Gestaltungselemente zur Binnendifferenzierung im Mathematikunterricht

Ähnliche Dokumente
Mathematische Kompetenzen entwickeln in heterogenen Lerngruppen

Lerntypen. Prof. Dr. Regina Bruder FB Mathematik Technische Universität Darmstadt , MUED-Tagung in Fuldatal

Elemente eines Unterrichtskonzeptes zur Binnendifferenzierung in der SII/FOS

Struktur einer Blütenaufgabe

Wege zu einem langfristigen Kompetenzaufbau im Mathematikunterricht

Mathematisch Argumentieren, Modellieren und Probleme lösen lernen - aber wie?

Methodenvielfalt im Mathematikunterricht. Anleitung zum eigenverantwortlichen Lernen

Minimalziele Mathematik

Hausaufgabenkonzept. Prof. Dr. Regina Bruder. Technische Universität Darmstadt FB Mathematik

Neue Wege Klasse 5 Schulcurriculum EGW Inhalt Neue Wege 5

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden

Wie kann man Mathematik nachhaltig lernen?

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

Schulinterner Lehrplan Mathematik G8 Klasse 5

Lernbereiche (Stunden) Inhalt Seite Inhalt Seite. Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen. Kapitel 1: Gebrochene Zahlen

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Binnendifferenzierung im Mathematikunterricht

Zaubern im Mathematikunterricht

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5

Geometrie in der Grundschule. Ein erster Überblick

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Die 11 Eigenschaften der Standardvierecke

Geometrie - Hausaufgaben Kim Wendel / Linda Adebayo

DatenundZufall Beitrag12 Zahlenbingo 1 von 20. Zahlenbingo spielerisch den Wahrscheinlichkeitsbegriff entdecken

Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Schulinternes Curriculum Mathematik Sekundarstufe I (Kl. 5 & 6) Stand: Oktober 2012

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Jahresplanung 2.Klasse 100% Mathematik

Gymnasium OHZ Schul-KC Mathematik Jahrgang 5 eingeführtes Schulbuch: Lambacher Schweizer 5

Schulinternes Curriculum Mathematik 5 / 6

GW Mathematik 5. Klasse

Schulinterner Lehrplan Mathematik Klasse 8

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6

Mathematik - Jahrgangsstufe 5

Themenkreise der Klasse 5

Leistungsbeurteilung mit der 4.0 Skala Mathematik 7. Schulstufe

Mathematik - Klasse 6 -

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Inhaltsübersicht Fach: Mathematik FachkollegInnen scj, krö, sja, nah,erf, sik Jahrgang: 5 Schuljahr: 2016/2017 Halbjahr: 1/2

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kinder experimentieren: Licht und Optik

Neue Wege Klasse 6 Schulcurriculum EGW

MATHEMATIK - LEHRPLAN UNTERSTUFE

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK

Brüche addieren und subtrahieren

Regelmäßige Kurzwiederholungen in der Hauptschule

Eignungstest Mathematik

Inhaltsbezogene Kompetenzen

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

Kürzen und Erweitern Die drei Gesichter einer Vergröbern bzw. Verfeinern der Einteilung nutzen

Curriculum Mathematik. Bereich Schulabschluss

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 6

Mathematik. Lehrplan für die Primarschule. Kanton Freiburg

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)

Die Welt der Winkel Eine Anleitung zur Arbeit. Seite 1. Eine Anleitung zur Arbeit

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Erprobungsarbeit Mathematik

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

WÖCHENTLICHE ÜBUNGEN RAHMENBEDINGUNGEN UND ZIELVORSTELLUNGEN: THEMENBEREICHE 7-10:

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 8

Unterrichtseinheit Natürliche Zahlen I

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

Arbeitsplan Mathe 4. Schuljahr 4.Schuljahr Woche Bereich/ Schwerpunkt Lernvoraussetzungen erfassen Wiederholung des in Klasse 3 Gelernten

Schulinternes Curriculum Mathematik 6

1. Schularbeit R

Kompetenzorientiertes Lernen in heterogenen Lerngruppen

2. Strahlensätze Die Strahlensatzfiguren

Aufgaben zur Übung der Anwendung von GeoGebra

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Langfristiger Kompetenzaufbau im mathematischen Argumentieren in den Sekundarstufen ganz konkret

Stoffverteilungsplan. Von den Rahmenvorgaben des Kerncurriculums zum Schulcurriculum für das 6. Schuljahr

Ute May Lern- und Übungsheft Mathematik 4. Klasse als Vorbereitung für den Schulübertritt

Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe

SRB- Schulinterner Lehrplan Mathematik Klasse 5

Mathematik 6. Thema, Inhalt, Leitidee und allgemeine mathematische Kompetenzen. inhaltsbezogene Kompetenzen. Die SuS. 1.

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von der Raupe zum Schmetterling - Kinder entdecken Naturphänomene

Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat

Kapitel D : Flächen- und Volumenberechnungen

- 1 - Einführung und Übungen der neuen Inhalte Terme und Gleichungen erfolgen in gewohnter

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Intelligentes Üben im kompetenzorientierten Mathematikunterricht der Mittelschule 26. Schwäbischer Lehrertag

THÜRINGER KULTUSMINISTERIUM

Curriculum Mathematik

Stoffverteilungsplan Mathematik 6 auf der Grundlage der Kerncurricula 2005 Schnittpunkt 6 Klettbuch KGS Schneverdingen

Leitidee Messen geeignete Größeneinheiten auswählen und mit ihnen rechnen

Tag der Mathematik 2007

Kompetenzen. Mit dem Zinsfaktor rechnen. Vernetzen: Aktien Lernkontrolle. Schülerinnen und Schüler beschreiben geometrische Sachverhalte

2.5. Aufgaben zu Dreieckskonstruktionen

Pränumerischer Bereich. Umgang mit Zahlen und Mengen Zahlenraum bis 20. Körperschema

Transkript:

Gestaltungselemente zur Binnendifferenzierung im Mathematikunterricht Frankfurt, 24.1.2011 Prof. Dr. Regina Bruder FB Mathematik TU Darmstadt

Hintergrund Mathematische Binnendifferenzierende Kompetenzentwicklung (2008-2012) Nachfolgeprojekt des Niedersächsischen CAS-Projektes CAliMERO 2005-2010 Wie kann man auch mit heterogenen Lernvoraussetzungen im MU so umgehen, dass möglichst viele Schülerinnen und Schüler einer Klasse kognitiv wie motivational angesprochen werden und Lernfortschritte für alle erreicht werden? Vgl. die Zielstellung der Expertise Steigerung der Effizienz des mathematischnaturwissenschaftlichenunterrichts 1997 für Modul 4 unter: http://www.ipn.unikiel.de/projekte/blk_prog/gutacht/gut9.htm

Gliederung 1. Welche Unterschiede der Lernenden sind für eine kompetenzorientierte Unterrichtsplanung und gestaltung von Bedeutung? 2. Binnendifferenzierende Elemente für den Mathematikunterricht

Leistungsschwache Schüler/innen in Mathematik sind dankbar für individuelle, gesonderte Erklärungen können den Anwendungsbezug der Mathematik schwerer erkennen geringes Kompetenzerleben (Rheinberg) führt zu Motivationsproblemen und damit geringerer Anstrengungsbereitschaft sehen Mathematik als weniger bedeutungsvoll für ihre Zukunft an...

Probleme leistungsstarker Schüler/innen im MU Probleme von Begabtenerkennung und förderung besondere Leistungen in Mathematik finden weniger Anerkennung als in anderen Bereichen, begünstigen u.u. eine Außenseiterrolle Sport: Jeder akzeptiert, dass manche eben weiter springen können als andere... geringe Akzeptanz alternativer Lösungsideen im MU führt zur Resignation Talente können verkümmern... und das Aufmerksamkeitsdefizit wird durch Fehlverhalten kompensiert (Störenfriede im Unterricht) Unterforderung im MU hemmt die Leistungsbereitschaft Eine Hochbegabte: Warum soll ich mich engagieren für andere, wenn für mich ja auch niemand da ist?

Welche Unterschiede zwischen Jungen und Mädchen sind für die Unterrichtsplanung und gestaltung in Mathematik von Bedeutung? Unterrichtsrelevant sind alle jene Phänomene, die motivationale Bedeutung haben, also das Kompetenzerleben beeinflussen (Rheinberg) Sicherheitsbedürfnis der Mädchen versus Wunsch nach Themenwechsel der Jungen Balance halten zwischen mathematischen Details und den übergreifenden Sinnfragen Angebote zur Selbsteinschätzung der Lernenden und Feedback (Stärkung des Selbstwertgefühls und Förderung realistischer Selbsteinschätzung)

Lernfortschritt erfordert: - Eine selbst gestellte Lernaufgabe - Erarbeitung einer Orientierungsgrundlage für die notwendigen Tätigkeiten Verortung von Lernfortschritten nach WYGOTSKI: Zone Zone der Inhalt der aktuellen Leistung Tätigkeit Motivation nächsten Verlauf Entwicklung ------------------------------------------------------------------------------------------------------------- Lernaufgabe Orientierungsgrundlage Typ I, II, III

Welche Unterschiede der Lernenden sind für die Unterrichtsplanung und gestaltung von Bedeutung? Zielwahrnehmung und Zielverarbeitung, wenn Lernanforderungen gestellt werden Modell der Lerntätigkeit nach Lompscher (1972, 1984) Ziele Motive Handlung Inhalt Verlauf Motivationslage intrinsisch extrinsisch, Einstellungen, Interessenbreite, Niveau des math. Elternerwartung, Wissens und Lehrervorbild... Könnens, Grundvorstellungen, Werkzeugkompetenz, Weltwissen... Produkte Ergebnisse Verlaufsqualitäten des Denkens, Arbeitstempo, kognitive Stile, Festigungsbedarf und Selbstregulationskompetenz Umgang mit Fehlern, Kommunikationsfähigkeit, Reflexionsbereitschaft und -fähigkeit

Wie lösen Sie die folgende Aufgabe? Gegeben ist eine Gerade und ein Punkt außerhalb der Geraden. Gesucht ist ein Punkt auf der Geraden, von dem aus man den Punkt außerhalb unter einem Winkel von 30 sieht.

Prädikativer oder funktionaler Denkstil? In einem gestellten Problem wird erst die Struktur oder das Funktionieren gesichtet Mädchen verhalten sich im Vergleich zu Jungen eher prädikativ Konsequenzen für die Aufgabenauswahl in Übungen und Prüfungen!

Kognitive Stile Es ist eine offensichtliche Tatsache, dass Schüler individuelle Präferenzen beim Lernen aufweisen jede Unterrichtssituation auf jeden Schüler jeweils anders von motivierend bis hemmend wirkt auch Lehrer individuelle Präferenzen aufweisen und sich daher fast automatisch gewisse Einseitigkeiten des Lehrens und Lernens einstellen Korrelationen bestehen zwischen dem Stil der Lehrer und ihren Schülern (Sternberg 1994) Diejenigen Schüler weisen bessere Noten auf, deren Stil demjenigen der Lehrer entspricht (Sternberg 1994) Neu: Unterscheidung von vier verschiedenen Lernstilen als Ergebnis einer Metaanalyse (Gregory, Gayle H.: Differentiating Instruction With Style. Aligning Teacher and Learner Intelligences for Maximum Achievement. Thousand Oaks 2005)

Lernstil der Beach Balls Self-Expressive Learners (Intuitive/Feeling) Gestalte eine Veranschaulichung für einen Schlüsselbegriff der Unterrichtseinheit Experimentier- & Entdeckungsfreude Spontanität & Kreativität Gleichschrittanweisungen zu folgen, immer die gleichen Schreibarbeiten zu machen

Lernstil der Puppies Interpersonal Learners (Sensing/Feeling) Intuitiv, affektiv Benötigen Begründung für das Lernen Haben Bedürfnis nach Zusammenarbeit Detailorientiert und gründlich zu sein Korrigiert zu werden oder ein negatives Feedback zu erhalten

Lernstil der Microscopes Understanding (Intuitive/Thinking) Beurteile folgende Aussagen, ob sie jeweils stets, manchmal oder niemals wahr sind. Begründe deine Beurteilung schriftlich. Denken analytisch, kritisch Lernen gründlich Arbeiten alleine Neue Dinge ausprobieren offene Probleme lösen Perfektionisten 1. Ein Trapez ist ein Rechteck. Begründung 2. Ein Viereck ist ein reguläres Polygon. 3. Ein Parallelogramm ist ein Viereck. 4. Ein Trapez hat parallele Schenkel. 5. Diagonale eines Parallelogramms halbieren einander. 6. Ein Rechteck ist ein Quadrat. 7. Ein Quadrat ist ein Rechteck. 8. Eine Raute ist ein Rechteck. 9. Ein Parallelogramm hat exakt drei rechte Winkel. 10. Vier Seiten einer Raute und eines Parallelogramms sind gleich lang und vier Ecken einer Raute und eines Parallelogramms sind gleich groß.

Lernstil der Clipboards Mastery (Sensing/Thinking) Routinen, vorhersagbare Situationen Sinn für Details & Genauigkeit Ohne Anweisungen arbeiten, das große Bild sehen

Ein Beispiel unterrichtlicher Umsetzung - nach Lernstilen differenzierender Unterrichtsansatz nach Silver et al. Unterscheidung von vier verschiedenen Lernstilen (Gregory, Gayle H.: Differentiating Instruction With Style. Aligning Teacher and Learner Intelligences for Maximum Achievement. Thousand Oaks 2005) Keine Diagnostik und Zuordnung der Lernenden nach Lernstilen Dennoch: Zuordnung Lernstil =>Unterrichtsmethode (math tools) Idee: Durch Variation in den Aufgaben und Darstellungen finden alle Lernstile stärkere Berücksichtigung im Unterricht Annahme: Die Unterschiedlichkeit des Zuganges zum Unterrichtsgegenstand nutzt allen Lernenden mehr, als wenn sie nur ihrem eigenen Lernstil entsprechend unterrichtet würden.

Schlussfolgerungen Didaktische Analyse Berücksichtigung der vier stilbasierten Zielfragen bei der Stoffanalyse und bei der Aufgabenwahl (vor allem für Einstiege, Übungen und Langfristige HA) 1. Welche Fähigkeiten, Verfahren und Schlüsselbegriffe müssen die Lernenden beherrschen? 2. Welche Kernbegriffe, Muster oder Prinzipien müssen die Lernenden vertieft verstehen? 3. Wie werden die Lernenden persönlichen Bezug zur Mathematik herstellen oder gesellschaftliche Relevanz der Mathematik entdecken? 4. Wie werden die Lernenden neue mathematische Sachverhalte erkunden, visualisieren, anwenden oder mit ihnen experimentieren?

Schlussfolgerungen Innermathematische vs.anwendungsbezogene Aufgaben Gelöste Beispiele einbauen (für Clipbords) Abstrakte Aufgaben einbauen (für Microskopes) Selbstregulationselemente verstärken (für Beach Balls) Partnerbearbeitung einer LHA zulassen (für Puppies) Hausaufgaben Wahlaufgaben Komplexe geschlossene vs. offene Aufgaben (für Clipboards) Innermathematische vs. anwendungsbezogene Aufgaben Hilfen z.b. in Form von Tippkärtchen abrufbar (v.a.puppies, Clipboards) Arbeitsform frei wählbar (einzeln, in Gruppen) Einstiege Offene vs. geschlossene Aufgaben (für Clipboards) Innermathematische vs. anwendungsbezogene Situationen Theoretische Darstellung zum Thema alternativ anbieten (für Microscopes) Arbeitsform frei wählbar (einzeln, in Gruppen)

Gliederung 1. Welche Unterschiede der Lernenden sind für eine kompetenzorientierte Unterrichtsplanung und gestaltung von Bedeutung? 2. Unser Werkzeugkoffer: Binnendifferenzierende Elemente für den Mathematikunterricht

Binnendifferenzierung erfordert Diagnose, Prophylaxe und Therapie Ziel- und Inhaltstransparenz für die Lernenden sichern Wachhalten von Basiswissen Vermeiden von (neuen) hemmenden Unterschieden Innerhalb eines mathematischen Lernbereiches wird differenziert nach Schwierigkeitsgrad (Abstraktionsgrad, Komplexität), Kontext und Offenheit Förderung der Selbstregulation Vielseitige kognitive Aktivierung der Lernenden durch vielfältige Aufgabentypen und Wahlmöglichkeiten Reaktion auf Unterschiede der Lernenden

Didaktische Perspektive: offene versus geschlossene Differenzierung

Potenzrechnung 1. Teil: Das können wir schon! Mit dem Taschenrechner den Wert einer Potenz berechnen: 7 8 = Mein Beispiel: 15-6 = Mein Beispiel: (-6,2) 3 = Mein Beispiel: -5,1 6 = Mein Beispiel: Gegebene Zahlen als Zehnerpotenzen umschreiben: 56700300 = Mein Beispiel: 5 Milliarden 35 Millionen = Mein Beispiel: 0,0000621 = Mein Beispiel: Die Taschenrechneranzeige verstehen: 3.42 09 bedeutet: Mein Beispiel: Zehnerpotenzen in den Taschenrechner eingeben: 4,78 10 17 muss in der Tastenfolge eingegeben werden: Mein Beispiel: Umrechnen kleiner Längen in die Grundeinheit Meter: 40 mm = 4 µn = 440 nm = Meine Beispiele:

Kreativ sein dürfen: Ein Spieler zahlt 1 Euro Einsatz und wirft 3 (ideale) Würfel. Erscheint dabei die 6 ein-, zwei- oder dreimal, erhält er den Einsatz zurück und außerdem einen Gewinn von 1 bzw. 2 bzw. 3 Euro. Erscheint keine 6, ist der Einsatz verloren. Weise nach, dass das Spiel nicht fair ist! Was könnte man an dem Spiel verändern, damit es fair wird?

Lösungsvorschläge: - Änderung des Gewinnplanes z.b. soll man auch mit einer 5 noch einen kleinen Gewinn erzielen können (wie groß müsste dann dieser Gewinn sein?) - Änderung der Gewinnquote man könnte für drei Sechsen z.b. etwas mehr als nur die 3 Euro plus Einsatz erhalten (wie viel dann?) - der Einsatz wird verringert bei Konstanthalten des Gewinnplanes (tatsächlich genügen 0,86 Euro für ein faires Spiel).

Unterrichtskonzept von MABIKOM Unterrichtseinstieg KÜ Lernprotokoll Wahlaufgaben, Aufgabenset KÜ KÜ Checkliste LHA Blütenaufgaben Test

Methoden zur Diagnose und Prophylaxe Lernende als Experten... Semantische Netze... Modell der Lerntätigkeit nach Lompscher (1972, 1984) Differenzierende Einstiege Motivierung und Zielklärung Ziele Handlung Inhalt Verlauf Produkte Motive Ergebnisse Ausgangsniveauerfassung und Ausgangsniveausicherung Vermischte Kopfübungen unabhängig vom aktuellen Thema Lernprotokoll zum aktuellen Thema

Kopfrechenführerschein

Vermischte Kopfübung mit Diagnoseanteil (7) 1.Berechne 29 7 2.Ordne der Größe nach: 1/7, 1/3, 1/2 3.Notiere 4,3 cm in der nächst größeren und der nächst kleineren Einheit 4.Berechne 5,4 10,6 5.Wie viele Flächen sind bei einem Quader mindestens jeweils gleich groß? 6.Berechne: - 3 (- 11) 3 7.Es ist genau 8.00 Uhr. Welchen Winkel schließen Minuten- und Stundenzeiger ein? 8.In der Jahrgangstufe 7 sind 180 Schüler/innen; 2/3 kommen mit dem Bus zur Schule. Wie viele Schüler/innen sind das? 9.Herr Meyer trinkt jeden Morgen 150 ml O-Saft. Für wie viele Tage reicht eine 1-Liter-Flasche? 10.Berechne 20% von 45.

"Kopfübungen Klasse 7 als Diagnoseinstrument 1 Berechne: 29 7 2 Ordne der Größe nach: 1/7, 1/3, 1/2 3 Notiere 4,3 cm in der nächst größeren und der nächst kleineren Einheit 4 5,4 10,6 5 Wie viele Flächen sind mindestens bei einem Quader jeweils gleich groß? 6 Berechne: - 3 (- 11) 3 7 Es ist genau 8.00 Uhr. Welchen Winkel schließen Minuten- und Stundenzeiger ein? 8 In Jahrgangstufe 7 sind 180 Schüler; 2/3 kommen mit dem Bus zur Schule. Wie viele sind das? 9 Herr Meyer trinkt jeden Morgen 15o ml O-Saft. Für wie viele Tage reicht eine 1- Liter-Flasche? 10 Berechne. 20% von 45. 1 Woche später: 1 59 9 2 Ordne der Größe nach: 3/7, 3/4, 3/10 3 Gib als dm an: 1,82 m 4-5,4 + 10, 6 5 Aus welchen Flächen setzt sich eine vierseitige Pyramide zusammen? 6 Schreibe drei Multiplikationen auf, deren Ergebnis 6 ist. 7 Richtig oder falsch: In jedem Dreieck sind alle drei Winkel verschieden groß. 8 Gib 2/5 als Dezimalzahl an. 9 Gib die Koordinaten von zwei Punkten im Koordinatensystem an, die auf der y-achse liegen. 10 Von 32 Schülern kommen 24 mit dem Bus. Wie viel Prozent sind das?

Inhalte von Kopfübungen systematische Begleitung im MU - Rechenfertigkeiten in den Grundoperationen - Umrechnen von Einheiten, Zahl- und Größenvorstellungen - Dreisatz (z.b. Maßstab) - Zahlen/Anteile/Verhältnisse in verschiedenen Darstellungsformen angeben - Punkte im Koordinatensystem - Übersetzungsbausteine (Termstrukturen, funktionale Zusammenhänge) - Basiswissen Geometrie (Winkel, Flächenberechnung...) - Ebenes und Raumvorstellungsvermögen (Skizzieren, Identifizieren) - Logisch-kombinatorisches Denken

Kopfübungen und Führerscheine Querfeldeinführerschein zum Halbjahr bzw. Schuljahresende (Basics aller Gebiete, die bis dahin überhaupt im MU behandelt wurden orientiert an allgemeinbildenden, realitätsbezogenen Anwendungskompetenzen) Vermischte Kopfübung (wöchentlich 10min) als Instrument, Basics wachzuhalten und an ein Umschalten zwischen verschiedenen Themen zu gewöhnen

Methoden zur Diagnose und Prophylaxe Lernende als Experten... Semantische Netze... Modell der Lerntätigkeit nach Lompscher (1972, 1984) Differenzierende Einstiege Motivierung und Zielklärung Ziele Handlung Inhalt Verlauf Produkte Motive Ergebnisse Ausgangsniveauerfassung und Ausgangsniveausicherung Vermischte Kopfübungen unabhängig vom aktuellen Thema Lernprotokoll zum aktuellen Thema

Beispiel für ein Lernprotokoll (Klasse 9): 1. Wie kann man die Länge einer unzugänglichen Strecke bestimmen, wenn ein Maßband und ein Winkelmessgerät zur Verfügung stehen? (Einführungsbeispiel erläutern) 2a) Stelle zur gegebenen Strahlensatzfigur zwei passende Gleichungen auf! (Zeichnung vorgeben) 2b) Zeichne eine Strahlensatzfigur, für die folgendes gilt: x : 20 = (x + 40) : 28 3. Welche Fehler können passieren, wenn man die Strahlensätze für Berechnungen anwendet? 4. Wann kann man Strahlensätze anwenden und wann nicht? Gib jeweils ein Beispiel an!

Lernziel gestellt Lernziel angekommen? Grundverständnis sichern mit einem Lernprotokoll Aufgabenformate für Lernprotokolle Worum ging es im Einführungsbeispiel in der letzten Stunde? (Erläuterung) Grundaufgabe und ihre Umkehrung Wir haben ein neues Verfahren (Begriff, Satz) kennen gelernt: Gib ein Beispiel an, wo man dieses Verfahren anwenden kann und eins, wo das nicht möglich ist! (Beispiel Gegenbeispiel) Welche Fehler können passieren, wenn man das Verfahren... anwendet?

2.Beispiel für ein Lernprotokoll Welche Möglichkeiten kennst Du, um Zuordnungen darzustellen? Gib ein Beispiel für eine proportionale Zuordnung an und nenne ein Beispiel, das keine proportionale Zuordnung ist. Welchen Vorteil kann eine mathematische Beschreibung von Zuordnungen haben? Beispiel dafür Beispiel dagegen Mehrwert?? Löse die beiden Aufgaben! Um sein Budget aufzubessern arbeitet ein Student als Hilfskraft pro Woche vier Stunden und verdient 32. Wie viel hat er in einer halben Stunde verdient? Bei einer Gartenarbeit habt Ihr zu dritt mit angepackt und vier Stunden benötigt. Wie viele Helfer hättet Ihr gebraucht, um in einer halben Stunde die Arbeit abzuschließen? Wie realistisch ist das?

Lernprotokoll als Diagnoseinstrument Was ist das? Wie funktioniert das? -es geht um das Feststellen des Verständnisses neuen Stoffes -1-3 Aufgaben zum Nachdenken über das neu Gelernte am Ende einer Unterrichtsstunde oder zu Beginn der nächsten -die Aufgaben werden von allen Lernenden jeweils für sich bearbeitet (ca. 15 min) - eignet sich auch als Hausaufgabenkontrolle -wird nicht benotet! -dient dazu, den Lernenden zu zeigen, wo sie stehen, was sie schon wissen und können und wo noch Unsicherheiten sind - eignet sich auch als letzte Phase beim Stationenlernen

Methoden zur Diagnose, Prophylaxe und Therapie Lernende als Experten... Semantische Netze... Differenzierende Einstiege Motivierung und Zielklärung Modell der Lerntätigkeit nach Lompscher (1972, 1984) Ziele Motive Handlung Inhalt Verlauf Produkte Ergebnisse Übernahme von Verantwortung für das eigene Lernen Checkliste Langfristige Hausaufgaben Ausgangsniveauerfassung und Ausgangsniveausicherung Vermischte Kopfübungen unabhängig vom aktuellen Thema Lernprotokoll zum aktuellen Thema Differenzierung mit Aufgaben Wahlaufgaben Aufgabenset Blütenaufgaben

Kritisch sehen: Ich kann Geraden und Halbgeraden zeichnen. Ich kann Strecken genau messen. Ich kann Strecken in beliebige Anteile teilen. Ich kann Winkel messen. Ich kann spitze und stumpfe Winkel mit vorgegebenen Gradzahlen zeichnen. Ich kann überstumpfe Winkel mit vorgegebener Gradzahl zeichnen. Ich kann ein Lot mit dem Geodreieck zeichnen. Ich kann mit dem Zirkel umgehen. Ich kann mit dem Zirkel verschiedene Kreise zeichnen. Ich kann Kreise mit vorgegebenen Radius oder Durchmesser zeichnen. Ich kann die Zeichen und Beschriftungen am Geodreieck erklären und damit umgehen. Ich weiß, wie ich das Geodreieck benutzen muss. Ich kann Tangenten am Kreis zeichnen. Ich behalte auch bei schwierigen Konstruktionen den Überblick. Ich kann geometrische Objekte richtig bezeichnen. Ich kann Neben- und Scheitelwinkel ausrechnen. Ich kann Stufen- und Wechselwinkel ausrechnen.

Unterrichtskonzept von MABIKOM Unterrichtseinstieg KÜ Lernprotokoll Wahlaufgaben, Aufgabenset KÜ KÜ Checkliste LHA Blütenaufgaben Test

Methoden zur Diagnose, Prophylaxe und Therapie Lernende als Experten... Semantische Netze... Modell der Lerntätigkeit nach Lompscher (1972, 1984) Differenzierende Einstiege Motivierung und Zielklärung Ziele Handlung Inhalt Verlauf Produkte Motive Ergebnisse Ausgangsniveauerfassung und Ausgangsniveausicherung Vermischte Kopfübungen unabhängig vom aktuellen Thema Lernprotokoll zum aktuellen Thema Differenzierung mit Aufgaben Wahlaufgaben Aufgabenset Blütenaufgaben

Binnendifferenzierung durch Wahlaufgaben mit unterschiedlichen Anforderungen Große Unterschiede im Arbeitstempo, Festigungsbedarf und im kognitiven Leistungsvermögen => Wahlmöglichkeiten Organisatorisch: I. eine bestimmte Anzahl von Aufgaben ansteigender Schwierigkeit soll in einer verabredeten Zeit bearbeitet werden (z.b. mindestens 5 von 10 Aufgaben) II. Wahlmöglichkeit bei ausgewiesener Schwierigkeit *, **, *** gefordert sind z.b. 10 Sternchen stelle selbst zusammen Alle üben alles?

Erste und vertiefende Übung zu Nullstellenberechnungen von linearen Funktionen Wähle mindestens fünf der folgenden Aufgaben aus und löse sie (15min) Gesucht ist jeweils die Nullstelle der folgenden linearen Funktionen: 1. f(x) = x - 5 2. f(x) = 2x + 6 3. f(x) = - 5x 2,5 Level I 4. Zeichne eine lineare Funktion mit einer Nullstelle bei x = - 3 5. Was kann eine Nullstelle einer linearen Funktion praktisch bedeuten? -------------------------------------------------------------------------------------------------------------

Erste und vertiefende Übung zu Nullstellenberechnungen von linearen Funktionen Wähle mindestens fünf der folgenden Aufgaben aus und löse sie (15min) Gesucht ist jeweils die Nullstelle der folgenden linearen Funktionen: 1. f(x) = x - 5 2. f(x) = 2x + 6 3. f(x) = - 5x 2,5 4. Zeichne eine lineare Funktion mit einer Nullstelle bei x = - 3 5. Was kann eine Nullstelle einer linearen Funktion praktisch bedeuten? ------------------------------------------------------------------------------------------------------------- 6. Gib die Gleichungen zweier linearer Funktionen an, die bei x = 4 ihre Nullstelle haben. 7. Notiere die Gleichung einer linearen Funktion, die keine Nullstelle hat. Level II 8. Überlege Dir einen Sachverhalt, der mit Hilfe einer linearen Funktion beschrieben werden kann, welche bei P(1;0) eine Nullstelle hat. ------------------------------------------------------------------------------------------------------------

Erste und vertiefende Übung zu Nullstellenberechnungen von linearen Funktionen Wähle mindestens fünf der folgenden Aufgaben aus und löse sie (15min) Gesucht ist jeweils die Nullstelle der folgenden linearen Funktionen: 1. f(x) = x - 5 2. f(x) = 2x + 6 3. f(x) = - 5x 2,5 4. Zeichne eine lineare Funktion mit einer Nullstelle bei x = - 3 5. Was kann eine Nullstelle einer linearen Funktion praktisch bedeuten? ------------------------------------------------------------------------------------------------------------- 6. Gib die Gleichungen zweier linearer Funktionen an, die bei x = 4 ihre Nullstelle haben. 7. Notiere die Gleichung einer linearen Funktion, die keine Nullstelle hat. 8. Überlege Dir einen Sachverhalt, der mit Hilfe einer linearen Funktion beschrieben werden kann, welche bei P(1;0) eine Nullstelle hat. ------------------------------------------------------------------------------------------------------------ 9. Warum können lineare Funktionen nie mehr als eine Nullstelle haben? 10. Finde einen Ausdruck zur Bestimmung der Nullstelle für eine beliebige lineare Funktion: f(x) = mx + b und gib dazu evtl. notwendige Bedingungen für m,x und b an! Level III

Kein gelungenes Beispiel für ein binnendifferenzierendes Aufgabenset

Blütenaufgaben - drei bis fünf Teilaufgaben - steigender Schwierigkeitsgrad -gemeinsamer Kontext - evtl. zunehmende Öffnung

Blütenaufgaben mit aufsteigender Komplexität und Offenheit für Lern- und Leistungssituationen: An der Anlegestelle einer großen Fähre steht: Karte 1 Person 50 Blockkarte 8 Personen 380 Blockkarte 20 Personen 900 a) Welchen Preis hat eine Gruppe von 4 Personen zu zahlen? b) Wie viele Karten bekommt man für 300? c) Handelt es sich bei der Preistabelle um eine proportionale Zuordnung? Begründe. d) Für 24 Schüler rechnet Frank einen Preis von 1140 aus. Maike meint, dass die Gruppe noch günstiger fahren kann. Hat Maike recht? Begründe. e) Die Fährgesellschaft will eine Blockkarte für 50 Personen einführen. Was wäre ein angemessener Preis? Quelle: Jordan, Univ. Kassel, 2004

Zielniveaus einer Blütenaufgabe Regelstandard (x--) schwierige Bestimmungs- aufgabe oder Begründung (xx) ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) Geht über den aktuellen Stoff hinaus und greift nicht dem nächsten Thema vor (xx-) Grundaufgabe (-xx) Umkehraufgabe Mindeststandard

Bearbeitungsmöglichkeiten einer Blütenaufgabe Soweit wie möglich kommen in geg. Zeit (x--) schwierige Bestimmungs- aufgabe oder Begründung (x-x) ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) Mindestens zwei Teilaufgaben schaffen in geg. Zeit - mit unterschiedlichem Einstieg (xx-) Grundaufgabe (-xx) Umkehraufgabe

Ergebnisauswertung zu Aufgabensets Eine zentrale Sicherungsphase zur Sicherung der elementaren Grundlagen für die Basisaufgaben (1 bis 4 oder 5) detaillierte Besprechung der vertiefenden Aufgaben für alle idr nicht sinnvoll eine Sicherungsphase in homogener Gruppen nach dem Ich-Du-Wir- Prinzip in der Wir-Phase möglich Arbeit mit Lösungszetteln oder -Folien, die für Kleingruppen einen Gesprächsanlass darstellen können.

Ergebnisauswertung zu einer Blütenaufgabe (x--) schwierige Bestimmungs- aufgabe oder Begründung (xx) ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) (xx-) Grundaufgabe (-xx) Umkehraufgabe Selbstkontrolle

Ergebnisauswertung zu einer Blütenaufgabe Besprechung im Plenum- Lernzuwachs für viele Schüler ermöglichen (x--) schwierige Bestimmungs- aufgabe oder Begründung (xx) ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) (xx-) Grundaufgabe (-xx) Umkehraufgabe

Zeitökonomische Ergebnisauswertung zu einer Blütenaufgabe (xx-) Grundaufgabe (x--) schwierige Bestimmungs- aufgabe oder Begründung (x-x) (-xx) Umkehraufgabe ((-)-(-)) offene Problemstellung oder selbst eine Aufgabe erfinden (-x-) Besprechung individuell nur mit denen, die es bearbeitet haben

Erfahrungen zur Arbeit mit Blütenaufgaben und Aufgabensets Sinnvoll und notwendig, Leistungsstärkere ausreichend gefördert Motivationssteigerung bei Schülern durch Variation der Aufgabentypen Schüler arbeiten konzentriert beim Einsatz Aufgabenset im Unterricht, Motivationssteigerung durch Wahlaufgaben Variation der Aufgabenstellungen verschiedene Blickwinkel des Sachverhalts größere Flexibilität und Kreativität im Denken neuere Schulbücher enthalten bereits eine Vielfalt an Aufgabentypen Aufgabenset kann aus Aufgaben aus dem Buch zusammengestellt werden. Erwartungshorizont erstellen

Unterrichtskonzept von MABIKOM Unterrichtseinstieg Kopfübung Lernprotokoll Wahlaufgaben Aufgabenset Kopfübung Blütenaufgaben Langfristige Hausaufgaben Kopfübung Checkliste Test

Arbeitsphase Bilden Sie bitte Arbeitsgruppen nach Klassenstufen * Entwickeln Sie vermischte Kopfübungen für die nächsten Wochen für die von Ihnen gewählte Klassenstufe! ** Entwickeln Sie ein Lernprotokoll und eine Checkliste für das aktuelle oder nächste Unterrichtsthema! ** Entwickeln Sie zu den ersten Übungen zum aktuellen oder nächsten Unterrichtsthema ein Aufgabenset! *** Stellen Sie zum aktuellen Unterrichtsthema eine Blütenaufgabe zusammen und diskutieren Sie Feedback- und Vergleichsmöglichkeiten! Für Fortgeschrittene: Entwickeln Sie Wahloptionen für eine (langfristige) Hausaufgabe oder Selbstlernumgebung!

Vielen Dank für Ihre Aufmerksamkeit! Kontakt: bruder@mathematik.tu-darmstadt.de www.madaba.de Aufgabendatenbank www.math-learning.com Vorträge zum download www.prolehre.de Fortbildungsangebote