik 1 Bachelorstudiengang Maschinenbau
Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 Vorlesungsbegleitende Unterlagen Arbeitsmaterial: Foliensatz Aufgabenskript Mitschrift
Mathematik. Modul-Nr./ Code 6.1. ECTS-Credits 5. Gewichtung der Note in der Gesamtnote 5 / 165
Mathematik Modul-Nr./ Code 6.1 ECTS-Credits 5 Gewichtung der Note in der Gesamtnote 5 / 165 Modulverantwortliche Semester Qualifikationsziele des Moduls Prof. Dr. B. Christensen, Prof. Dr. B. Kuhnigk,
B-P 11: Mathematik für Physiker
B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis
Mathematik anschaulich dargestellt
Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra
W. Oevel. Mathematik II für Informatiker. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002
W. Oevel Mathematik II für Informatiker Veranstaltungsnr: 172010 Skript zur Vorlesung, Universität Paderborn, Sommersemester 2002 Inhalt 1 Komplexe Zahlen 1 1.1 Definitionen..............................
Matrizenrechnung am Beispiel linearer Gleichungssystemer. für GeoGebraCAS
Matrizenrechnung am Beispiel linearer Gleichungssystemer für GeoGebraCAS Letzte Änderung: 08/ April 2010 1 Überblick 1.1 Zusammenfassung Lösen von linearen Gleichungssystemen mit Hilfe der Matrizenrechnung.
Mathematik im Betrieb
Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2
Modulnummer Modulname Verantwortlicher Dozent. Lineare Algebra und Analytische Geometrie
MN-SEBS-MAT-LAAG (MN-SEGY-MAT-LAAG) (MN-BAWP-MAT-LAAG) Lineare Algebra und Analytische Geometrie Direktor des Instituts für Algebra n Die Studierenden besitzen sichere Kenntnisse und Fähigkeiten insbesondere
Kurze Geschichte der linearen Algebra
Kurze Geschichte der linearen Algebra Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Entwicklung Die Historische Entwicklung
Modulname Grundlagen der Mathematik Teil 1
Modulname Grundlagen der Teil 1 Modulname (englisch) Fundamentals of Applied Mathematics Part 1 Kurzbezeichnung Modulkennung Studiengang Ingenieurwesen Maschinenbau, Ingenieurwesen Fahrzeugtechnik Modulgruppe
Modulhandbuch Studiengang Bachelor of Arts (Kombination) Mathematik Prüfungsordnung: 2013 Nebenfach
Modulhandbuch Studiengang Bachelor of Arts (Kombination) Mathematik Prüfungsordnung: 2013 Nebenfach Sommersemester 2016 Stand: 14. April 2016 Universität Stuttgart Keplerstr. 7 70174 Stuttgart Inhaltsverzeichnis
Mathematik für Chemische Technologie 2
Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
Lineare Algebra und Geometrie für Ingenieure
Lineare Algebra und Geometrie für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VER^G Inhaltsverzeichnis MENGEN 1 Grundbegriffe 13
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
Inhaltsverzeichnis. 1 Lineare Algebra 12
Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer
Mittwoch, :00 9:35
Mittwoch, 29.01.2014 8:00 9:35 Mathematik Grundkurs (GK) oder Leistungskurs (LK) Mathe ist grundsätzlich Pflicht (4 Semester) bis zum Abitur (das 1.LK- Fach muss De, FS, Ma oder Bi/Ch/Ph sein, 2 Fächer
Credits. Studiensemester. 1. Sem. Kontaktzeit 4 SWS / 60 h 2 SWS / 30 h
Modulhandbuch für den Lernbereich Mathematische Grundbildung im Studiengang Bachelor of Arts mit bildungswissenschaftlichem Anteil für die Studienprofile Lehramt an Grundschulen und Lehramt für sonderpädagogische
Mathematik für BWL-Bachelor: Übungsbuch
Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor: Übungsbuch Ergänzungen für Vertiefung und Training STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis AI Mathematisches Handwerkszeug: Beispiele
STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München. Übersicht Vorstudium
STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München Übersicht Vorstudium Das erste Anwendungsgebiet im Grundstudium ist Physik (1. und 2. Sem.) Im 3. und 4. Sem.
Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57
Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5
Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung.
Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil : Lineare Algebra und Optimierung Wintersemester Matrizenrechnung Aufgabe ( 3 0 Gegeben sind die Matrizen A = 2 5 2 4 D =
Mathematik I Übungsblatt 5 WS 12/13 Prof. Dr. W. Konen, Dr.A.Schmitter
Bereiten Sie die Aufgaben parallel zu den in der Vorlesung besprochenen Themen für die nächsten Übungsstunden jeweils vor! Aufgabe 5.1 Vektoroperationen Gegeben sind die folgenden Vektoren: u = 3 1 2 v
Grundlagen der Ingenieurmathematik im Bachelorstudium. Olga und Konrad Wälder
Grundlagen der Ingenieurmathematik im Bachelorstudium Olga und Konrad Wälder Berichte aus der Mathematik Olga und Konrad Wälder Grundlagen der Ingenieurmathematik im Bachelorstudium Shaker Verlag Aachen
Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix.
LINEARE ALGEBRA Lösbarkeit von linearen Gleichungssystemen Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix Gleichungssysteme
Fach Mathematik. Stundentafel. Bildungsziel
Fach Mathematik Stundentafel Jahr 1. 2. 3. 4. Grundlagen 4 4 4 5 Bildungsziel Der Mathematikunterricht schult das exakte Denken, das folgerichtige Schliessen und Deduzieren, einen präzisen Sprachgebrauch
Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra
Inhaltsverzeichnis Band b Analytische Geometrie Auf der beigefügten CD befinden sich zwei Verzeichnisse: Inhalt_Mathcad und Inhalt_pdf In diesen Verzeichnissen sind alle Mathcad-Dateien (***.xmcd) und
Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium
Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen
Vektoren, Vektorräume
Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010
LEHRVERANSTALTUNGSPLANUNG
LEHRVERANSTALTUNGSPLANUNG Lehrveranstaltung Titel der Lehrveranstaltung: LV-Nummer: Kurzbezeichnung: Typ: Modul: Lage im Curriculum: MA8_QM_MS MS ECTS: 3,0 SWS: Integrierte Lehrveranstaltung Quantitative
Matrizen und Determinanten
Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von
Grundlagen, Vorgehensweisen, Aufgaben, Beispiele
Hans Benker - Wirtschaftsmathematik Problemlösungen mit EXCEL Grundlagen, Vorgehensweisen, Aufgaben, Beispiele Mit 138 Abbildungen vieweg TEIL I: EXCEL 1 EXCEL: Einführung 1 1.1 Grundlagen 1 1.1.1 Tabellenkalkulation
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b
Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010
Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter
Modulhandbuch. der Mathematisch-Naturwissenschaftlichen Fakultät. der Universität zu Köln. für den Lernbereich Mathematische Grundbildung
Modulhandbuch der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln für den Lernbereich Mathematische Grundbildung im Studiengang Bachelor of Arts mit bildungswissenschaftlichem Anteil
Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10
Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge
Vektoren - Basiswechsel
Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug
Eigenwerte und Eigenvektoren
Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen
Landesabitur 2007 Beispielaufgaben 2005_M-LK_A 7. Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 1.
I. Thema und Aufgabenstellung Lineare Algebra / Analytische Geometrie Aufgaben Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 3. Achse 2. Achse 1. Achse Die Sonne scheint
Drehbuch. für. apm. Application Performance Management
Drehbuch für apm Application Performance Management Verfasser: Christoph Denzler Modulanlass: HS / 2011 Datum: 19. 09. 2011 Inhaltsverzeichnis Inhaltsverzeichnis... 2 1 Funktion im Rahmen der Gesamtausbildung...
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
Günter / Kusmin: Aufgabensammlung zur Höheren Mathematik, Band 1 5.Auflage, 1966, 507 Seiten VEB Deutscher Verlag der Wissenschaften
Günter / Kusmin: Aufgabensammlung zur Höheren Mathematik, Band 1 5.Auflage, 1966, 507 Seiten VEB Deutscher Verlag der Wissenschaften Analytische Geometrie, Differentialrechnung, Höhere Algebra, Integralrechnung,
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
Lineare Gleichungssysteme
Lineare Gleichungssysteme (FHMS - Version) Kapitel 5 aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: [email protected] 19. Oktober 2009 Überblick über
Jürgen Hausen Lineare Algebra I
Jürgen Hausen Lineare Algebra I 2. korrigierte Auflage Shaker Verlag Aachen 2009 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation
Arbeitsblatt Mathematik 2 (Vektoren)
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben
Motivation. Gestatten: Die Familie der Vektoren, Matrizen und linearen Gleichungssysteme. In diesem Kapitel...
Motivation In diesem Kapitel... Motivation und Vorstellung der Themenbereiche in der Vektorrechnung Verzahnung und Zusammenwirken der einzelnen Bereiche E ine Matheklausur ist wie eine Schachtel Pralinen
Mathematik für Wirtschaftswissenschaftler
Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,
Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen
Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler von Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen 5., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis
Definition, Rechenoperationen, Lineares Gleichungssystem
Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den
Numerische Mathematik für Ingenieure und Physiker
Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin
Bemerkung: Termine und Orte für die einzelnen Lehrveranstaltungen sind dem Stundenplan zu entnehmen.
Allgemeine Modulbeschreibungen für das erste Semester Bachelor Informatik 1. Objektorientierte Programmierung Bestehend aus - Vorlesung Objektorientierte Programmierung (Prof. Zimmermann) - Übung zu obiger
Großes Lehrbuch der Mathematik für Ökonomen
Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg
Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.
1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen
MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise. 4. Klasse. 1. Klasse. 3. Klasse. 5. Klasse. 2. Klasse
MATHEMATIK 1 Stundendotation 1. 2. 3. 4. 5. 6. Arithmetik und Algebra 4 3 Geometrie 2 3 Grundlagenfach 4 4 4 4 Schwerpunktfach Ergänzungsfach Weiteres Fach 2 Didaktische Hinweise Der Unterricht im Grundlagenfach
Höhere Mathematik I. für naturwissenschaftliche Studiengänge. Dr. Mario Helm
Dr. Mario Helm Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Höhere Mathematik I für naturwissenschaftliche Studiengänge Wintersemester 2015/16 Organisatorisches
Vektorgeometrie - Teil 1
Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der
EdM Nordrhein-Westfalen Qualifikationsphase Bleib fit in Funktionsuntersuchungen. 1 Kurvenanpassung Lineare Gleichungssysteme
EdM Nordrhein-Westfalen Qualifikationsphase 978-3-507-87900-3 Bleib fit in Differenzialrechnung Bleib fit in Funktionsuntersuchungen 1 Kurvenanpassung Lineare Gleichungssysteme Lernfeld: Krumm, aber doch
MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise G1 G2 G3 G4 G5 G6
MATHEMATIK 1 Stundendotation G1 G2 G3 G4 G5 G6 Arithmetik und Algebra 4 3 Geometrie 2 3 Grundlagenfach 4 4 4 4 Schwerpunktfach Ergänzungsfach Weiteres Pflichtfach Weiteres Fach 2 Didaktische Hinweise Der
Klausur zur Vorlesung Höhere Mathematik I
Name: 28. Januar 2004, 8.30-10.30 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Übungen, Formelsammlung Schreiben Sie bitte auf dieses
Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011
Schulinternes Curriculum Mathematik Sekundarstufe II/Lk Stand: November 2011 Bemerkungen: - Die angegebenen Seitenzahlen beziehen sich auf das eingeführt Lehrwerk Lambacher-Schweizer Leistungskurs aus
Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen
Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie
EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA
EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA VON SIEGFRIED BREHMER UND HORST BELKNER MIT 146 A B B I L D U N G E N VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN 1966 INHALTSVERZEICHNIS
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation
. Inhaltsverzeichnis.............. Spezialgebiet Mathematik(Christian Behon ) 1 Matrizen Kapitel 1 Definitionen und Herleitung von Matrizen 1.1 Was sind Matrizen 1.2 Arten von Matrizen Kapitel 2 Matrizenoperation
Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015
Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt
Statistik für Biologen 1. Fachsemester Mono-Bachelor
1. Fachsemester Mono-Bachelor Prof. Dr. Britta Tietjen Wintersemester 2012/2013 Termin Vorlesung: Montags, 10:15-11:00 Uhr Termine Tutorien: Donnerstags/Freitags Botanisches Museum Königin-Luise-Str. 6-8,
Informatik-Studiengänge an der Universität zu Lübeck
Informatik-Studiengänge an der Universität zu Lübeck Wissenswertes für Erstsemestler Prof. Dr. Till Tantau Studiendekan Technisch-Naturwissenschaftliche Fakultät Universität zu Lübeck Gliederung Wie sollten
Mathematik für Wirtschaftswissenschaftler Lineare Algebra und ökonomische Anwendung
Mathematik für Wirtschaftswissenschaftler Lineare Algebra und ökonomische Anwendung Von Siegmar Stöppler unter Mitarbeit von Wilbrecht Hollnagel TEGHNSGHfi HOCHSCHULE 0AKMSTA9T INSTITUT FOf Westdeutscher
Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1
Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis
Lineare Algebra und Numerische Mathematik für D-BAUG
P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen
Syllabus MEN1282 Einführung in die Konstruktionslehre WS 16/17
Lehrveranstaltung: Einführung in die Konstruktionslehre für Wirtschaftsingenieure (MEN 1282) Deutsch, 3 SWS, 3 Credits Niveau: fortgeschritten Termin und Raum: siehe LSF Lehrende: Prof. Dr. Gerd Eberhardt
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Vektor-Multiplikation Vektor- Multiplikation
Vektor- Multiplikation a d c b Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Vektor-Multiplikation: Vektorprodukt Mittelschule, Berufsschule, Fachhochschule Elementare Programmierkenntnisse, Geometrie,
Zentralabitur 2017 Mathematik
Zentralabitur.nrw Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen Zentralabitur 2017 Mathematik I. Unterrichtliche Voraussetzungen für die schriftlichen Abiturprüfungen an Weiterbildungskollegs
Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker
Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker Grundbegriffe - Funktionen einer und mehrerer Veränderlicher - Folgen und Reihen, Zinsrechnung - Differential- und Integralrechnung-Vektorrechnung
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
Michael Artin. Algebra. Aus dem Englischen übersetzt von Annette A'Campo. Birkhäuser Verlag Basel Boston Berlin
Michael Artin Algebra Aus dem Englischen übersetzt von Annette A'Campo Birkhäuser Verlag Basel Boston Berlin INHALTSVERZEICHNIS Vorwort Hinweise viii x Kapitel 1 MATRIZEN 1 1. Matrizenkalkül 1 2. Zeilenreduktion
Lineare Algebra: Theorie und Anwendungen
Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und
Semester: Studiengang: Dozent: Termine:
1 Semester: Studiengang: Dozent: Termine: Winter 2011/12 Mathematik (Bachelor) Prof. Dr. Wolfgang Lauf Mo., 15:15 16:45 Uhr, E204 Di., 13:30 15:00 Uhr, E007 2 Erwartungen / Vorlesung Vorstellung Daten
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen
Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- durch die Schülerbücher Lambacher-Schweizer - Analysis Grundkurs Ausgabe Nordrhein- (ISBN 978-3-12-732220-0)
Was bewirken Mathematik-Vorkurse?
Was bewirken Mathematik-Vorkurse? Eine Untersuchung zum Studienerfolg nach Vorkursteilnahme an der FH Aachen. Prof. Dr. Gilbert Greefrath, Universität Münster Prof. Dr. Dr. Georg Hoever, Fachhochschule
Skalarprodukte (Teschl/Teschl Kap. 13)
Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +
Systeme von linearen Ungleichungen
Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA
