116 KAPITEL 15. INTEGRALSÄTZE

Größe: px
Ab Seite anzeigen:

Download "116 KAPITEL 15. INTEGRALSÄTZE"

Transkript

1 116 APITEL 15. INTEGRALSÄTZE Aufgabe (Verschwinden des Integrales über eine partielle Ableitung) Es sei U R n offen, ϕ C 0 (U; R). Dann ist für j = 1,..., n U ϕ x j dλ n = 0. Wir erinnern an die Definition eines Vektorfeldes (Analysis II Definition ) und an den Begriff der Lebesgue-Zahl (Analysis I Beweis zu Satz ). Definition (Divergenz) Ist U R n offen und v : U R n ein C 1 -Vektorfeld, so bezeichnen wir div v(x) = als Divergenz des Vektorfeldes v. n i=1 v i (x) x i Satz (C -Teilung der Eins) Es sei R n kompakt, U j R n, j J eine offene Überdeckung von, dann gibt es eine der Überdeckung U j subordinierte C -Teilung der Eins. Beweis. Sei ε > 0 Lebesgue-Zahl der Überdeckung U j, j J (vgl. Beweis zu Satz ). Betrachte die Überdeckung mit den Trägern der Funktionen σ b, ε, 2 n b ε 2n Z n. (Nehme nur solche, die auch schneiden.) Dies ergibt eine abzählbare, der vorgegebenen Überdeckung subordinierte Überdeckung (Subordination kommt von der onstruktion mittels der Lebesgue-Zahl). Auf ergeben die Funktionen σ b, ε eine Teilung der Eins. 2 n Satz (Gauß 1 ) Es sei R n ein ompaktum mit glattem Rand, v : R n das äußere Einheitsnormalenfeld und U sei offen, F : U R n sei ein C 1 -Vektorfeld. Dann gilt div F(x) dλ n = F(x), v(x) ds. 1 Carl Friedrich Gauß ( ) war einer der bedeutendsten, vielleicht der bedeutendste Mathematiker der Geschichte. Seine frühe mathematische Begabung ist legendär. Es bewies nicht nur den Fundamentalsatz der Algebra und entdeckte vieles in der Geometrie.

2 15.1. SATZ VON GAUSS 117 Abbildung 15.2: Der Zehnmarkschein Beweis. Wir konstruieren zunächst eine Überdeckung von mit offenen Mengen, die folgende Eigenschaft besitzt: Jedes Element U dieser Überdeckung ist entweder in \ oder U kann als Produkt V (a, b) mit V R n 1 geschrieben werden und U ist Graph einer Abbildung g : V R. Die onstruktion einer solchen Überdeckung kann wie folgt angegeben werden: Zu jedem Punkt x gibt es eine Umgebung U, die als Produkt in der angegebenen Weise geschrieben werden kann. Daraus entsteht eine Überdeckung von. Da kompakt ist, gibt es eine endliche Teilüberdeckung U 1,..., U j mit den angegebenen Eigenschaften. Dann ist 1 = \ ( j i=1u i ) kompakt, es gibt eine offene Überdeckung von 1 mit offenen Mengen, die nicht schneiden (man nehme eine Überdeckung mit B ε -ugeln und ε < dist( 1, )). Sei U = U j, j J eine offene solche Überdeckung von. Sei {ϕ k } k N eine dieser Überdeckung subordinierte C -Teilung der Eins. Dann ist div F(x) dλ n = div ϕ j (x)f(x) dλ n = div(ϕ j (x)f(x)) dλ n. Ganz entsprechend erhalten wir für die rechte Seite F(x), v(x) ds = ϕ j (x)f(x), v(x) ds. Damit reicht es die entsprechende Gleichheit für festes j zu beweisen. Ist supp ϕ j in einem Element der Überdeckung enthalten, die schneidet, folgt die Behauptung, indem wir Satz auf die einzelnen omponenten von F anwenden und addieren. Ist supp ϕ j einem U mit U =, so verschwindet das entsprechende Integral auf der rechten Seite. Die linke Seite ist das Integral über (eine Summe von) Ableitungen von Funktionen mit kompakten Träger. Als solches ergibt es den Wert 0, vergleiche Aufgabe Sein Werk ist die Grundlage der Theorie der Modulformen, die Landvermessung wurde von ihm entscheidend geprägt und in der Physik ist ein Maß des Magnetismus nach ihm benannt. Sein bedeutendes wissenschaftliches Werk wurde durch den Zehnmarkschein geehrt.

3 118 APITEL 15. INTEGRALSÄTZE Beispiel (Anwendungen in der Physik) Der Satz von Gauß hat wichtige Anwendungen in der Physik: 1. Strömungen Hat man eine Strömung aus durch eine geschlossene Fläche, so muss darin die Quellstärke der Strömung durch die Fläche entsprechen. 2. Elektrodynamik Das elektrische Feld genügt der Maxwell-Gleichung 2 div E = ρ, wobei E für das elektrische Feld, ρ für die Ladungsdichte steht. Der Gaußsche Integralsatz besagt nun, dass ρ dλ = E(x), ν(x) ds ist, also die Ladungsdichte integriert über das Innere ergibt den Fluss durch die Oberfläche. 3. Magnetismus Das magnetische Feld ist quellenfrei (Elementarmagneten haben immer sowohl Nord- wie auch Südpol), dies wurde durch Maxwell so formuliert: div B = 0, wobei B hier für das magnetische Feld steht Pfaffsche Formen Im Folgenden sei M R n eine k-dimensionale Untermannigfaltigkeit des R n der lasse C l und W eine offene Teilmenge von M (insbesondere ist zugelassen, dass k = n, M R k offen und W R n offen ist). Für x W sei T x M der Tangentialraum an M, wie er in Definition definiert wurde. Definition (otangentialraum) Der duale Vektorraum (T x M) heißt otangentialraum. Wir schreiben dafür auch T xm. Die Elemente eines otangentialraumes T x(m) nennen wir otangentialvektoren. 2 James Clark Maxwell ( ) war ein bedeutender britischer Physiker. Nach ihm benannt sind die Grundgleichungen der Elektrodynamik, die das Verhalten elektrischer und magnetischer Felder, beschreiben.

4 15.2. PFAFFSCHE FORMEN 119 Definition (Pfaffsche Form) Es sei W M offen. Eine Abbildung ω : W x W T xm, welches jedem x einen otangentialvektor zuordnet mit ω(x) T xm, heißt Pfaffsche Form 3. Definition (stetig differenzierbar) Eine Funktion f : M R heißt stetig differenzierbar im Punkt x M, wenn es eine Umgebung W M von x gibt, so dass für jede arte (U, ψ U ) mit x ψ U (U) gilt: f ψ U : ψu 1 (W ) U R ist stetig differenzierbar. Lemma (artenunabhängigkeit) Die Bedingung aus der letzten Definition ist genau dann für jede arte erfüllt, wenn sie für eine arte (die den Punkt x enthält) gilt. Beweis. Sind (U, ψ U ), (V, ψ V ) zwei arten, deren artengebiete den Punkt x enthalten. Dann ist ψu 1 (W ) U und ψ 1 (W ) V und f ψ V ψ 1 V (W ) V = f ψ U ψ UV ψ 1 V (W ) V. Ist f ψ U differenzierbar (auf der entsprechenden Menge), so folgt es jetzt sofort für die Einschränkung von f ψ V auf ψv 1 (W ) V. Lemma (Pfaffsche Formen als Differential differenzierbarer Abbildungen) 1. Sei f : W R stetig differenzierbar, v T x0 M für ein x 0 W und γ 1,2 : ( ε, ε) W seien stetig differenzierbare urven mit γ i (0) = x 0 und γ i(0) = v für i = 1, 2. Dann ist stetig differenzierbar und es gilt f γ i : ( ε, ε) R (f γ 1 ) (0) = (f γ 2 ) (0). 3 Johann Friedrich Pfaff ( ) arbeitete vorwiegend über partielle Differentialgleichungen. In diesem ontext führte er auch die nach ihm benannten Differentialformen ein. Diese wurden später intensiv untersucht und spielen bis heute eine wichtige Rolle.

5 120 APITEL 15. INTEGRALSÄTZE 2. Seien x W und v T x M und γ x,v : ( ε, ε) M eine urve mit γ x,v (0) = x und γ x,v(0) = v, so definiert eine Pfaffsche Form. df : W x W df(x)(v) = (f γ) (0) T xm : x df(x) Beweis. 1. Als erstes zeigen wir die stetige Differenzierbarkeit der angegebenen Abbildungen. Sei zunächst γ = γ 1 oder γ = γ 2. Dazu sei x 0 Z R n eine offene Umgebung von x 0 und F : Z R n eine geradebiegender Diffeomorphismus mit F (x 0 ) = 0 und F (Z M) R k. OBdA ist W Z, ansonsten müssen die Umgebung W und die Zahl ε > 0 entsprechend verkleinert werden. Dann sind die ersten k omponenten von F, also mit einer Projektion Π : R n R k die Abbildung g = Π F, ein Homöomorphismus auf einer Umgebung Y M und ψ U : g(y ) W : ψ U = g 1 ist eine arte von M am Punkt x 0. Dann ist für j = 1, 2 f γ j = (f ψ U ) (ψ 1 U γ j ) stetig differenzierbar, denn die beiden Abbildungen f ψ U und ψu 1 γ sind beide stetig differenzierbar. Dann sind auch jeweils f F 1 und F γ stetig differenzierbar. Dann ist (f γ) (0) = D(f F 1 )(0)DF (x 0 )γ (0) = D(f F 1 )(0)DF (x 0 )v. Das Ergebnis ist daher für beide urven gleich. 2. Zu zeigen ist: Für jedes x W ist df(x) : T x M R eine lineare Abbildung. Seien dazu v 1, v 2 T x M und α 1,2 R. Wir betrachten urven γ i (t), i = 1, 2 auf M durch x mit γ i(0) = v i. Setze γ(t) = F 1 (α 1 F γ 1 (t) + α 2 F γ 2 (t)).

6 15.2. PFAFFSCHE FORMEN 121 Beachte F γ i (0) = 0 und daher kann man durch Verkleinern von ε erreichen, dass α 1 F γ 1 (t) + α 2 F γ 2 (t) für t ( ε, ε) in F (Z). γ ist differenzierbar und die Ableitung ist durch γ (0) = DF 1 (0)(α 1 DF (x)v 1 + α 2 DF (x)v 2 ) = α 1 v 1 + α 2 v 2 gegeben. Dann ist nach Definition von df(x) mit w = α 1 v 1 + α 2 v 2 df(x)(w) = (f γ) (0) = (f F 1 F γ) (0) = D(f F 1 )(0)(DF (x) γ (0)) = D(f F 1 )(0)(DF (x)(w)) = α 1 D(f F 1 )(0)DF (x)v 1 + α 2 D(f F 1 )(0)DF (x)v 2 = α 1 df(x)v 1 + α 2 df(x)v 2. Dies zeigt die Linearität von df(x). Definition (Totales Differential) df wird als totales Differential von f bezeichnet. Wir kommen nun dazu die Differentiale lokaler oordinaten zu betrachten. Dazu sei x 0 M ein Punkt auf einer Untermannigfaltigkeit des R n und (U, ψ U ) eine arte mit 0 U ψ(0) = x 0 im artengebiet dieser arte. Wir bezeichnen für 1 i k die Funktionen als oordinatenfunktionen im R k. k y i : R k R : y = y j e j y i Definition (lokale oordinatenfunktionen) Durch x i = y i ψ 1 U definieren wir lokale oordinatenfunktionen auf M im Punkt x 0. oordinatenfunktionen hängen von der Wahl der arte ab, beim Übergang von einer arte zu einer anderen werden sie entsprechend transformiert. oordinatenfunktionen erlauben uns die Pfaffschen Formen auf artengebieten auf einfachere Weise darzustellen.

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

1 Formen und äußeres Differential

1 Formen und äußeres Differential 1 Formen und äußeres Differential Wir betrachten den n-dimensionalen reellen Raum R n = { x = x 1,...,x n ) : x i R für i = 1,...,n }. Definition 1.1 Ein Tangentialvektor an R n im Punkt x R n ist ein

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Analysis II (FS 2015): Vektorfelder und Flüsse

Analysis II (FS 2015): Vektorfelder und Flüsse Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß:

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß: Universität Regensburg Sommersemester 013 Daniel Heiß: 9: Metrische äußere Maße II I Das mehrdimensionale Lebesguemaß 1.1 Definition (i) Für reelle Zahlen a b, c d ist ein Rechteck im R die Menge R = a,

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 15 Flüsse Bisher wurde im wesentlichen die Abhängigkeit der Lösungen autonomer Systeme von der Zeit bei festem Anfangswert untersucht. Nun wird

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

3 Vektorbündel und das Tangentialbündel

3 Vektorbündel und das Tangentialbündel $Id: vektor.tex,v 1.6 2014/06/30 10:20:57 hk Ex $ $Id: fluss.tex,v 1.2 2014/06/30 12:36:06 hk Ex hk $ 3 Vektorbündel und das Tangentialbündel 3.4 Ableitungen von C q -Funktionen In der letzten Sitzung

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Ljapunov Exponenten. Reiner Lauterbach

Ljapunov Exponenten. Reiner Lauterbach Ljapunov Exponenten Reiner Lauterbach 28. Februar 2003 2 Zusammenfassung n diesem Teil betrachten wir ein wichtiges Thema: sensitive Abhängigkeit. Zunächst hat man ja stetige Abhängigkeit, wie man sie

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

detdϕ(x,y) = 1 für alle (x,y) Ω.

detdϕ(x,y) = 1 für alle (x,y) Ω. 3. TANGENTIALBÜNDEL 7 3. Tangentialbündel 3.1. Tangentialräume der Untermannigfaltigkeit im R n. In dieser Abschnitt wiederholen wir die Untermannigfaltigkeit im R n und ihre Tangentialräume aus Analysis

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter

Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter 25.06.2008 Inhaltsangabe Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma Die p-form Sei P ein Punkt in E n. Der n-dimensionale lineare Raum L = L p wird dann gebildet von n a i

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Maße auf Produkträumen

Maße auf Produkträumen Maße auf Produkträumen Es seien (, Ω 1 ) und (X 2, Ω 2 ) zwei Meßräume. Wir wollen uns zuerst überlegen, wie wir ausgehend davon eine geeignete σ-algebra auf X 2 definieren können. Wir betrachten die Menge

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

IE3. Modul Elektrizitätslehre. Induktion

IE3. Modul Elektrizitätslehre. Induktion IE3 Modul Elektrizitätslehre Induktion In diesem Experiment wird das Phänomen der Induktion untersucht. Bei der Induktion handelt es sich um einen der faszinierendsten Effekte der Elektrizitätslehre. Die

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

2 Allgemeine Integrationstheorie

2 Allgemeine Integrationstheorie 2 Allgemeine Integrationstheorie In diesem Abschnitt ist (,S,µ) ein Maßraum, und wir betrachten R immer mit der σ Algebra B(R). Ziel ist es, messbare Funktionen f : R zu integrieren. Das Maß µ wird uns

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Mathematik III. Vorlesung 76. Das Konzept einer Mannigfaltigkeit

Mathematik III. Vorlesung 76. Das Konzept einer Mannigfaltigkeit Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 76 Das Konzept einer Mannigfaltigkeit In der zweiten Hälfte dieses Kurses werden wir den Begriff der Mannigfaltigkeit entwickeln. Als

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die

ALGEBRAISCHE VARIETÄTEN. gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten: (1) Die ALGEBRAISCHE VARIETÄTEN MARCO WEHNER UND MAXIMILIAN KREMER 1. Strukturgarben Sei V k n. Wir wollen nur gute Funktionen auf den offenen Mengen von V definieren. Dabei orientieren wir uns an folgenden Gegebenheiten:

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

den Satz von Poincaré-Bendixson.

den Satz von Poincaré-Bendixson. Seminar zu Geometrie der Gewöhnlichen Differentialgleichungen Der Satz von Poincaré-Bendixson bearbeitet von Rodrigo Menendez Zusammenfassung Fragen des Langzeitverhaltens und der Stabilität spielen in

Mehr

Einführung in die höhere Mathematik 2

Einführung in die höhere Mathematik 2 Herbert Dallmann und Karl-Heinz Elster Einführung in die höhere Mathematik 2 Lehrbuch für Naturwissenschaftler und Ingenieure ab 1. Semester Mit 153 Bildern Friedr. Vieweg & Sohn Braunschweig /Wiesbaden

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016 Kausalität Seminar zur Lorentz Geometrie Jonas Haferkamp 9. Juni 2016 1 Einleitung Kausalität ist das Prinzip von Ursache und Wirkung. Um dieses Konzept zu formalisieren, ist offenbar ein sinnvoller Zeitbegriff

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

Höhere Mathematik für Ingenieure

Höhere Mathematik für Ingenieure Burg/Haf/Wille Höhere Mathematik für Ingenieure Band IV Vektoranalysis und Funktionentheorie Von Prof. Dr. rer. nat. Herbert Haf und Prof. Dr. rer. nat. Friedrich Wille Universität Kassel, Gesamthochschule

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Faltung und Approximation von Funktionen

Faltung und Approximation von Funktionen Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a),

Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung. f (x) dx = F (b) F (a), Kapitel Integralsätze.1 Einleitung und Übersicht Das entscheidende Ergebnis der Analysis einer rellen Variablen ist der Hauptsatz der Differential- und Integralrechnung b a f (x) (b) (a), der es erlaubt,

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Maß- und Integrationstheorie

Maß- und Integrationstheorie Maß- und Integrationstheorie Manuskript zur Vorlesung in SS26 Bálint Farkas farkas@mathematik.tu-darmstadt.de Inhaltsverzeichnis Einführung...................................................................

Mehr

Mathematik II. Vorlesung 49. Der Banachsche Fixpunktsatz

Mathematik II. Vorlesung 49. Der Banachsche Fixpunktsatz Prof. Dr. H. Brenner Osnabrück SS 2010 Mathematik II Vorlesung 49 Der Banachsche Fixpunktsatz Satz 49.1. Es sei M ein nicht-leerer vollständiger metrischer Raum und f :M M eine stark kontrahierende Abbildung.

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

8 Oberflächenintegrale

8 Oberflächenintegrale Mathematik für Physiker III, WS 22/23 reitag 8. $Id: flaechen.tex,v.6 23//8 6:4:9 hk Exp $ $Id: rot.tex,v.3 23//8 7:4:9 hk Exp hk $ 8 Oberflächenintegrale 8.2 lächenintegrale erster rt In der letzten Sitzung

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ).

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ). 1) a) Wir wollen zeigen, dass {ϕ k (t)ψ j (s)} j,k N0 eine Orthonormalbasis ist. Beachte dabei zunächst, dass (t, s) ϕ k (t)ψ j (s) für alle j, k N 0 messbare Abbildungen auf Ω 1 Ω 2 sind und da Ω 1 ϕ

Mehr

Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. = 1 n, (1 Punkt ) x 2. x 1 = 1. x n + (1 Punkt )

Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. = 1 n, (1 Punkt ) x 2. x 1 = 1. x n + (1 Punkt ) Aufgabe (glm. Konvergenz) (6+6 Punkte) Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. a) g n : R R, mit g n (x) = x + n (6 Punkte) b) f n : R R, mit f n (x) = arctan(nx)

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Analysis III. Vorlesung 87. Mannigfaltigkeiten mit Rand

Analysis III. Vorlesung 87. Mannigfaltigkeiten mit Rand Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Analysis III Vorlesung 87 Mannigfaltigkeiten mit Rand Eine zweidimensionale Mannigfaltigkeit mit Rand. Der Rand besteht aus den vier geschlossenen Bögen. Definition

Mehr

Zusammenfassung der Lebesgue-Integrationstheorie

Zusammenfassung der Lebesgue-Integrationstheorie Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,

Mehr