Kapitel 2 Kurvenanpassung

Größe: px
Ab Seite anzeigen:

Download "Kapitel 2 Kurvenanpassung"

Transkript

1 Kapitel 2 Kurvenanpassung 2

2 2 2 Kurvenanpassung 2.1 Approximation Approximation mit orthonormalen Funktionensystemen Approximation mit der Fourier-Reihe Approximation mit Walsh-Funktionen Least-Squares-Schätzer Regressionsanalyse Interpolation Polynominterpolation Interpolation durch Lagrange-Polynome Interpolation durch Newton-Polynome Spline-Interpolation Systemtheoretische Deutung der Interpolation Kennfeldinterpolation Literatur... 51

3 2 Kurvenanpassung 25 Die analytische Darstellung einer Messkennlinie erfordert eine Modellbildung des Systems. Da das zugrundeliegende Modell in der Praxis oft unbekannt ist, liegt die stationäre Messkennlinie häufig nicht in analytischer Form, sondern nur als Menge von n Messpunkten u k,y k ), k {0,...,n 1}, vor. Gesucht wird nun eine analytische Darstellung der Kennlinie, welche die gemessenen Punkte in geeigneter Weise nachbildet. Dadurch können für beliebige Zwischenwerte u die zugehörigen Werte y angegeben werden. Des Weiteren kann die auf diese Weise ermittelte Messkennlinie mit den in Kap. 3 besprochenen Methoden genauer untersucht und optimiert werden. Bei der Konstruktion einer analytischen Kennlinie aus Messpunkten können zwei grundsätzlich verschiedene Ansätze verfolgt werden vgl. Abb. 2.1). Interpolation: Liegen nur wenige Messwerte ohne überlagerte Störungen vor, so wird man verlangen, dass die analytische Kennlinie exakt durch alle Messpunkte verläuft. Verwendet man beispielsweise Polynome pu) zur Interpolation, so erhält man bei n Messpunkten Polynome vom Grad deg{pu)}. Man erkennt sofort, dass eine Interpolation nur für kleine n sinnvoll ist. Für eine große Anzahl von Messwerten wird die Interpolationsfunktion sehr schnell unhandlich und weist ein stark oszillierendes Verhalten auf. Das Interpolationsproblem wird im Abschn. 2.2 behandelt. Approximation: Liegen dagegen sehr viele Messwerte vor oder sind diesen Messwerten Störungen überlagert, so ist die Interpolation ein unpraktischer Ansatz. Man sucht vielmehr einfache Funktionen, welche die Menge der Mess- Abbildung 2.1. Kennlinie in Form von n Messpunkten und Ergebnis der Kurvenanpassung. F. Puente León, Messtechnik, DOI / _2, Springer-Verlag Berlin Heidelberg 2015

4 26 2. Kurvenanpassung punkte so nachbilden, dass der Fehler zwischen den Messpunkten und der analytischen Funktion möglichst klein wird. Als Stichwort sei hier die Regressionsanalyse genannt Abschn ). Will man für beliebige Zwischenwerte u die zugehörigen Werte y angeben, so wird die Kennlinie als Approximation in einer endlichen Reihe analytischer Funktionen ϕ i u) dargestellt: ŷu) = bzw. mit ŷ k =ŷu k ) ŷ k = a i ϕ i u) 2.1) a i ϕ i u k ), k {0,...,}. 2.2) Die Koeffizienten a i werden dann über die Minimierung eines Gütemaßes Q bestimmt, wobei hierfür üblicherweise die Summe der Approximationsfehlerquadrate herangezogen wird: Q = y k a i ϕ i u k )) 2 min. 2.3) Der Vorteil dieser Vorgehensweise liegt in der Tatsache, dass man bereits mit einer begrenzten Anzahl m einfacher Basisfunktionen ϕ i u) die Kennlinie nachbilden kann, wobei im Allgemeinen m n gilt. Die so gewonnene analytische Kennlinie verläuft allerdings nicht exakt durch die gemessenen Punkte Approximation Approximation mit orthonormalen Funktionensystemen Zunächst stellt sich die Frage nach den Vorteilen orthonormaler Funktionensysteme zur Signaldarstellung. Zur Verdeutlichung sei an die Vektorrechnung erinnert. Im dreidimensionalen Raum IR 3 wird jeder Vektor durch seine Komponenten in x-, y- und z-richtung repräsentiert. Beispielsweise sei der folgende Vektor betrachtet: a =a 0,a 1,a 2 ) T. 2.4)

5 2.1 Approximation 27 Mittels der zueinander orthogonalen Einheitsvektoren e 0 = 0, e 1 = 1, e 2 = 0 2.5) lässt sich der Vektor a als Linearkombination der Vektoren e i darstellen: a = a 0 e 0 + a 1 e 1 + a 2 e 2 = 2 a i e i. 2.6) Die Menge {e 0, e 1, e 2 } bildet dabei eine orthonormale Basis des Vektorraumes IR 3. Sie hat die besonderen Eigenschaften, dass das Innenprodukt zwischen zwei verschiedenen Basisvektoren verschwindet die Vektoren sind also zueinander orthogonal [5] und dass die Norm der Basisvektoren gleich eins ist: e i, e j = e i,k e j,k = δ j i, 2.7) wobei δ j i = { 1 für i = j 0 für i j 2.8) das Kronecker-Delta bezeichnet. Ein großer Vorteil orthonormaler Basissysteme ist die Tatsache, dass bei Hinzunahme einer neuen Dimension aufgespannt z. B. durch den Basisvektor e 2 ) lediglich die entsprechende Komponente a 2 zur Darstellung des resultierenden Vektors bestimmt werden muss, ohne dass sich dabei eine Änderung der bisherigen Komponenten im vorliegenden Beispiel a 0 und a 1 ) ergäbe. Bei der Approximation von Messkennlinien macht man sich genau diese Eigenschaft orthonormaler Basissysteme zu Nutze. Man verwendet zur Approximation Funktionensysteme mit der Eigenschaft ϕ i,ϕ j = ϕ i u k ) ϕ j u k )=δ j i. 2.9) Die Funktionswerte ϕ i u k ) an den Stützstellen u k liefern orthonormale, n-dimensionale Vektoren. Im Folgenden wird angenommen, dass die Stützstellen äquidistant über dem gesamten Orthogonalitätsintervall des Funktionensystems verteilt sind. Zur Bestimmung der Koeffizienten wird das Gütemaß 2.3) Q = y k a i ϕ i u k )) y k j=0 a j ϕ j u k ) 2.10)

6 28 2. Kurvenanpassung mit Hilfe der Kettenregel nach den Koeffizienten a j abgeleitet: ) Q = 2 y k a i ϕ i u k ) ϕ j u k ) 2.11) a j = 2 y k ϕ j u k ) a i ϕ i u k ) ϕ j u k ) )! =0, 2.12) y k ϕ j u k ) ϕ i u k ) ϕ j u k ) =0 2.13) a i } {{ } δ j i a j = y k ϕ j u k ). 2.14) Man erkennt sofort den Nutzen orthogonaler Funktionen. Die Koeffizienten a j zur Darstellung der Kennlinie hängen nur von der zugehörigen Basisfunktion ϕ j u k ) ab. Werden weitere Funktionen ϕ i zur Approximation herangezogen, so bleiben die bisher berechneten Koeffizienten unverändert. Der quadratische Fehler zwischen den Messpunkten und der approximierten Kennlinie berechnet sich zu Q = y k = yk 2 + j=0 a i a i a j a i ϕ i u k )) y k ϕ i u k ) yk } {{ } a i j=0 a j j=0 a j ϕ j u k ) ϕ j u k ) y k } {{ } a j 2.15) ϕ i u k ) ϕ j u k ), 2.16) } {{ } δ j i Q = yk 2 a i ) Mit wachsendem Grad m der Funktionenreihe wird der Approximationsfehler geringer. Mit Q 0 folgt die bekannte Bessel sche Ungleichung [5].

7 2.1 Approximation Approximation mit der Fourier-Reihe Nun stellt sich die Frage, welche Funktionensysteme die Orthogonalitätsbedingung 2.9) erfüllen. Am bekanntesten sind die Funktionen der Fourier-Reihe: F i u) = 1 n exp j2πi u u a u e u a ). 2.18) Diese Funktionen bilden im Messbereich [u a,u e ] bei n äquidistanten Stützstellen im Abstand Δu vgl. Abb. 2.2) ein orthonormales Funktionensystem: F i u k ),F j u k ) = 1 exp j2πi u ) k u a exp j2πj u ) k u a. 2.19) n u e u a u e u a Abbildung 2.2. Stützstellenabstände einer gemessenen Kennlinie. Mit dem Stützstellenabstand Δu und der Intervallbreite u e u a )=n Δu gilt u k = k Δu + u a u k u a u e u a = k n. 2.20) Damit lässt sich das Innenprodukt schreiben und die Orthogonalität zeigen: F i u k ),F j u k ) = 1 exp j2πi j) k ) = δ j i n n. 2.21) Zur Veranschaulichung von 2.21) hilft ein Zeigerdiagramm in der komplexen Ebene Abb. 2.3). Für i j ergibt sich ein geschlossener Polygonzug, d. h. die Summe der Zeiger verschwindet. Nur für i = j ergibt sich ein Wert ungleich null. Die Approximation einer Messkennlinie mit den Funktionen aus 2.18) entspricht gerade der Fourier-Reihe bei periodischen Funktionen Approximation mit Walsh-Funktionen Ein Nachteil der Verwendung der Fourier-Reihe ist die notwendige Rechnung mit komplexen Exponentialfunktionen. Geradezu ideal für die Implementierung im Rechner ist hingegen das orthonormale System der Walsh-Funktionen wali, u) geeignet. Sie sind im Intervall [0; 1] definiert und nehmen lediglich die Funktionswerte +1 und 1 an.

8 30 2. Kurvenanpassung ~ Abbildung 2.3. Veranschaulichung der Orthogonalität der Fourier-Funktionen. Abbildung 2.4 zeigt einige Funktionen dieses Funktionensystems. Von ihrer Orthogonalität überzeugt man sich leicht durch Summenbildung über äquidistant verteilte Stützstellen. Die Berechnung der Koeffizienten a j nach 2.14) reduziert sich bei diesem Basissystem auf eine einfache Summe über die Funktionswerte y i. Für das Rechnen mit Walsh-Funktionen und die Erzeugung beliebiger Basisfunktionen wali, u) sei auf die entsprechende Fachliteratur verwiesen [2]. An dieser Stelle soll noch auf eine Eigenschaft hingewiesen werden. Wie man aus Abb. 2.4 erkennt, sind die i Nulldurchgänge der Walsh-Funktionen nicht gleichmäßig über das Intervall verteilt. Um dennoch einen Frequenzbegriff wie bei Sinus- und Cosinusfunktionen zu erhalten, kann man die Häufigkeit der Null- Abbildung 2.4. Walsh-Funktionen.

9 2.1 Approximation 31 durchgänge im Intervall heranziehen. Damit gelangt man zur verallgemeinerten Frequenz, die in Kap. 8 eingeführt wird Least-Squares-Schätzer In vielen Anwendungen ist eine Approximation mit nicht orthogonalen Basisfunktionen ϕ i u) gewünscht. Zur Minimierung der quadratischen Summe der Approximationsfehler 2.3) kann der Least-Squares-Schätzer kurz: LS-Schätzer) herangezogen werden. Die Summe der Approximationsfehlerquadrate lautet in Vektorschreibweise Q = y k ŷ k ) 2 =y ŷ) T y ŷ). 2.22) Es wird folgender Approximationsansatz für n Messpunkte verwendet: ŷ 0 ϕ 0 u 0 ) ϕ u 0 ) a 0 ŷ =.. = = Φa. 2.23) ϕ 0 u ) ϕ u ) ŷ Einsetzen von 2.23) in 2.22) ergibt a Q =y Φa) T y Φa)=y T y 2a T Φ T y + a T Φ T Φa. 2.24) Zur Bestimmung von a wird das Gütemaß Q minimiert: dq da = 2ΦT y +2Φ T Φa= 0, 2.25) woraus für den Parametervektor a =Φ T Φ) 1 Φ T y 2.26) resultiert. Der gesuchte Parametervektor a berechnet sich somit aus dem Produkt der nach E. H. Moore und R. Penrose benannten Pseudoinversen Φ T Φ) 1 Φ T von Φ und dem Messpunktevektor y. Der LS-Schätzer ist von großer praktischer Bedeutung. Er wird oft benutzt, um aus stark verrauschten Messungen Kennlinienfunktionen zu bestimmen, was auch als Regressionsanalyse bezeichnet wird Abschn ). Der LS-Schätzer kann damit einerseits als ein Optimalfilter angesehen werden Abschn. 6.7), welches Vorwissen über die herauszufilternde Funktion explizit einbezieht z. B. dass sie als Polynom 2. Grades darstellbar ist. Dieses Vorwissen bezeichnet man als Signalmodell und bestimmt den Aufbau der Matrix Φ bzw. die Wahl der Basisfunktionen ϕ i u).

10 32 2. Kurvenanpassung Andererseits wird ein funktionaler Zusammenhang zwischen Abszissen- und Ordinatenvariablen hergestellt. Damit ist das Verfahren auch zur Extrapolation geeignet, etwa um zukünftige Funktionswerte eines Zeitsignals zu vorhersagen [3]. Eine Anwendung hierzu findet der LS-Schätzer in der statistischen Prozessüberwachung, die in Abschn behandelt wird. Ein weiteres Anwendungsgebiet des LS-Schätzers ist die Parameterschätzung Abschn ) Regressionsanalyse In der Statistik dient die Regressionsanalyse allgemein dazu, einen funktionalen Zusammenhang zwischen Variablen herzustellen. Praktisch werden hierfür häufig Polynome zusammen mit der in Abschn behandelten Methode der kleinsten Quadrate verwendet, aber es können genauso auch andere Modelle und Optimierungsziele zum Einsatz kommen. Im Folgenden wird nur auf den Sonderfall der linearen Regression eingegangen. Eine in der Praxis häufig auftretende Aufgabe ist die Suche nach einer Geraden durch eine Menge von Messpunkten Abb. 2.5). Die Gerade habe die Form ŷu) =a 1 u + a ) Die unbekannten Parameter a 1 und a 0 werden durch Minimierung der Fehlerquadrate gemäß 2.3) bestimmt. Mit der Gütefunktion Q = y k a 1 u k a 0 ) ) Abbildung 2.5. Lineare Regression.

11

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 5: Skalarprodukt 5.1 Inhalte Didaktik der Linearen

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Ein Beispiel für eine lineare Abbildung

Ein Beispiel für eine lineare Abbildung Inhaltsverzeichnis Ein Beispiel für eine lineare Abbildung Lothar Melching Vorbemerkungen 2 Ein Beispiel 2 2 Definition der Abbildung f 2 22 Die Abbildungsmatrix 3 23 Anwendung 3 Eigenwerte 3 Die neue

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Überbestimmte lineare Gleichungssysteme

Überbestimmte lineare Gleichungssysteme Überbestimmte lineare Gleichungssysteme Fakultät Grundlagen September 2009 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme Übersicht 1 2 Fakultät Grundlagen Überbestimmte lineare Gleichungssysteme

Mehr

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler 1 Messfehler Jede Messung ist ungenau, hat einen Fehler. Wenn Sie zum Beispiel die Schwingungsdauer eines Pendels messen, werden Sie - trotz gleicher experimenteller Anordnungen - unterschiedliche Messwerte

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

3 Interpolation und Approximation

3 Interpolation und Approximation In dem ersten großen Kapitel beschäftigen wir uns mit der Frage, wie eine Reihe von Daten (z.b. aus physikalischen Messungen, experimentelle Beobachtungen, Börse, etc.) durch eine möglichst einfache Funktion

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften y t Modul 4 Fourier-Entwicklung. Vektorraum Hans Walser: Modul 4, Fourier-Entwicklung. Vektorraum ii Modul 4 für die Lehrveranstaltung Mathematik für Naturwissenschaften

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt.

Approximation. E(N) N. Beachte: Der Wert für N = 32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt. Approximation Ziel: Approximation der Funktion f(x) = x mit Polynomen (global und stückweise) Experiment: Abhängigkeit des Approximationsfehlers E(N) (in der Maximumnorm) von der Anzahl der Freiheitsgrade

Mehr

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67 Kapitel 2.1: Die stochastische Sicht auf Signale 215 Georg Dorffner 67 Stochastische Prozesse Stochastische Prozesse sind von Zufall geprägte Zeitreihen x n f x, n 1 xn2,... n vorhersagbarer Teil, Signal

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr.

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Interpolation Nadine Losert Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Nachdem wir in den vorherigen Vorträgen verschiedene

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Vektoren - Basiswechsel

Vektoren - Basiswechsel Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Statistische Methoden in der Wirtschaftsund Sozialgeographie

Statistische Methoden in der Wirtschaftsund Sozialgeographie Statistische Methoden in der Wirtschaftsund Sozialgeographie Ort: Zeit: Multimediapool Rechenzentrum Mittwoch 10.15-11-45 Uhr Material: http://www.geomodellierung.de Thema: Beschreibung und Analyse Wirtschafts-

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

4) Lösen linearer Gleichungssysteme mit zwei oder drei Unbekannten

4) Lösen linearer Gleichungssysteme mit zwei oder drei Unbekannten 1) Wechsel der Darstellung Taschenrechner CASIO fx-991 ES Denn es ist eines ausgezeichneten Mannes nicht würdig, wertvolle Stunden wie ein Sklave im Keller der einfachen Berechnungen zu verbringen. Gottfried

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Skalarprodukt und Orthogonalität

Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität in R n Wir erinnern an das euklidische Skalarprodukt im R 2 : Wir erinnern an das euklidische Skalarprodukt im R 2 : < a, b >:= α 1 β 1

Mehr

4. Übung für Übungsgruppen Musterlösung

4. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, FB Informatik der Universität Hamburg). Übung für Übungsgruppen Musterlösung (N. Stein, Institut für Angewandte Physik,

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Übungsaufgaben Vektoren

Übungsaufgaben Vektoren Kallenrode, www.sotere.uos.de Übungsaufgaben Vektoren 1. Gegeben sind die Einheitsvektoren in Zylinderkoordinaten e ϱ = cos ϕ sin ϕ, e ϕ = sin ϕ cos ϕ und e z = 0 0 0 0 1 und Kugelkoordinaten: sin ϑ cos

Mehr

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen

Kapitel 4. Interpolation. 4.1 Allgemeines Normen von Funktionen Kapitel 4 Interpolation 4 Allgemeines Nähere Funktion/Daten durch einfache Funktionen (eg Polynome) an Brauchbar für: - Integration - Differentiation [zb f(x) sei durch Polynom p(x) approximiert, F(x)

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates: Hans Walser, [06045] Pythagoras-Schmetterling Das Phänomen Wir beginnen mit einem beliebigen rechtwinkligen Dreieck und zeichnen die übliche Pythagoras-Figur. Dann fügen wir zwei weitere Quadrate an (rot

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion

Mehr

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix.

Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix. LINEARE ALGEBRA Lösbarkeit von linearen Gleichungssystemen Themenheft mit viel Trainingsmaterial (Siehe Vorwort!) Unabhänge Vektoren und Erzeugung von Vektoren Gauß-Algorithmus Rang einer Matrix Gleichungssysteme

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

4.5 Schranken an die Dichte von Kugelpackungen

4.5 Schranken an die Dichte von Kugelpackungen Gitter und Codes c Rudolf Scharlau 19. Juli 2009 341 4.5 Schranken an die Dichte von Kugelpackungen Schon in Abschnitt 1.4 hatten wir die Dichte einer Kugelpackung, speziell eines Gitters bzw. einer quadratischen

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

Numerische Integration und Differentiation

Numerische Integration und Differentiation Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische

Mehr

Komplexe Zahlen. Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge:

Komplexe Zahlen. Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge: Komplexe Zahlen Die bildliche Vorstellung einer komplexen Zahl z = (a, b) stellt ein Punkt in der Bildebene dar. Die Elemente der Menge: R = R R = {(a, b) a, b R} heißen komplexe Zahlen wenn für die Verknüpfung

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren

Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren Wiederholung Winkel Das entscheidende Mittel zur Bestimmung von Winkeln ist das Skalarprodukt. Das Skalarprodukt lässt sich nämlich sehr komfortabel koordinatenweise berechnen, zugleich hängt es aber mit

Mehr

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1 Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die

Mehr

Bestimmung des Frequenz- und Phasenganges eines Hochpaßfilters 1. und 2. Ordnung sowie Messen der Grenzfrequenz. Verhalten als Differenzierglied.

Bestimmung des Frequenz- und Phasenganges eines Hochpaßfilters 1. und 2. Ordnung sowie Messen der Grenzfrequenz. Verhalten als Differenzierglied. 5. Versuch Aktive HochpaßiIter. und. Ordnung (Durchührung Seite I-7 ) ) Filter. Ordnung Bestimmung des Frequenz- und Phasenganges eines Hochpaßilters. und. Ordnung sowie Messen der Grenzrequenz. Verhalten

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

1.2 Das kartesische Koordinatensystem

1.2 Das kartesische Koordinatensystem Kapitel 1 Vektoralgebra 1.1 Einführung Am ersten Kapitel widmen wir uns den Grundlagen der Vektoralgebra, wobei wir speziell auf die Definitionen von Skalaren und Vektoren eingehen und Produkte zwischen

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Lineare Näherung. Anwendungen

Lineare Näherung. Anwendungen Lineare Näherung. Anwendungen Jörn Loviscach Versionsstand: 1. Januar 2010, 17:15 1 Lineare Näherung Ist eine Funktion f an der Stelle x 0 differenzierbar, existiert dort ihre Ableitung f und es gilt:

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr