Einführung in Operations Research Vorlesung 9:

Größe: px
Ab Seite anzeigen:

Download "Einführung in Operations Research Vorlesung 9:"

Transkript

1 Einführung in Operations Research Vorlesung 9: Prof. Dr. Thomas Slawig AG Algorithmische Optimale Steuerung basierend auf einer LV, Folien und Beispielen von Prof. Dr. Klaus Jansen Institut für Informatik CAU Kiel

2 (Forts.)

3 H = {x 2 d a T x = b} a 2 d b 2 a 6= H + = {x a T x b} H = {x a T x apple b} Bemerkung: Die Anzahl der Halbräume, deren Schni= das Polyeder definieren, kann größer als die Dimension (hier: d) des Raumes sein.

4 Erinnerung Def. konvexe Menge M: x,y in M, 0<=s<=1 => sx + (1-s)y in M conv(v )={x x = X iv i, v i 2 V, X i =, i } (ohne Beweis, s. z. B. Rockafellar: Convex Analysis 1970) V conv(v ) P V j =,...,d d x j

5 P P (b) (c)

6 Beweis (c) ) (b) I Sei F = {x 2 R n : Ax = b, x I Wegen Rang A = m gilt: 0} beschränkt, Rang A = m Ax = b () () ā 11 ā 1,n m ā m1 ā m,n m x 1.. x n m x n m+1. x n = b1. bm () x n m+i = b nx m i ā ij x j, i =1,..., m. j=1

7 Beweis (c) ) (b) (Forts.) Also: Damit: Ax = b () x n m+i = b nx m i j=1 ā ij x j = b i mit x := (x j ) n m j=1 ā > i x, i =1,..., m. Ax = b, x 0 () bi ā > i x 0, i =1,...,m x j 0, j =1,...,n m I Darstellung rechts benutzt nur Variablen x =(x 1,...,x n m ) 2 R n m. I D. h. durch die Nebenbedingungen wird eine Menge P 2 R n beschrieben. I P ist Schnitt von n Halbräumen, also Polyeder,... I... und Polytop, da F beschränkt. m

8 Beweis (b) ) (c) I Sei P R n m Polytop, o.b.d.a. im positiven Orthanden, d.h. x i 0,i=1,...,n m. I Polytop ist nach Def. Schnitt von Halbräumen: X n m j=1 h ij x j apple g i, i =1,...,n. I Nach Annahme haben die ersten n m Ungleichungen die Form: x i 0, i =1,...,n m. I Einführung von Schlupfvariablen x n m+1,...,x n 0: n I ergibt: X m j=1 h ij x j + x i = g i, i = n m +1,...,n m (n [H I] x = b, H =(h ij) ij 2 R m),i 2 R m m,x 0. {z } =A2R m n

9 P F = {x Ax = b, x } ˆx =(x,...,x n m ) T 2 P ˆx x P nx m x i = g i j= h ij x j i = n m +,...,n F

10

11 Wdh.: A B = {A j,...,a jm } A ji A j <...<j m B (m m) B =[A j...a jm ] B x 2 n x j = tk j = j k t =(t,...,t m ) T = B b

12 x ( ) c T xax= b, x B = {A i =,...,m} apple B( ) <...<B(m) apple n x ( ), i i= x ( ) i A = b, x ( ) i, i =,...,m. j fest: B x ij A = A j. i= > A j 62 B (vgl. Beweis ) j fest: i= (x ( ) i x ij )A + A j = b.

13 x ( ) x ( ) i > 8i x ij > (j fest): = i:xij > x ( ) i B( ) = x ( ) ` l x ij x`j A j für A B( l )

14 Für 0 := min i:x ij >0 x (0) x ij = x (0) B(`) x`j (Minimum wird für ` angenommen) gilt: b = = = i=1 i=1 i=1,i6=` x (0) 0 x ij A + 0 A j x (0) x (0) B(`) x`j x ij {z } =0,i=` x (0) 0 x ij {z } =:x (1) A + 0 A j A + 0 {z} =:x (1) j A j Setze x (1) := x(0) 0 x ij,i=1,...,m () x (1) B(`) =0) x (1) j := 0

15 b = i=1,i6=` x (0) 0 x ij {z } =:x (1) A + 0 {z} =:x (1) j A j Neue Basis B 0 = B\{A B(`) } [ {A j },d.h.b 0 (`) =j: =) x (1) B 0 (i) = Damit gilt: ( x (1) B(`) =0 x (0) 0 x ij, i 6= ` hier gilt: B 0 (i) = 0, i = ` Änderung: B 0 (`) =j b = = i=1,i6=` i=1 x (0) 0 x ij A + 0 A j x (1) B 0 (i) A B 0 (i) = nx i=1 x (1) i A i

16 x ij > x ( ) x ( ), (j fest): i = = i:xij > x ( ) i x ij =. j

17 x ij apple i= (x ( ) i x ij )A + A j = b. F

18 x ( ) x ( ) i B = {A i =,...,m} j A j 62 B x ij > x ( ) ( ) ( x ( ) i x ij i 6= ` i = ` x ( ) i = B (i) B 0 =(B\{A B(`) }) [ {A j } x ( ) ( ) ` 6= `0

19 Beweis Satz Zulässigkeit wurde oben schon gezeigt. Zu zeigen: B 0 = {A B0 (i) : i =1,...,m} linear unabhängig. I Annahme: 9d =(d 1,...,d m ) 6= 02 R m : 0= d i A B 0 (i) = i=1 i=1,i6=` d i A + d j A j (1) I Mit A j = x ij A folgt: i=1 0= i=1,i6=` (d i + d j x ij ) A + d j x`j A B(`) I Da B = {A : i =1,...,m} linear unabhängig ist, müssen alle Koe zienten Null sein, insbesondere d j x`j =0. I Da x`j > 0, folgt d j =0 I und aus (1) auch: d i =0 8i 6= j.

20 3. Beispiel n xz txs najib + EIN Ist ; II. } Aus Tableau - Schreibweise : sina.ir#:i:::: : 1 aus auf Gestalt formation [ Ä, II. 5 dulden teilen opuntia ( Coif Acg. ) : Finten, III. t.in#;iioio II

21 lw Basis roiable m. - BGH 3 B- bnx.ir#4+5bc2 { As.HR As}, ) = B( 37=5 s o in 3.no o Twwlecbr Basisuoiable Nidtbas Bspalte enthalte die heute Es gilt : An =3 Astray - Asi xij?_? tinab.ci ) : A. t.sk/tzl:.h:nlciiit4itugc.ia..(tz!.i.::n )

22 : Bsp. Spalte j : 1 in Basis aufnehmen : Bestimmen : i. n. - - min. min Xio gfifzlz 312 # in o ij xijso ii T III. an :} Spalte 0 iitinso - o_o [+5 21 o 1.no 1 o 1=1 Blik 3.dk. ersetze Asdnh An neues Tableau : erzeuge in Spalte ( wieder dn.ch j.1e.lk/rsvecfw eletaefekopeathne.li#zfo.ugebasis:n!iglio:4!iisnob=ean.ae..as3 g 1 B' G) in. BKK 4. BGH 5.

23 x ij x 0 ij B B 0 x`j x 0`q = x`q/x`j q =,...n x 0 iq = x iq x 0`q x ij q =,...,n i =,...,`, ` +,...,m B 0 (i) = j i 6= ` i = `

24 Anwendung der Formeln : j -1 l, Piroteleut 1=1.EE?.14i.noso anti 9. III. III. 3 }, o n q :O,...,.si#=xlq=IfTj9iXI Xsn IFI, xz ts Xcc +5 ergibt 1. Zeile des neuen Tableaus andere zilea : 2%10- } } - ; iiz ieiii.iiii.i.ti.int?ni+inwit=yaiisiif:::.=i.3:x3j.x3q-xigx31

25 Kostenänderung bei der Transformation: I Kosten für Iterierte x (0) : z (0) := c > x (0) = nx i=1 c i x (0) i = i=1 c x (0) I x (1) : Basis B 0 : B 0 (`) =j statt B(`). ( x (1) B 0 (i) = x (1) B(`) =0 I Kosten für Iterierte x (1) : z (1) = i=1 x (0) 0 x ij, i 6= ` hier gilt: B 0 (i) = 0, i = ` Änderung: B 0 (`) =j c B0 (i)x (1) B 0 (i) = = m X i=1,i6=` c i=1 x (0) 0 x ij c + 0 c j x (0) 0 x ij {z } =0,i=` + c j 0

26 Kostenänderung bei der Transformation: I Kosten für Iterierte: z (0) = c > x (0) = z (1) = c > x (1) = i=1 i=1 c x (0) c x (0) 0 x ij + c j 0 I Di erenz: z (1) z (0) = 0 c j m X i=1 c x ij {z } =:z j = 0 (c j z j )= c j {z } =: c j I X := (x ij ) ij 2 R m n entsteht durch Diagonalisierang der Basisspalten in A =) X = B 1 A 2 R m n I c B := (c ) i=1,...,m 2 R m I =) z j = X > c B j I =) z > =(z 1,...,z n )=c > B X = c> B B 1 A.

27 j c j < > c j X B (m m) A X c B 2 Z m IR X X = B A z =(z,...,z n ) T z T = cb T X = ct B B A A

28 x ( ) x j c j = (c j z j ) c = c z x ( ) 1. Aussage: s.o.

29 Beweis Satz 3.3.6, 2. Teil Zeige: c 0=) x ist optimal. I Sei y 2 R n zulässig, also Ay = b, y 0 I c = c z 0=) (c z) > y {z } {z} 0 0 0=) c > y z > y I z > = c > B B 1 A =) c > y z > y = c > B B 1 Ay {z} =b I Also ist x globales Minimum. = c > B B 1 b {z } =x B = c > x.

30 c j c j X m c j = c j z j = c j x ij c = c j c = i= x ij = =j x ij = (, c,...,c n ) ( c ) = i

31 c j m X i= x ij c = c j z j = c j x ( ) x i c = i= i= x ( ) i c = z ( ). A j x 0 q = x q x 0`q x j q =,...,n

32 ((m + ) (n + ) X ) Opt = false; Unbounded = false; not(opt) ^ not(unbounded) x j = c j 8j Opt = true j x j < ; x ij apple 8j Unbounded = true = i:x ij> x i x ij = x` x`j ; x`j X, Unbounded.

33 (endlich viele Ecken, immer Reduk4on)

34 3in +2 xz txg m.hxntxztxstxutasrcix.cig ,1T ( Nebenbed. najib -5^1 EIN III. II. Ergänze Tableau 0 A um. Beispiel3.3.EC ^ ,2 o ansfor ata - + } Aus x 20 wie in Zeile mit Werte ( 0.cn, r.r.es 7 : u.us#.tziiiii:!:ntiii= 1 } a. mit ceauß :

35 -3 t.se o : ebenfalls zu Null bringen - x - %% - I In II durch de aufzuteilen operationen ergibt v I-0 o = wähle 2 2.no äj Spalte eitcjeo z.b.ji24.in?.i...?..a..a äxa,

36 Jetzt Spalte : 2 in ji Basis aufnehmen : ( anders als in Bsp ) Bestien : i o 0 o o ij xijso ii L.tt?ziixizs0. mir II.ci 2 f e- 1 Blik 3.dk ersetze Asdnh An. neues Tableau : in e. 2 erzeuge Spalte E.LK/rsveCfw j 0 3h 0 O alle Leerte SO Mein erreicht 13h - tz.ty.xskostef.tn/aeswwfza7=9z x Lösung :( = x % 0 O 1 0 zz T 1 %, Ff tz Basis void.. ün ± F. K 5 ninth - f-3 in 521" ' 0 -

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

A = A A

A = A A Musterlösung - Aufgabenblatt 8 Aufgabe 1 Gegeben ist das Polytop P = conv {±e i ± e j : 1 i, j 3, i j} = conv {e 1 + e 2, e 1 e 2, e 1 + e 2, e 1 e 2, e 1 + e 3, e 1 e 3, e 1 + e 3, e 1 e 3, e 2 + e 3,

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

1. Transport- und Zuordnungsprobleme

1. Transport- und Zuordnungsprobleme 1. Transport- und Zuordnungsprobleme Themen 1. Transport- und Zuordnungsprobleme Themen: Analyse der Problemstruktur Spezielle Varianten des Simplexalgorithmus für Transport- und Zuordnungsprobleme Bezug

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

6 Korrektheit des Simplexalgorithmus

6 Korrektheit des Simplexalgorithmus 6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Optimierung. Vorlesung 02

Optimierung. Vorlesung 02 Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule 1 / 31 8. Konvexe Tobias Boelter TopMath Frühlingsschule Mittwoch, 5. März 2014 2 / 31 Es können auch nicht konvexe untersucht werden, wir beschränken uns hier aber auf konvexe. Mit einem Polytop ist hier

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende) . Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)

Mehr

Hochschule RheinMain SS 2018 Prof. Dr. D. Lehmann. Lösungen 11. Übungsblatt Lineare Optimierung

Hochschule RheinMain SS 2018 Prof. Dr. D. Lehmann. Lösungen 11. Übungsblatt Lineare Optimierung Hochschule RheinMain SS 2018 Prof. Dr. D. Lehmann Lösungen 11. Übungsblatt Lineare Optimierung 1.Aufgabe: a) Phase-I-Methode: Wir betrachten das Hilfs-LOP unter den Nebenbedingungen HF (v 1, v 2 ) = HF

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität Effiziente Algorithmen Lineares Programmieren 216 Schwache Dualität Sei wieder z = max{ c T x Ax b, x 0 } (P ) und w = min{ b T u A T u c, u 0 }. (D) x ist primal zulässig, wenn x { x Ax b, x 0 }. u ist

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Triangulierungen von Punktmengen und Polyedern

Triangulierungen von Punktmengen und Polyedern Triangulierungen von Punktmengen und Polyedern Vorlesung im Sommersemester 2000 Technische Universität Berlin Jörg Rambau 17.05.2000 Sekundärpolytop und 6 bistellare Operationen In diesem Kapitel werden

Mehr

Dr. Anita Kripfganz SS 2014

Dr. Anita Kripfganz SS 2014 Dr. Anita Kripfganz SS 2014 4. Lösungsverfahren 4.1. Schnittebenenmethode Im Jahre 1958 hat R. Gomory ein allgemeines Schnittebenenverfahren zur Lösung ganzzahliger linearer Optimierungsprobleme vorgeschlagen.

Mehr

Musterlösung - Aufgabenblatt 7. Aufgabe 1

Musterlösung - Aufgabenblatt 7. Aufgabe 1 Musterlösung - Aufgabenblatt 7 Aufgabe Sei C R n eine nicht-leere abgeschlossene und konvexe Menge. Wir wollen zeigen, dass C als der Durchschnitt ihrer stützenden Halbräume dargestellt werden kann, d.h.

Mehr

3. Der Simplexalgorithmus Der Simplexalgorithmus 3.1 Formen des Linearen Optimierungsproblem. (3.1) Allgemeine Form !"#! " # # R $ %!

3. Der Simplexalgorithmus Der Simplexalgorithmus 3.1 Formen des Linearen Optimierungsproblem. (3.1) Allgemeine Form !#!  # # R $ %! 11 3.1 Formen des Linearen Optimierungsproblem... 12 3.2 Zulässige Basislösungen... 13 3.3 Die Geometrie von Linearen Programmen... 14 3.4 Lokale Suche unter den zulässigen Basislösungen... 15 3.5 Organisation

Mehr

Lineare Programmierung

Lineare Programmierung asis Definition 3.38 Gegeben sei ein LP in der Normalform mit m als Rang der Matrix 2 R m n. x 2 R n mit x = b heißt asislösung gdw. n m Komponenten x i gleich Null und die zu den restlichen Variablen

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

Optimierung. Vorlesung 04

Optimierung. Vorlesung 04 Optimierung Vorlesung 04 Übungsbetrieb Mangels Teilnehmer keine Dienstagsübung mehr. Prüfung laut Paul: Di, 10. Feb. 2015 00:01-23:59 2 Was bisher geschah LP: Maximiere c T x unter Ax = b, x 0. Basis:

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Faktorisieren von Sumen. Üben. Faktorisieren von Summen. Lösung. Faktorisiere durch Ausklammern oder mit den binomischen Formeln: b) x + 3y + xy

Faktorisieren von Sumen. Üben. Faktorisieren von Summen. Lösung. Faktorisiere durch Ausklammern oder mit den binomischen Formeln: b) x + 3y + xy X Faktorisieren von Sumen 1 Faktorisiere durch Ausklammern oder mit den binomischen Formeln: a) 3xy + xy b) 1 + 4x + 3y + xy c) 9u 49v d) x 4ax + 4a e) 4b + 0bc + 5c X 1 a) 3xy + xy = 3 xy +xy y = xy (3+y)

Mehr

Vortrag 4 - Primärzerlegung

Vortrag 4 - Primärzerlegung Vortrag 4 - Primärzerlegung von Christian Straßberger Beispiel 4.1: Primfaktorzerlegung als Primärzerlegung Sei n Z : n = ±p d1 1 pd2 2 pdr r, wobei p i Primzahlen, d i N. Dann ist (n) = (p d1 1 ) (pdr

Mehr

Hauptsatz und Optimalitätskriterium der Simplexmethode

Hauptsatz und Optimalitätskriterium der Simplexmethode Kapitel 4 Hauptsatz und Optimalitätskriterium der Simplexmethode In diesem Abschnitt wird das wichtigste Verfahren zur Lösung linearer Optimierungsprobleme eingeführt die Simplexmethode Es existiere für

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 2-4 und nv jokar@mathtu-berlinde Kapitel 4 Der

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Zwei Bemerkungen zum Schluss

Zwei Bemerkungen zum Schluss Man könnte sich fragen, ob eine Typ-3 Sprache inhärent mehrdeutig sein kann (im Sinn von Einheit 8). Die Antwort lautet: NEIN. Zwei Bemerkungen zum Schluss Denn für jede Typ-3 Sprache gibt es einen DEA,

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Lineare Optimierung und Simplex-Algorithmus

Lineare Optimierung und Simplex-Algorithmus Lineare Optimierung und Simplex-Algorithmus Problemstellung Beispiel : Unser Unternehmen verfügt über drei Maschinen A, B, C, mit denen zwei verschiedene Produkte P, P2 hergestellt werden. Die Maschinen

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Repetition: Schreibweisen

Repetition: Schreibweisen : : Ausgeschrieben : Ausgeschrieben a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... =... a m1 x 1 + a m2 x 2 +... + a mn x n = b m : Ausgeschrieben a 11 x 1 + a 12

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Dualität Anwendung: Spieltheorie Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? Inhaltsübersicht für heute: Dualität

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen Relaxation Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen

Mehr

Optimierungstheorie Scheinklausur Sommersemester Juli 2007

Optimierungstheorie Scheinklausur Sommersemester Juli 2007 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Prof. Dr. Christian Wieners, Dipl.-Math. techn. Martin Sauter Institut für Angewandte und Numerische Mathematik Optimierungstheorie Scheinklausur

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

3.1. Existenzsatz und Struktur der Lösungsmenge

3.1. Existenzsatz und Struktur der Lösungsmenge 3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall

Mehr

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1)

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Anna Raaz 21.12.2007 Einführung Die Relaxierung von Lagrange wird in der stochastischen Optimierung meistens

Mehr

Minimalpolynome und Implikanten

Minimalpolynome und Implikanten Kapitel 3 Minimalpolynome und Implikanten Wir haben bisher gezeigt, daß jede Boolesche Funktion durch einfache Grundfunktionen dargestellt werden kann. Dabei können jedoch sehr lange Ausdrücke enstehen,

Mehr

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung -

Lineare Algebra I. Prof. Dr. Daniel Roggenkamp Vorlesung - Lineare Algebra I Prof. Dr. Daniel Roggenkamp - 21.Vorlesung - Entwicklung nach Zeilen bzw. Spalten Definition 6.22. Für eine Matrix A 2 Mat(n, n; K) bezeichneta[i, j] die(n 1) (n 1)- Matrix, die aus A

Mehr

Kapitel 14 Lineare Gleichungssysteme

Kapitel 14 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Kapitel 4 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 83 / 246 Kapitel 4 Lineare Gleichungssysteme Definition 4. (Lineares Gleichungssystem LGS)

Mehr

IV.3. RANG VON MATRIZEN 81

IV.3. RANG VON MATRIZEN 81 IV3 RANG VON MATRIZEN 8 Ist b,,b n eine Basis des reellen Vektorraums V, dann bildet b,,b n auch eine Basis des komplexen Vektorraums V C Mit V ist daher auch V C endlichdimensional und es gilt dim C V

Mehr

6 Lineare Optimierung

6 Lineare Optimierung 6 Lineare Optimierung Um die Aufgabenstellung deutlich zu machen, beginnen wir mit einem (natürlich sehr vereinfachten) Beispiel: Produtionsplan einer (zugegebenermaßen sehr leinen) Schuhfabri. Hergestellt

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 8. Mai 2009 1 / 29 Bemerkung In der Vorlesung Elemente der Analysis I wurden Funktionen

Mehr

Tensorprodukte. Isabel Semm. 21. Dezember 2004

Tensorprodukte. Isabel Semm. 21. Dezember 2004 Tensorprodukte Isabel Semm 21. Dezember 2004 1 1 Existenz und Eindeutigkeit Definition: Seien M, N, P A-Moduln. f: M x N P heisst A-bilinear, falls x M: N P, y f(x, y) und y N: M P, x f(x, y) Homomorphismen

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

Proseminar Mathematisches Problemlösen

Proseminar Mathematisches Problemlösen Was bedeutet Konvexität? Konvexität ist die natürliche Fortsetzung des Linearitätsgedankens mit dem Zusatz der Positivität, d.h. ein Term heißt konvex, wenn alle Koeffizienten nichtnegativ sind. Aufgabe

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Ganzzahlige lineare Programme

Ganzzahlige lineare Programme KAPITEL 5 Ganzzahlige lineare Programme Wir betrachten nun Optimierungsprobleme vom Typ (42) min c T x s.d. Ax = b, x 0, x ganzzahlig, wobei die Matrix A R m n und die Vektoren c R n, b R m gegeben seien.

Mehr

Lineare Optimierungsaufgaben - eine Einführung

Lineare Optimierungsaufgaben - eine Einführung Lineare Optimierungsaufgaben - eine Einführung Aufgabenstellung, Beispiele, graphisches Lösen und Trafo auf Normalform Vortragsskript von Lorenz Fischer Operations Research bedeutet die Suche nach einer

Mehr

Optimierung 1 Zwischenklausur

Optimierung 1 Zwischenklausur Optimierung Zwischenlausur Tobias Breiten und Laurent Pfeiffer, Universität Graz 8. Mai 8 Lösung der Aufgabe. Wir führen Schlupfvariablen ein (positiv und negativ), um das Problem auf Standardform zu bringen

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Algebraische Kurven. Vorlesung 10. Noethersche Moduln

Algebraische Kurven. Vorlesung 10. Noethersche Moduln Prof. Dr. H. Brenner Osnabrück SS 202 Algebraische Kurven Vorlesung 0 Noethersche Moduln Wir wollen zeigen, das für einen noetherschen Ring R und einen endlich erzeugten R-Modul jeder R-Untermodul wieder

Mehr

Zufällige Polytope. Benedikt Liedtke. 18. Januar 2010

Zufällige Polytope. Benedikt Liedtke. 18. Januar 2010 Zufällige Polytope Benedikt Liedtke 18. Januar 2010 Inhaltsverzeichnis 1 Einleitung Motivation Definition zufälliges konvexes Polytop 3 verschiedene Modelle E(K, n) Ef k (K n ) Inhaltsverzeichnis 1 Einleitung

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr