Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1. Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2

Größe: px
Ab Seite anzeigen:

Download "Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1. Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2"

Transkript

1 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 Filterspezifikation DSV 1, 2005/01, Rur, Filterentwurf, 2 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur (Direktform 1) realisiert + linearer Phasengang realisierbar + immer stabil (alle Pole im Ursprung) + toleranter gegenüber Quantisierungseffekten als IIR-Filter - höhere Filterordnung als vergleichbare IIR-Filter (mehr Realisierungsaufwand, dafür effiziente Struktur für DSP) - Zeitverzögerung bzw. Gruppenlaufzeit relativ gross IIR-Filter sind rekursive LTD-Systeme werden meistens als Biquad-Kaskade realisiert + kleine Filterordnung (Aufwand) dank Pol-Selektivität + kleine Zeitverzögerung - linearer Phasengang für kausale Filter nicht realisierbar - mehr Probleme mit Quantisierungseffekten als bei FIR-Filter Stempel-Matrizen-Schema 1 db A max R p Durchlassbereich A min, Rippel R s Sperrbereich f DB f SB f s /2 Filterordnung (Aufwand) abhängig von Steilheit im Übergangsbereich FIR-Filter mit linearer Phase DSV 1, 2005/01, Rur, Filterentwurf, 3 FIR-Filterentwurf mit Fenstermethode DSV 1, 2005/01, Rur, Filterentwurf, 4 Linearphasige FIR-Filtern der Ordnung N Filterkoeffizienten symmetrisch sind, d.h. b n = b N-n Filterkoeffizienten antisymmetrisch sind, d.h. b n = - b N-n 4 Typen linearphasiger FIR-Filter und H(f)-Restrikitionen Typ Symmetrie Ordnung N H(0) H(f s /2) 1 sym. gerade sym. ungerade - Nullstelle 3 anti-sym. gerade Nullstelle Nullstelle 4 anti-sym. ungerade Nullstelle - Beispiel: H(z) = b 0 (1+z -1 ) FIR-Filter der Ordnung N=1 vom Typ 2 Frequenzgang: H(f) = 2b 0 cos(πft s ) e -jπfts Nullstelle H(f s /2) = 0 linearer Phasengang φ(f) = -π f T s bzw. Zeitverzögerung Δ = T s /2 Ziel: b n = h[n] so bestimmen, dass H(f) die Spezifikationen erfüllt Fenstermethode 1. Analoge Referenzstossantwort abtasten: h d [n] = T s h(t=nt s ) sin(nπf DB/(f s/2)) idealer TP: h[n]= d - < n < nπ 2. relevanten Anteil ausschneiden: h c [n] = w[n] h d [n] für -N/2 n N/2 Rechteck-Fenster Fenster w[n]: Blackman-Fenster Hamming-Fenster Hanning-Fenster -N/2 0 N/2 3. FIR-Filter mit Zeitverschiebung kausal machen: h[n] = h c [n-n/2]

2 Beispiel zum Windowing DSV 1, 2005/01, Rur, Filterentwurf, 5 Einfluss des Fensters DSV 1, 2005/01, Rur, Filterentwurf, 6 h FIR [n] = w[n] h d [n] H FIR (f) = W(f) * H d (f) H d (f) IW(f 0 -f)i Gibbs sches Phänomen f DB Gibbs sches Phänomen: Überschwingen von H FIR (f 0 f DB ) Nebenkeule von W(f) klein => Überschwingen von H FIR (f) klein Hauptkeule von W(f) schmal => Übergangsbereich von H FIR (f) steil Spektren verschiedener Fenster DSV 1, 2005/01, Rur, Filterentwurf, 7 TP BP/BS/HP-Transformationen DSV 1, 2005/01, Rur, Filterentwurf, 8 L=N+1=51 Ziel: Erhalt der linearen Phase A = - 13 db A = - 41 db TP-BP-Frequenztranslation Typ 1,2: b BP [n] = 2 cos(ω 0 nt s ) b TP [n] Typ 3,4: b BP [n] = 2 sin(ω 0 nt s ) b TP [n] Δf (1/L) fs A = - 31 db Δf (2/L) fs Δf (2/L) fs A = - 57 db Δf (3/L) fs BP-BS-Transformation BS und BP sind komplementär: H BP (z) + H BS (z) = z -N/2 b BS [n] = δ[n-n/2] - b BP [n] TP-HP-Frequenztranslation TP-BP-Trafo mit f 0 =f s /2: b HP [n] = (-1) n b TP [n] Beispiel linearphasiges Typ 2 FIR-Filter 1. Ordnung mit f DB =f s /4 TP: H TP (z) = 0.5 (1+z -1 ) => HP: H HP (z) = 0.5 (1-z -1 )

3 FIR-Filterentwurf: Frequenzabtastung DSV 1, 2005/01, Rur, Filterentwurf, 9 FIR-Filterentwurf im z-bereich DSV 1, 2005/01, Rur, Filterentwurf, Vorgabe N+1 äquidistante Abtastwerte von H(f) im Bereich [0,f s ] H[m] N+1=80 f s = periodisch! 2. IFFT Iterative Optimierungsverfahren (CAD) am bekanntesten ist der Remez-Algorithmus (Parks-McClellan) Vorgabe Stempel-Matrize (auch Multiband) => Minimax-Optimierung Equiripple im Durchlass- und Sperrbereich => kleinste Ordnung für A min b FIR [n] h[n] 3. Zeitverschiebung (oder Vorgabe Phase) A min H FIR (f) Verbesserungen: Vorgabe weniger steil (siehe ) oder Windowing Least-Square Optimierungsverfahren Vorgabe wird eingehalten dazwischen aber Überschwingen Zahlendarstellung DSV 1, 2005/01, Rur, LTD-Systeme, 12 Kap.5a : DSV 1, 2005/01, Rur, Filterentwurf, 13 Festkomma b W-1 b 0 signed integer -2 W-1 2 W-2 2 W sign-bit unsigned integer 2 W-1 2 W-2 2 W signed fractional (W-1) sign-bit unsigned fractional W Gleitkomma (IEEE 754/854) s Exponent 1 E 254 Mantisse 1 M < 2 b 31 b 30 b 23 b 22 hidden 1 s E 127 F = ( 1) M 2 b 0 Quantisierung Ueberlauf

4 DSV 1, 2005/01, Rur, Filterentwurf, 14 DSV 1, 2005/01, Rur, Filterentwurf, 15 DSV 1, 2005/01, Rur, Filterentwurf, 16 DSV 1, 2005/01, Rur, Filterentwurf, 17 Skalierung von Signalen und Filterkoeffizienten Eingangssignal Filterkoeffizienten Ausgangssignal Filter-Normen

5 DSV 1, 2005/01, Rur, Filterentwurf, 18 DSV 1, 2005/01, Rur, Filterentwurf, 19 Filter-Normen Skalierung des Eingangs- und des Ausgangssignals Q15-Skalierung der Filterkoeffizienten DSV 1, 2005/01, Rur, Filterentwurf, 20 DSV 1, 2005/01, Rur, Filterentwurf, 21 Ringbuffer

6 DSV 1, 2005/01, Rur, Filterentwurf, 22 DSV 1, 2005/01, Rur, Filterentwurf, 23 Ringbuffer or Circular-Buffer DSV 1, 2005/01, Rur, Filterentwurf, 24 DSV 1, 2005/01, Rur, Filterentwurf, 25 Ueberlauf vermeiden: Anwenden der l1-norm => SNR schlechter Aufsummieren mit internen Registern (mit Guard-Bits) => Assembler Zwischenresultate in Q8.23-Format => Aufwand Wie???

7 : Lab Uebung 11 DSV 1, 2005/01, Rur, Filterentwurf, 26 : Lab Uebung 11 DSV 1, 2005/01, Rur, Filterentwurf, 27 Code Composer : Code Composer : : Lab Uebung 11 DSV 1, 2005/01, Rur, Filterentwurf, 28 : Lab Uebung 11 DSV 1, 2005/01, Rur, Filterentwurf, 29 Code Composer : Clock Function Code Composer : Set breakpoints before and after the command line you want to measure Run till break point then reset clock and run again till next breakpoint Clock measure gives you number of DSP cycles between the 2 stop points

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur (Direktform 1) realisiert + linearer Phasengang

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Kapitel 5: FIR- und IIR-Filterentwurf

Kapitel 5: FIR- und IIR-Filterentwurf ZHW, DSV 1, 2005/01, Rur 5-1 Kapitel 5: FIR- und IIR-Filterentwurf Inhaltsverzeichnis 5.1. EINLEITUNG...2 5.2. FREQUENZGANG...3 5.3. FILTERSPEZIFIKATION...5 5.4. FIR-FILTER...6 5.4.1. TYPISIERUNG...6 5.4.2.

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 15: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Entwurfsmethoden für IIR-Filtern sind für Zeitbereich und Bildbereich bekannt Finite-Impulse-Response

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht

Mehr

Übung 6: Analyse LTD-Systeme

Übung 6: Analyse LTD-Systeme ZHAW, DSV, FS2009, Übung 6: Analyse LTD-Systeme Aufgabe : Pol-Nullstellendarstellung, UTF und Differenzengleichung. Die folgenden Pol-Nullstellen-Darstellungen charakterisieren verschiedene LTD- Systeme,

Mehr

[2] M. Meier: Signalverarbeitung, ISBN , Vieweg Verlag, Oktober 2000.

[2] M. Meier: Signalverarbeitung, ISBN , Vieweg Verlag, Oktober 2000. Digitale Signal-Verarbeitung 1 Kapitel 5: FIR- und IIR-Filterentwurf Inhaltsverzeichnis 5.1. EINLEITUNG... 2 5.2. FILTERSPEZIFIKATION... 3 5.3. FIR-FILTER... 4 5.3.1. TYPISIERUNG... 4 5.3.2. ENTWURF MIT

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes

Mehr

Entwurf zeitdiskreter Systeme. Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 2012/13

Entwurf zeitdiskreter Systeme. Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 2012/13 Entwurf zeitdiskreter Systeme Prof. Dr.-Ing. Marcus Purat Beuth Hochschule für Technik Berlin - Wintersemester 0/3 Inhalt Einführung Entwurf auf der Basis zeitkontinuierlicher Systeme Impulsinvarianz Bilinear-Transformation

Mehr

FIR- gegen IIR-Filter

FIR- gegen IIR-Filter y[n-] b + b b -a -a x[n-] + + y[n] y Rekurive IIR-Filter [ n] bi x[ n i] ai y[ n i] H i Y X i + M i b i M i i a i i Kriterium Filterordnung (für vergleichbare Steilheit) naloge Sytem P- Schema nachmachen

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)

Mehr

Verzerrungsfreies System

Verzerrungsfreies System Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl usterlösung 1. Aufgabenblatt 1. Digitale Filter 1.1 Was ist ein digitales Filter und zu welchen Zwecken wird die Filterung

Mehr

3. Quantisierte IIR-Filter R

3. Quantisierte IIR-Filter R . Zweierkomplement a) Wie sieht die binäre Darstellung von -5 aus bei den Wortbreiten b = 4, b =, b = 6? b) Berechnen Sie folgende Additionen im Format SINT(4). Geben Sie bei Überlauf auch die Ausgaben

Mehr

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 Gerrit Buhe, Inhalt 2 Aufbau DSP-System Digitalisierung und Abtasttheorem Beschreibung LTI-System Impulsantwort zu Übertragungsfunktion Werkzeuge

Mehr

Systemtheorie. Vorlesung 25: Butterworth-Filter. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 25: Butterworth-Filter. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 5: Butterworth-Filter Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Übersicht Für den Filterentwurf stehen unterschiedliche Verfahren zur Verfügung Filter mit

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme

Inhaltsverzeichnis. Daniel von Grünigen. Digitale Signalverarbeitung. mit einer Einführung in die kontinuierlichen Signale und Systeme Inhaltsverzeichnis Daniel von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme ISBN (Buch): 978-3-446-44079-1 ISBN (E-Book): 978-3-446-43991-7 Weitere

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Daniel Ch. von Grünigen Digitale Signalverarbeitung mit einer Einführung in die kontinuierlichen Signale und Systeme 4. Auflage Mit 222 Bildern, 91 Beispielen, 80 Aufgaben sowie einer CD-ROM mit Lösungen

Mehr

filter Filter Ziele Parameter Entwurf

filter Filter Ziele Parameter Entwurf 1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Differenzengleichung (Beispiel) DSV 1, 2005/01, Rur, LTD-Systeme, 1. Differenzengleichung DSV 1, 2005/01, Rur, LTD-Systeme, 2

Differenzengleichung (Beispiel) DSV 1, 2005/01, Rur, LTD-Systeme, 1. Differenzengleichung DSV 1, 2005/01, Rur, LTD-Systeme, 2 Diffrnznglichung (Bispil DSV, 5/, Rur, LTD-Systm, Diffrnznglichung DSV, 5/, Rur, LTD-Systm, Linar, zitinvariant, analog Systm => Diffrntialglichungn R τ = RC = b x[n ] a y[n ] x(t C y(t τ dy(t/dt + y(t

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs FIL: Digitale Filter und Filterentwurf Teil - Linearphasige Filter 6 FIL: Überblick Linearphasige Filter FIR-Filterentwurf Halbbandfilter IIR-Filterentwurf Filtertopologien

Mehr

Filterentwurf. Aufgabe

Filterentwurf. Aufgabe Aufgabe Filterentwurf Bestimmung der Filterkoeffizienten für gewünschte Filtereigenschaften Problem Vorgaben häufig für zeitkontinuierliches Verhalten, z.b. H c (s) Geeignete Approximation erforderlich

Mehr

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER

Martin Meyer. Signalverarbeitung. Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER Martin Meyer Signalverarbeitung Analoge und digitale Signale, Systeme und Filter 5. Auflage STUDIUM VIEWEG+ TEUBNER VII 1 Einführung 1 1.1 Das Konzept der Systemtheorie 1 1.2 Übersicht über die Methoden

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:.................................... Teilprüfung 389.055 A Signale und Systeme Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:.................................... Teilprüfung 389.055 B Signale und Systeme Institute of Telecommunications

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Entwurf von FIR-Filtern

Entwurf von FIR-Filtern Kapitel Entwurf von FIR-Filtern. Einleitung.. Darstellung von FIR-Filtern im Zeitbereich y[n] = b x[n] + b x[n ] + b 2 x[n 2] +... + b L x[n (L )] = L b k x[n k] k= = b T x b = [b, b,..., b L ] x = {x[n],

Mehr

Kapitel 5: FIR- und IIR-Filterentwurf

Kapitel 5: FIR- und IIR-Filterentwurf ZHW, DSV 1, 2007/03, Rur&Hrt 5-1 ZHW, DSV 1, 2007/03, Rur&Hrt 5-2 5.1. Einleitung In diesem Kapitel betrachten wir den klassischen Digitalfilterentwurf, in dem primär ideale Tiefpass- (TP), Hochpass- (HP),

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

SV1: Aktive RC-Filter

SV1: Aktive RC-Filter Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung. September 6 Fachpraktikum Signalverarbeitung SV: Aktive RC-Filter Einführung In diesem Versuch wird ein aktives

Mehr

Digitale Signalverarbeitung mit MATLAB- Praktikum

Digitale Signalverarbeitung mit MATLAB- Praktikum Martin Werner Digitale Signalverarbeitung mit MATLAB- Praktikum Zustandsraumdarstellung, Lattice-Strukturen, Prädiktion und adaptive Filter Mit 118 Abbildungen, 29 Tabellen und zahlreichen Praxisbeispielen

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Matlab-Praktika zur Vorlesung Analoge und digitale Filter 1. Betrachtet wird ein Tiefpass. Ordnung mit

Mehr

Digitale Filter. Martin Schlup. 8. Mai 2012

Digitale Filter. Martin Schlup. 8. Mai 2012 Digitale Filter Martin Schlup 8. Mai 2012 1. Filterstrukturen Dieser Beitrag ist eine kurz gehaltene Einführung in die Darstellung zeitdiskreter Systeme und soll einige elementare Hinweise geben, wie digitale

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Karl Dirk Kammeyer I Kristian Kroschel Digitale Signalverarbeitung Filterung und Spektralanalyse mit MATLAB -Übungen 7., erweiterte und korrigierte Auflage Mit 312 Abbildungen und 33 Tabellen STUDIUM 11

Mehr

ÜBUNG 4: ENTWURFSMETHODEN

ÜBUNG 4: ENTWURFSMETHODEN Dr. Emil Matus - Digitale Signalverarbeitungssysteme I/II - Übung ÜBUNG : ENTWURFSMETHODEN 5. AUFGABE: TIEFPASS-BANDPASS-TRANSFORMATION Entwerfen Sie ein nichtrekursives digitales Filter mit Bandpasscharakteristik!

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Filter - Theorie und Praxis

Filter - Theorie und Praxis 23.06.2016 Manuel C. Kohl, M.Sc. 1 Agenda Einführung und Motivation Analoge und digitale Übertragungssysteme Grundlegende Filtertypen Übertragungsfunktion, Impulsantwort und Faltung Filter mit endlicher

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:... VORNAME:... MAT. NR.:.... Teilprüfung 389.055 A Signale und Systeme Institute of Telecommunications TU-Wien.06.06 Bitte beachten Sie: Bitte legen Sie Ihren Studierendenausweis auf Ihrem Tisch

Mehr

5. Beispiele - Filter Seite 15

5. Beispiele - Filter Seite 15 5. Beispiele - Filter Seite 15 5.2 Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel

Mehr

Der Tiefpass Betreuer: Daniel Triebs

Der Tiefpass Betreuer: Daniel Triebs Der Tiefpass Betreuer: Daniel Triebs 1 Gliederung Definiton: Filter Ideale Tiefpass Tiefpass 1.Ordnung Frequenzgänge Grundarten des Filters Filterentwurf Tiefpass 2.Ordnung 2 Definition: Filter 3 Filter

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN ÜBUNG : Z-TRANSFORMATION, SYSTEMSTRUKTUREN 8. AUFGABE Bestimmen Sie die Systemfunktion H(z) aus den folgenden linearen Differenzengleichungen: a) b) y(n) = 3x(n) x(n ) + x(n 3) y(n ) + y(n 3) 3y(n ) y(n)

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 6 Analoge Filter 3 6. Motivation..................................

Mehr

Digitale Signalverarbeitung

Digitale Signalverarbeitung Karl-Dirk Kammeyer, Kristian Kroschel Digitale Signalverarbeitung Filterung und Spektralanalyse mit MATLAB-Übungen 6., korrigierte und ergänzte Auflage Mit 315 Abbildungen und 33 Tabellen Teubner Inhaltsverzeichnis

Mehr

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h] Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) Herbert.Gruenbacher@tuwien.ac.at

Mehr

3. Systembedingte Fehler

3. Systembedingte Fehler 3. Systembedingte Fehler Prof. Dr.-Ing. Dr. h.c. Norbert Höptner Ergänzende Informationen zur Vorlesung Signalverarbeitungssysteme Abschnitte 3.1-3.8. Prof. Dr.-Ing. Dr. h.c. Norbert Höptner 1 Inhalt 3.

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Erweiterung einer digitalen mit Einplatinencomputern Alexander Frömming Mario Becker p.1 Inhalt 1 Ausgangssituation 2 Zielsetzung 3 Theoretische Grundlagen 4 Umsetzung - Hardware 5 Umsetzung - Software

Mehr

Digitale Verarbeitung analoger Signale

Digitale Verarbeitung analoger Signale Digitale Verarbeitung analoger Signale Digital Signal Analysis von Samuel D. Stearns und Don R. Hush 7., durchgesehene Auflage mit 317 Bildern, 16 Tabellen, 373 Übungen mit ausgewählten Lösungen sowie

Mehr

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf

Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf Digitale Signalverarbeitung, Vorlesung 7 - IIR-Filterentwurf 5. Dezember 2016 Siehe begleitend: Kammeyer / Kroschel, Digitale Signalverarbeitung, 7. Auflage, Kapitel 4.2 1 Filterentwurfsstrategien 2 Diskretisierung

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Beuth HS TFH für Berlin Technik Berlin University of Applied Science DSV-Labor. Organisatorisches - Studiengang BEL Schwerpunkt ES

Beuth HS TFH für Berlin Technik Berlin University of Applied Science DSV-Labor. Organisatorisches - Studiengang BEL Schwerpunkt ES Beuth HS TFH für Berlin Technik Berlin University of Applied Science DSV-Labor Organisatorisches - Studiengang BEL Schwerpunkt ES DSV-Labor (Organisatorisches) Ablauf: 5 Laborübungen 11 Termine Anwesenheitspflicht

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen 21. November 2016 Siehe Skript, Kapitel 8 Kammeyer & Kroschel, Abschnitt 4.1 1 Einführung Filterstrukturen: FIR vs. IIR 2 Motivation: Grundlage

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...

Mehr

Übungen in Gruppen (max. 3 Personen) gemeinschaftlich durchgeführt Pro Gruppe ein Protokoll Übungsprotokolle:

Übungen in Gruppen (max. 3 Personen) gemeinschaftlich durchgeführt Pro Gruppe ein Protokoll Übungsprotokolle: Assoc.-Prof. DI Dr. Michael Seger Institute of Electrical, Electronic and Bioengineering / UMIT Institute of Automation and Control Engineering / UMIT Eduard-Wallnöfer-Zentrum 1, 6060 Hall i. Tirol 2.

Mehr

Übungsaufgaben Signalverarbeitung (SV)

Übungsaufgaben Signalverarbeitung (SV) Übungsaufgaben Signalverarbeitung (SV) Prof. Dr.-Ing. O. Nelles Institut für Mechanik und Regelungstechnik Universität Siegen 3. Mai 27 Einführung Keine Aufgaben. 2 Zeitdiskrete Signale und Systeme Aufgabe

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister... Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................

Mehr

Digitale Signalverarbeitung auf FPGAs

Digitale Signalverarbeitung auf FPGAs Digitale Signalverarbeitung auf FPGAs FIX: Fixpointsysteme im Zeitbereich Teil 1 Binäre Zahlendarstellung und Arithmetik 216 Dr. Christian Münker FIX: Überblick Binäre Zahlendarstellung und Arithmetik

Mehr

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

Signale und Systeme. von Prof Dr. Uwe Kiencke, Dr.-lng. HolgerJakel 4., korrigierte Auflage. Oldenbourg Verlag Munchen

Signale und Systeme. von Prof Dr. Uwe Kiencke, Dr.-lng. HolgerJakel 4., korrigierte Auflage. Oldenbourg Verlag Munchen Signale und Systeme von Prof Dr. Uwe Kiencke, Dr.-lng. HolgerJakel 4., korrigierte Auflage Oldenbourg Verlag Munchen I Einfuhrung 1 1 Einleitung 3 1.1 Signale 4 1.2 Systeme 4 1.3 Signalverarbeitung 6 1.4

Mehr

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB

Signale und Systeme. Grundlagen und Anwendungen mit MATLAB Signale und Systeme Grundlagen und Anwendungen mit MATLAB Von Professor Dr.-Ing. Dr. h. c. Norbert Fliege und Dr.-Ing. Markus Gaida Universität Mannheim Mit 374 Bildern, 8 Tabellen und 38 MATLAB-Projekten

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

Signal- und Systemtheorie

Signal- und Systemtheorie Thomas Frey, Martin Bossert Signal- und Systemtheorie Mit 117 Abbildungen, 26 Tabellen, 64 Aufgaben mit Lösungen und 84 Beispielen Teubner B.G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis 1 Einleitung

Mehr

Einführung in die Elektronik für Physiker

Einführung in die Elektronik für Physiker Hartmut Gemmeke Forschungszentrum Karlsruhe, IPE gemmeke@ipe.fzk.de Tel.: 0747-8-5635 Einführung in die Elektronik für Physiker 4. Breitbanderstärker und analoge aktie Filter. HF-Verhalten on Operationserstärkern.

Mehr

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert Die Eigenschaften von Systemen Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert S gesendet IDEALER WANDLER S gesendet Reales System (realer Wandler): Es entstehen Verzerrungen

Mehr

Multimedia Systeme. Dr. The Anh Vuong. http: Multimedia Systeme. Dr. The Anh Vuong

Multimedia Systeme. Dr. The Anh Vuong.   http:   Multimedia Systeme. Dr. The Anh Vuong email: av@dr-vuong.de http: www.dr-vuong.de 2001-2006 by, Seite 1 Multimedia-Application Applications Software Networks Authoringssofware, Contentmangement, Imagesprocessing, Viewer, Browser... Network-Architecture,

Mehr

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response

Mehr

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element Problemstellung Banale smethode : das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Alan V. Oppenheim, Ronald W. Schafer, John R. Buck Zeitdiskrete Signalverarbeitung 2., überarbeitete Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Exponentiation: das Problem

Exponentiation: das Problem Problemstellung Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

Lösungen 4.1 Analoge Übertragung mit PCM

Lösungen 4.1 Analoge Übertragung mit PCM J. Lindner: Informationsübertragung Lösungen Kapitel 4 Lösungen 4. Analoge Übertragung mit PCM 4. a) Blockbild einer Übertragung mit PCM: q(t) A D 8 bit linear f Amin = 8kHz q(i) digitales ˆq(i) Übertragungs-

Mehr

LTI-Systeme in Frequenzbereich und Zeitbereich

LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme in Frequenzbereich und Zeitbereich LTI-Systeme Frequenzgang, Filter Impulsfunktion und Impulsantwort, Faltung, Fourier-Transformation Spektrum, Zeitdauer-Bandbreite-Produkt Übungen Literatur

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr