Abb. 1: Zahlendreieck. Abb. 2: Zeile dreimal addieren

Größe: px
Ab Seite anzeigen:

Download "Abb. 1: Zahlendreieck. Abb. 2: Zeile dreimal addieren"

Transkript

1 Hans Walser, [205002] Trinomialkoeffizienten Worum geht es Es wird eine Verallgemeinerung des Pascalschen Dreiecks der Binomialkoeffizienten besprochen. 2 Das Dreieck Die Abbildung zeigt das Zahlendreieck. Abb. : Zahlendreieck Jede Zahl ist die Summe der drei Zahlen unmittelbar oberhalb sowie links und rechts oberhalb. Man kann es auch so sehen: Eine Zeile wird dreimal versetzt unter einander geschrieben und dann wird addiert (Abb. 2) Abb. 2: Zeile dreimal addieren

2 Hans Walser: Trinomialkoeffizienten 2 / 7 Die Zahlen ergeben sich als Koeffizienten durch das Potenzieren eines Trinoms: ) 0 = ) = p 2 +pq +q 2 ) 2 = p + 2 p 3 q + 3p 2 q pq 3 +q ) 3 = p 6 + 3p 5 q + 6 p q p 3 q p 2 q + 3pq 5 +q 6 ) = p 8 + p 7 q +0 p 6 q 2 +6 p 5 q 3 +9 p q +6 p 3 q 5 +0 p 2 q 6 + pq 7 +q 8 Alternativ kann mit einem quadratischen Polynom gearbeitet werden: ( x 2 + x +) 0 = ( x 2 + x +) = x 2 +x + ( x 2 + x +) 2 = x + 2x 3 + 3x 2 + 2x + ( x 2 + x +) 3 = x 6 + 3x 5 + 6x + 7x 3 + 6x 2 + 3x + ( x 2 + x +) = x 8 + x 7 +0x 6 +6x 5 +9x +6x 3 +0x 2 + x + 3 Schreibweise und Indizierung Für die Zahlen des Zahlendreieckes der Abbildung habe ich die Schreibweise t n,k, n { 0,, 2,...}, k { n, n +,..., n, n} gewählt (Abb. 3). Abb. 3: Schreibweise und Indizierung In dieser Bezeichnung gilt die Rekursion: t n,k = t n,k + t n,k + t n,k+

3 Hans Walser: Trinomialkoeffizienten 3 / 7 Wir haben die Symmetriebeziehung: t n, k = t n,k Link zu den üblichen Trinomialkoeffizienten Wir potenzieren das Standard-Trinom ( a + b + c). Zunächst erhalten wir zum Beispiel für den Exponenten : ( a + b + c) = a + a 3 b + a 3 c + 6a 2 b 2 +2a 2 bc + 6a 2 c 2 + ab 3 +2ab 2 c +2abc 2 + ac 3 + b + b 3 c + 6b 2 c 2 + bc 3 + c Das ist eine hässliche Darstellung. Sie kann verbessert werden durch eine zweidimensionale dreiecksförmige Anordnung (Abb. ). Die Terme im Dreieck sind zu summieren. b ab 3 b 3 c (a + b + c) = 6a 2 b 2 2ab 2 c 6b 2 c 2 a 3 b 2a 2 bc 2abc 2 bc 3 a a 3 c 6a 2 c 2 ac 3 c Abb. : Dreiecksanordnung Die Koeffizienten dieses Schemas sind die üblichen Trinomialkoeffizienten für n =. Wir erkennen die gewöhnlichen Binomialkoeffizienten und Produkte davon. Wenn wir nun die Trinomialkoeffizienten spaltenweise addieren (Abb. 5), ergibt sich die zu gehörende Zeile des Zahlenschemas der Abbildung.

4 Hans Walser: Trinomialkoeffizienten / Abb. 5: Spaltenweise Addition Die Stimmigkeit dieses Verfahrens kann wie folgt eingesehen werden. In den Formeln der Abbildung ersetzen wir a = p 2, b = pq und c = q 2 (Abb. 6). Die Terme in einer Spalte enthalten dieselben Variablen mit denselben Potenzen. Wir können also spaltenweise addieren.

5 Hans Walser: Trinomialkoeffizienten 5 / 7 (pq) (p 2 )(pq) 3 (pq) 3 (q 2 ) (p 2 + pq + q 2 ) = 6(p 2 ) 2 (pq) 2 2(p 2 )(pq) 2 (q 2 ) 6(pq) 2 (q 2 ) 2 (p 2 ) 3 (pq) 2(p 2 ) 2 (pq)(q 2 ) 2(p 2 )(pq)(q 2 ) 2 (pq)(q 2 ) 3 (p 2 ) (p 2 ) 3 (q 2 ) 6(p 2 ) 2 (q 2 ) 2 (p 2 )(q 2 ) 3 (q 2 ) p 8 p 7 q 0p 6 q 2 6p 5 q 3 9p q 6p 3 q 5 0p 2 q 6 pq 7 q 8 Abb. 6: Einsicht In unserer Bezeichnung für t n,k ergeben sich damit folgende Summenformeln: t n,k = n k 2 n k+2 j ( k+2 j ) k+ j j=0 ( ) n k 2 = n! j=0 Wer Lust hat, kann einen Induktionsbeweis versuchen. j! ( k+ j)! ( n k 2 j)!

6 Hans Walser: Trinomialkoeffizienten 6 / 7 5 Farbliche Gestaltung Wir können wie beim Pascalschen Dreieck der Binomialkoeffizienten nun auch die Trinomialkoeffizienten modulo m farblich codieren. In der Abbildung 7 wird zwischen gerade (schwarz) und ungerade (rot) unterschieden. Abb. 7: Gerade und ungerade Wir erhalten eine fraktale Struktur, das war ja auch zu erwarten. In der Abbildung 8 wird modulo 3 gearbeitet. Abb. 8: Modulo 3

7 Hans Walser: Trinomialkoeffizienten 7 / 7 Die Abbildung 9 gibt die Situation für modulo. Abb. 9: Modulo Die Abbildung 7 schließlich für modulo 5. Abb. 7: Modulo 5

( a + b) 1 = 1a +1b. ( a + b) 2 = 1a 2 + 2ab +1b 2 ( a + b) 3 = 1a 3 + 3a 2 b + 3ab 2 +1b 3 ( a + b) 4 = 1a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 +1b 4 (1)

( a + b) 1 = 1a +1b. ( a + b) 2 = 1a 2 + 2ab +1b 2 ( a + b) 3 = 1a 3 + 3a 2 b + 3ab 2 +1b 3 ( a + b) 4 = 1a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 +1b 4 (1) Hans Walser, [218927] Binomialkoeffizienten 1 Worum geht es? Die Binomialkoeffizienten werden ins Negative fortgesetzt. 2 Was man in der Schule lernt Wir expandieren die Potenzen des Binoms (a + b): (

Mehr

, T 4 = = 1, T 2 = , T 3 T 1 (1) 3 Determinanten Die Tabelle 1 zeigt die ersten Determinanten der Matrizen T n

, T 4 = = 1, T 2 = , T 3 T 1 (1) 3 Determinanten Die Tabelle 1 zeigt die ersten Determinanten der Matrizen T n Hans Walser, [20181104] Hinkende Parität 1 Worum geht es? Es wird ein Beispiel mit hinkender Symmetrie besprochen. Auflistung von Daten. Der Hintergrund ist eine Verallgemeinerung der Fibonacci-Folge und

Mehr

Üben. Vereinfachen von Summen. Vereinfachen von Summen. Lösung. Vereinfache:

Üben. Vereinfachen von Summen. Vereinfachen von Summen. Lösung. Vereinfache: X 1a a) 4x + 1 5 b) 6 8 + 3x c) 0,5 + 0,4 5a d) 0,5 0,5 2 + x e) 3 + 4x 2 f) 0,2 + 3x 0,2 g) 1,45 + 2t 0,5 h) 0,8 0,25 + 8k 0,05 X 1a a) 4x + 1 5 = 4x - 4 b) 6 8 + 3x = 3x 2 c) 0,5 + 0,4 5a = 0,9 5a d)

Mehr

Das ist nicht besonders spannend. Wir ändern daher die Regeln für den Turm leicht ab.

Das ist nicht besonders spannend. Wir ändern daher die Regeln für den Turm leicht ab. Hans Walser, [20150101] Schachbrett-Geometrie 1 Worum es geht Auf dem Schachbrett wird eine Metrik definiert, die sich an den Bewegungen von Schachfiguren orientiert. Für eine bestimmte Schachfigur ist

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

( ) werden einerseits wie üblich mit einer festen Zahl moduliert,

( ) werden einerseits wie üblich mit einer festen Zahl moduliert, Hans Walser, [20100612a] Binomialkoeffizienten modulo eine Zahl 1 Worum geht es? n Die Binomialkoeffizienten k ( ) werden einerseits wie üblich mit einer festen Zahl moduliert, andererseits aber auch mit

Mehr

Rechtwinkliges Dreieck und Binomialverteilung 1 Worum geht es? 2 Zerlegungen des rechtwinkligen Dreiecks Abb. 1: Startdreieck

Rechtwinkliges Dreieck und Binomialverteilung 1 Worum geht es? 2 Zerlegungen des rechtwinkligen Dreiecks Abb. 1: Startdreieck Hans Walser Rechtwinkliges Dreieck und Binomialverteilung Worum geht es? Durch iterierte Zerlegung eines rechtwinkligen Dreiecks durch die Höhe kommen wir zu den Binomialkoeffizienten und der Binomialverteilung.

Mehr

Abb. 0: Arbeitsvorlage

Abb. 0: Arbeitsvorlage Hans Walser Rechtwinkliges Dreieck und Binomialverteilung Worum geht es? Durch iterierte Zerlegung eines rechtwinkligen Dreiecks durch die Höhe kommen wir zu den Binomialkoeffizienten und der Binomialverteilung.

Mehr

Aufgabe Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit wie möglich!

Aufgabe Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit wie möglich! Kapitel 1 Rechengesetze 1.1 Körperaxiome und Rechenregeln 1.1.1 Binomische Formeln Aufgabe 1.1.1.1. 1. Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit

Mehr

Bruchterme 3. Sammlung der Aufgaben aus Bruchterme 1 und Bruchterme 2. Dort werden alle Methoden ausführlich an Beispielen besprochen

Bruchterme 3. Sammlung der Aufgaben aus Bruchterme 1 und Bruchterme 2. Dort werden alle Methoden ausführlich an Beispielen besprochen ALGEBRA Bruchterme Sammlung der Aufgaben aus 0 Bruchterme und Bruchterme Dort werden alle Methoden ausführlich an Beispielen besprochen Zum Einsatz im Unterricht. Datei Nr. Stand. Juni 07 Friedrich W.

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

Quadrate und Wurzelziehen modulo p

Quadrate und Wurzelziehen modulo p Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es

Mehr

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n.

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. Die Fakultät Definition: Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. n! = 1 2 3... (n 2) (n 1) n Zusätzlich wird definiert 0! = 1 Wie aus der Definition

Mehr

Mathematik macht Freu(n)de im Wintersemester 2018/19

Mathematik macht Freu(n)de im Wintersemester 2018/19 Mathematik macht Freu(n)de im Wintersemester 08/9 Markus Fulmek 08 06 9 Im folgenden wird zunächst ein kombinatorischer Gedankengang entwickelt, der mit wenigen einfachen Definitionen (samt erläuternden

Mehr

Binomialkoeffizient. Gymnasium Immensee Stochastik, 5. Klassen. Bettina Bieri

Binomialkoeffizient. Gymnasium Immensee Stochastik, 5. Klassen. Bettina Bieri Binomialkoeffizient Gymnasium Immensee Stochastik, 5. Klassen Bettina Bieri 7. Februar 7 Inhaltsverzeichnis Nötiges Vorwissen: Fakultäten. Definition: Fakultät......................... spezielle Fakuläten.........................3

Mehr

1 Goldener Schnitt Pascalsches Dreieck Der Binomische Lehrsatz ( ) ß mit a multipliziert. ( a+ b) 4 = a 3 +3a 2 b+3ab 2 + b 3

1 Goldener Schnitt Pascalsches Dreieck Der Binomische Lehrsatz ( ) ß mit a multipliziert. ( a+ b) 4 = a 3 +3a 2 b+3ab 2 + b 3 1 Goldener Schnitt Pascalsches Dreieck 17 1.3 Pascalsches Dreieck 1.3.1 Der Binomische Lehrsatz Aus der Schule ist Ihnen mit Sicherheit die Binomische Regel bekannt: ( ) 2 = a 2 +2ab+ b 2 a+ b Diese Regel

Mehr

Mathematik Runden, Potenzen, Terme

Mathematik Runden, Potenzen, Terme Mathematik Runden, Potenzen, Terme Mag. Rainer Sickinger HTL v 7 Mag. Rainer Sickinger Mathematik Runden, Potenzen, Terme 1 / 81 Das Stellenwertsystem eins < zehn < hundert < tausend < zehntausend < hunderttausend...

Mehr

Terme und Formeln Grundoperationen

Terme und Formeln Grundoperationen Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler

Mehr

Runden Potenzen und Wurzel Terme. Mathematik W2. Mag. Rainer Sickinger BRP, LMM. v 7 Mag. Rainer Sickinger Mathematik W2 1 / 82

Runden Potenzen und Wurzel Terme. Mathematik W2. Mag. Rainer Sickinger BRP, LMM. v 7 Mag. Rainer Sickinger Mathematik W2 1 / 82 Mathematik W2 Mag. Rainer Sickinger BRP, LMM v 7 Mag. Rainer Sickinger Mathematik W2 1 / 82 Das Stellenwertsystem eins < zehn < hundert < tausend < zehntausend < hunderttausend... v 7 Mag. Rainer Sickinger

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Binomischer Satz. 1-E Vorkurs, Mathematik

Binomischer Satz. 1-E Vorkurs, Mathematik Binomischer Satz 1-E Vorkurs, Mathematik Terme Einer der zentralen Begriffe der Algebra ist der Term. Definition: Eine sinnvoll verknüpfte mathematische Zeichenreihe bezeichnet man als Term. Auch eine

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB./7. November 2008 Prof. Dr. H.-R. Metz (Matrix) Matrizen 1 Ein System von Zahlen a ik, die rechteckig in m Zeilen und n Spalten angeordnet

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

VERTIEFUNGSKURS MATHEMATIK

VERTIEFUNGSKURS MATHEMATIK VERTIEFUNGSKURS MATHEMATIK KLAUSUR 1, 8.12.2015 (1) Verwandle die folgenden Zahlen in Keilschrift bzw. in unsere Schreibweise: a) 14 b) 30 c) 100 d) 1 2 e) 1 1 3 (2) a) Begründe, warum für kleine x die

Mehr

Mathematischer Vorkurs MATH

Mathematischer Vorkurs MATH Mathematischer Vorkurs MATH (01.09.2014 19.09.2014) AOR Dr. Andreas Langer WS 2014-2015 Mathematischer Vorkurs TU Dortmund Seite 1 / 254 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund

Mehr

Kapitel 4: Variable und Term

Kapitel 4: Variable und Term 1. Klammerregeln Steht ein Plus -Zeichen vor einer Klammer, so bleiben beim Auflösen der Klammern die Vorzeichen erhalten. Bei einem Minus -Zeichen werden die Vorzeichen gewechselt. a + ( b + c ) = a +

Mehr

von Zahlenfolgen, die bei Gebietsteilungsproblemen

von Zahlenfolgen, die bei Gebietsteilungsproblemen Zahlenfolgen bei Gebietsteilungsproblemen Karin Halupczok Oktober 005 Zusammenfassung Gesucht sind rekursive und explizite Bildungsgesetze von Zahlenfolgen, die bei Gebietsteilungsproblemen auftauchen:

Mehr

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur

Mehr

Übersicht über wichtige und häufig benötigte mathematische Operationen

Übersicht über wichtige und häufig benötigte mathematische Operationen Bruchrechnung Übersicht über wichtige und häufig benötigte mathematische Operationen Addition/Subtraktion von (ungleichnamigen) Brüchen: Brüche erweitern, sodass die Nenner gleichnamig sind, indem Zähler

Mehr

Kapitel 3: Variable und Term

Kapitel 3: Variable und Term 1. Einführungsbeispiel Das Thema Termumformungen ist ein sehr wichtiges Grundlagenthema in der Mathematik und gehört in den Bereich der Algebra. Wer diese Grundlagen gut verarbeitet hat, kann später in

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder

Mehr

Hans Walser, [ ] KO-Mauern Anregung: Th. W., Z. 1 Beispiel Die Abbildung 1 zeigt ein Beispiel einer KO-Mauer.

Hans Walser, [ ] KO-Mauern Anregung: Th. W., Z. 1 Beispiel Die Abbildung 1 zeigt ein Beispiel einer KO-Mauer. Hans Walser, [20160830] KO-Mauern Anregung: Th. W., Z. 1 Beispiel Die Abbildung 1 zeigt ein Beispiel einer KO-Mauer. Abb. 1: KO-Mauer 2 Start Das geht so: Wir beginnen mit der Mauergeometrie der Abbildung

Mehr

MATHEMATIK Grundkurs 11m3 2010

MATHEMATIK Grundkurs 11m3 2010 MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010

Mehr

Polynome Teil VI: Die Potenzsummenformeln von NEWTON

Polynome Teil VI: Die Potenzsummenformeln von NEWTON Die WURZEL Werkstatt Mathematik Polynome Teil VI: Die Potenzsummenformeln von NEWTON In der letzten Ausgabe der Werkstatt haben wir gesehen, dass sich Potenzsummen, etwa die symmetrischen Funktionen p

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

n x n y n Tab.1: Zwei Beispiele

n x n y n Tab.1: Zwei Beispiele Hans Walser, [0404] Konvergente Fibonacci-Folgen Worum geht es? Die klassische Fibonacci-Folge,,,, 5, 8,,,... ist divergent. Wir untersuchen Beispiele von konvergenten Folgen mit der Rekursion: a n = pa

Mehr

Grundlagen und Grundoperationen

Grundlagen und Grundoperationen ZaHlenMenGen und t erme 1 Grundlagen und Grundoperationen 1 Zahlenmengen und t erme Im Zentrum dieses Kapitels stehen die elementaren Zahlenmengen N, Z, Q und R. Weiter werden die Grundlagen für den Umgang

Mehr

$Id: mengen.tex,v /11/16 20:09:23 hk Exp $ $Id: komplex.tex,v /11/16 20:12:23 hk Exp hk $

$Id: mengen.tex,v /11/16 20:09:23 hk Exp $ $Id: komplex.tex,v /11/16 20:12:23 hk Exp hk $ $Id: mengen.tex,v.7 2008//6 20:09:23 hk Exp $ $Id: komplex.tex,v.2 2008//6 20:2:23 hk Exp hk $ I. Grundlagen 3 Mengen und Abbildungen 3.4 Vollständige Induktion und endliche Mengen Wir wollen noch ein

Mehr

Ist a > b, dann ist b < a. Ist a < b, dann ist b > a. Ist a > b und b > c, dann ist a > c. Ist a < b und b < c, dann ist a < c.

Ist a > b, dann ist b < a. Ist a < b, dann ist b > a. Ist a > b und b > c, dann ist a > c. Ist a < b und b < c, dann ist a < c. Teil Allgemeines zu Ungleichungen Die gebräuchlichsten Symbole für Ungleichungen sind > (ist grösser als), < (ist kleiner als), (ist grösser als oder gleich), (ist kleiner als oder gleich), (ist ungleich)

Mehr

Fit für die E-Phase?

Fit für die E-Phase? Kapitel Bruchrechnung (mit und ohne Variablen) a) 6 4 i) 6 7 7 8 4 b) 5 5 4 6 7 j) : 7 8 c) 5a a 4 ab y 6 k) : b y d) y l) ( y ) : y y e) a a a m) a 8b 5 6b f) y y n) a 5b 9a 0 b g) a b b y y o) +y y (+y)

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Potenzen, bei denen der Exponent negativ oder 0 ist 2 2 Potenzregeln 2 3 Terme mit Wurzelausdrücken 4 4 Wurzelgesetze 4 5 Das

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

Hans Walser, [ a], [ ] Fibonacci und Pascal

Hans Walser, [ a], [ ] Fibonacci und Pascal Hans Walser, [0022a], [0303] Fibonacci und Pascal Worum geht es? Bekanntlich führen die Schrägzeilensummen im Pascal-Dreieck der Binomialkoeffizienten zu den Fibonacci-Zahlen. Es wird untersucht, was bei

Mehr

Termumformungen - Ausbau

Termumformungen - Ausbau Termumformungen - Ausbau 2. Kapitel aus meinem ALGEBRA - Lehrgang Sprachprofil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 18. September 2011 Überblick über die bisherigen

Mehr

Kombinatorik. Jörn Loviscach. Versionsstand: 31. Oktober 2009, 17:22. 1 Begriff Kombinatorik; Zahl aller Teilmengen

Kombinatorik. Jörn Loviscach. Versionsstand: 31. Oktober 2009, 17:22. 1 Begriff Kombinatorik; Zahl aller Teilmengen Kombinatorik Jörn Loviscach Versionsstand: 31. Oktober 2009, 17:22 1 Begriff Kombinatorik; Zahl aller Teilmengen Die Kombinatorik ein recht kleines Gebiet der Mathematik befasst sich mit dem Abzählen von

Mehr

Programmierstarthilfe SS 2009 Fakultät für Ingenieurwissenschaften und Informatik 4. Blatt Für die Woche vom bis zum 22.5.

Programmierstarthilfe SS 2009 Fakultät für Ingenieurwissenschaften und Informatik 4. Blatt Für die Woche vom bis zum 22.5. Programmierstarthilfe SS 2009 Fakultät für Ingenieurwissenschaften und Informatik 4. Blatt Für die Woche vom 18.5. bis zum 22.5.2009 (KW 21) Organisatorisches Die Webseiten zur Veranstaltung sind unter

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

Termumformungen. 2. Kapitel aus meinem Lehrgang ALGEBRA. Ronald Balestra CH St. Peter

Termumformungen. 2. Kapitel aus meinem Lehrgang ALGEBRA. Ronald Balestra CH St. Peter Termumformungen 2. Kapitel aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: theorie@ronaldbalestra.ch 11. Oktober 2009 Überblick über die bisherigen ALGEBRA

Mehr

1.1 Rechnen mit Termen (Thema aus dem Bereich Algebra)

1.1 Rechnen mit Termen (Thema aus dem Bereich Algebra) 1.1 Rechnen mit Termen (Thema aus dem Bereich Algebra) Inhaltsverzeichnis 1 Terme 2 1.1 Definition des Begriffs..................................... 2 1.2 Vorzeichen von Termen.....................................

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich

Mehr

b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe

b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe Aufgabenblatt Aufgaben zum Thema Potenzgesetze 1. Unterhaltsame Potenzgesetze Im Unterricht wurden die folgenden 5 Potenzgesetze behandelt: 1. Gesetz: 2. Gesetz: 3. Gesetz: 4. Gesetz: 5. Gesetz: a n a

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

Abb. 1: Konstruktionsfolge

Abb. 1: Konstruktionsfolge Hans Walser, [20180501] DIN-Format, Goldener Schnitt und gleichseitiges Dreieck 1 Worum geht es? Die klassische Konstruktion eines Rechtecks im DIN-Format (Walser 2013b) wird iteriert und führt zum gleichseitigen

Mehr

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16 Vorkurs Mathematik WS 2015/16 2.Tag Arten von Gleichungen Lineare Gleichungen (und Funktionen) 0 = ax + b (oft als Funktion: y = mx + n) a,b R Parameter m Anstieg, n Achsenabschnitt Quadratische Gleichungen

Mehr

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29

Inhaltsverzeichnis. Vorwort 1. I Zahlen 5. II Algebra 29 Inhaltsverzeichnis Vorwort 1 I Zahlen 5 1. Rechnen mit ganzen Zahlen 6 Addition, Subtraktion und Multiplikation............. 7 Division mit Rest........................... 7 Teiler und Primzahlen........................

Mehr

Die alternierende Seitenquadratsumme ist null. Es wird versucht, diesen Sachverhalt auf verschiedene Weisen zu illustrieren. a 2 b 2 + c 2 d 2 = 0 (1)

Die alternierende Seitenquadratsumme ist null. Es wird versucht, diesen Sachverhalt auf verschiedene Weisen zu illustrieren. a 2 b 2 + c 2 d 2 = 0 (1) Hans Walser, [20160615] Orthodiagonale Vierecke Anregung: Heinz Klaus Strick, Leverkusen 1 Worum geht es Orthodiagonale Vierecke haben orthogonale Diagonalen. In der üblichen Bezeichnung (Abb. 2) können

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de April 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik April 2017 1 / 74 Ein paar Tipps vorab Be gritty : Perseverance and

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 205 Binomialverteilung Hans Walser: Modul 205, Binomialverteilung ii Inhalt Die Qual der Wahl: Binomialkoeffizienten.... Ordnung muss sein....2 Auswählen

Mehr

Programmierstarthilfe SS 2010 Fakultät für Ingenieurwissenschaften und Informatik 6. Blatt Für die Woche vom bis zum 4.6.

Programmierstarthilfe SS 2010 Fakultät für Ingenieurwissenschaften und Informatik 6. Blatt Für die Woche vom bis zum 4.6. Programmierstarthilfe SS 2010 Fakultät für Ingenieurwissenschaften und Informatik 6. Blatt Für die Woche vom 31.5. bis zum 4.6.2010 (KW 22) Organisatorisches Diese Woche führen wir Methoden ein und behandeln

Mehr

a) b) Abb. 1: Die beiden Quadrate

a) b) Abb. 1: Die beiden Quadrate Hans Walser, [20180119] Alexander der Große und Pythagoras Anregung: Chr. S., H. 1 Worum geht es? Aus 4 Einzelquadraten können wir ein 2 2 -Quadrat zusammenfügen (Abb. 1a) und analog aus 9 Einzelquadraten

Mehr

Nun fügen wir auf beiden Seiten des gleichseitigen Dreieckes je ein gleichschenkliges Dreieck an (Abb. 2).

Nun fügen wir auf beiden Seiten des gleichseitigen Dreieckes je ein gleichschenkliges Dreieck an (Abb. 2). Hans Walser, [20160521] Gigampfi 0 Worum geht es? Es werden zwei Gigampfi-Probleme mit invarianten Winkeln vorgestellt. 1 Beispiel 1 1.1 Das Problem An der Spitze eines gleichseitigen Dreiecks bringen

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck

Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck 1 Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck Wir kennen die beiden binomischen Formeln: Sie sind ein Sonderfall des Binomischen Lehrsatzes: Wir sehen, dass die Potenzen

Mehr

Teilbarkeitslehre und Restklassenarithmetik

Teilbarkeitslehre und Restklassenarithmetik Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Literatur. ISM SS 2018 Teil 3/Restklassen

Literatur. ISM SS 2018 Teil 3/Restklassen Literatur [3-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [3-2] Schmeh, Klaus: Kryptografie. dpunkt, 5. Auflage, 2013 [3-3] Hoffmann,

Mehr

4.4 Taylorentwicklung

4.4 Taylorentwicklung 4.4. TAYLORENTWICKLUNG 83 4.4 Taylorentwicklung. Definitionen f sei eine reellwertige m + -mal stetig differenzierbare Funktion der n Variablen x bis x n auf einem Gebiet M R n. Die Verbindungsgerade der

Mehr

Polynome Teil V: Elementarsymmetrische Funktionen.

Polynome Teil V: Elementarsymmetrische Funktionen. Die WURZEL Werkstatt Mathematik Polynome Teil V: Elementarsymmetrische Funktionen. Es gibt Gleichungssysteme, die lassen sich mit schulischen Mitteln nicht bzw. nur sehr mühsam knacken. So musste etwa

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B 90 Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. Binom zum Kopfrechnen? Für was kann man das 3. Binom

Mehr

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Gleichungen Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Lineare Gleichungen Lineare Gleichungen ax + b = 0 Lineare Gleichungen ax

Mehr

) sind keine Terme. Setzt man für die Variable eines Terms eine Zahl ein, so erhält man als Ergebnis wieder eine Zahl. y = 2 3 y = 11

) sind keine Terme. Setzt man für die Variable eines Terms eine Zahl ein, so erhält man als Ergebnis wieder eine Zahl. y = 2 3 y = 11 Wert eines Terms berechnen sind sinnvolle Rechenausdrücke, die aus Zahlen, Variablen, Rechenzeichen und Klammern bestehen können. Setzt man für die Variablen Zahlen ein, so erhält man als Ergebnis wieder

Mehr

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri Binomischer Lehrsatz Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 20 Inhaltsverzeichnis Nötiges Vorwissen. Fakultät................................ Definition...........................2

Mehr

2018, MNZ. Jürgen Schmidt. Vorkurs. Mathematik RECHNEN. Tag. Wintersemester 2018/19

2018, MNZ. Jürgen Schmidt. Vorkurs. Mathematik RECHNEN. Tag. Wintersemester 2018/19 208, MNZ. Jürgen Schmidt Vorkurs Mathematik. RECHNEN Wintersemester 208/9 Tag Kontaktdaten Dr.-Ing. Jürgen Schmidt Raum 5.2.09 (036) 6700 975 juergen.schmidt@fh-erfurt.de Sprechzeit: im WS208/9 (Vorlesungszeit)

Mehr

1 Worum es geht Jacob Bernoulli stellte die Frage um den Grenzwert von [Downey / Ong / Sellers]: +! = 1

1 Worum es geht Jacob Bernoulli stellte die Frage um den Grenzwert von [Downey / Ong / Sellers]: +! = 1 Hans Walser, [0087a] Das Basler Problem Anregung: P. B., L. und M. G., S. G. Worum es geht Jacob Bernoulli stellte die Frage um den Grenzwert von [Downey / Ong / Sellers]: S = + + + +! = 4 k Bernoulli

Mehr

Exponentialgleichungen: Teil 1. 1-E Mathematik, Vorkurs

Exponentialgleichungen: Teil 1. 1-E Mathematik, Vorkurs Exponentialgleichungen: Teil 1 1-E Mathematik, Vorkurs Exponentialgleichungen: Aufgaben 1, 2 Aufgabe 1: Berechnen Sie mithilfe der Potenzgesetze [ 36 2 3 6 ] : 1 3 6 ; [ 35 : 2 2 ] 3 2 5 3 Aufgabe 2: Fassen

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Funktionen einer Variablen 1 Zahlen 1.1 Zahlmengen Im täglichen Gebrauch trifft man vor allem auf die natürlichen Zahlen N = {1,2,3,...}. Gelegentlich wird auch die Bezeichnung N 0 = {0,1,2,...} benutzt.

Mehr

Damit kann die Kantenlänge s berechnet werden: s = s=17cm ; 3s = 51cm; 5s = 85 cm d) Volumen des Würfels: 2197cm 3

Damit kann die Kantenlänge s berechnet werden: s = s=17cm ; 3s = 51cm; 5s = 85 cm d) Volumen des Würfels: 2197cm 3 1 a) b) c) d) 3 59.57 3.905493027 3.905 (mit TR lösen) 3 656.589 8.691562701 8.692 (mit TR lösen) 3 125.125 5.001666111 5.002 (mit TR lösen) 3 30.8994 3.137978874 3.138 (mit TR lösen) e) 3 30 1256 0.287989866

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS018/19 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 7x+3y 6}.

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Konrad-Zuse-Schule (2015) Torsten Schreiber

Konrad-Zuse-Schule (2015) Torsten Schreiber Konrad-Zuse-Schule (015) Torsten Schreiber 60 Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Worin liegt der Unterschied zwischen Aussage und Aussageform? Was versteht man unter

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 1 Grundlagen. Jürgen Koch Martin Stämpfle. 1 Grundlagen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes,

Mehr

WURZEL Werkstatt Mathematik Polynome Teil III oder Probleme lösen mit Quadratfunktionen

WURZEL Werkstatt Mathematik Polynome Teil III oder Probleme lösen mit Quadratfunktionen Die WURZEL Werkstatt Mathematik Polynome Teil III oder Probleme lösen mit Quadratfunktionen Es passiert im Alltagsgeschehen oft, dass mit Kanonen auf Spatzen geschossen wird. Auch in der Mathematik vor

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Mathematik für Studierende der Biologie und des Lehramtes Chemie ominik Schillo Universität des Saarlandes 7 Vorlesung, 007 (Stand: 007, 4: Uhr) Notation Seien A R n n sowie b R n und betrachte das LGS

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen

Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen Mathe - Lernzettel: Nullstellen, Monotonie und Ableitungen Leun4m 29. April 2015 Version: 0 Ich kann nicht für Richtigkeit garantieren! Inhaltsverzeichnis 1 Themenübersicht 1 2 Funktionen und Graphen 2

Mehr

2.6 Potenzen (Thema aus dem Bereichen Algebra)

2.6 Potenzen (Thema aus dem Bereichen Algebra) 2.6 Potenzen Thema aus dem Bereichen Algebra) Inhaltsverzeichnis 1 Einführung in den Begriff der Potenz 2 2 Repetition: Potenzen mit natürlichen Exponenten 2 Potenzen mit ganzzahligen Exponenten 4 4 Potenzen

Mehr

s 1 Wir wählen den Punkt A 0 auf s 0 und ergänzen zum Parallelogramm A 0 B 2 A 1 S gemäß Abbildung 2. Abb. 1: Schwerlinien vorgegeben

s 1 Wir wählen den Punkt A 0 auf s 0 und ergänzen zum Parallelogramm A 0 B 2 A 1 S gemäß Abbildung 2. Abb. 1: Schwerlinien vorgegeben Hans Walser, [20150129] Kopunktale Geraden 1 Worum geht es? In der Schule lernt man, dass sich die drei Schwerlinien eines Dreieckes in einem Punkt schneiden, dem Schwerpunkt. Wir fragen nun umgekehrt:

Mehr