Vorlesung Lineare Funktionale LINEARE FUNKTIONALE 69

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Lineare Funktionale LINEARE FUNKTIONALE 69"

Transkript

1 13.1. LINEARE FUNKTIONALE 69 Vorlesung Lineare Funktionale Der Begriff der schwachen Konvergenz wird klarer, wenn man lineare Funktionale betrachtet. Das Skalarprodukt f, g in Hilberträumenkann nämlichfür festes f H(Ω) als lineare Funktionvong betrachtetwerden. Die übliche Terminologie ist lineares Funktional. Vor unserem ersten wichtigen Satz, dem Darstellungssatz von Riesz, jedoch erst einige allgemeine Bemerkungen. Definition. EsseiH ein Hilbertraum. Ein beschränkteslinearesfunktionala ist eineabbildungsvorschrift, die jedem Element f H eine reelle Zahl A(f) zuordnet und folgende Eigenschaften besitzt: 1. A ist additativ, d.h. A(f 1 + f 2 ) = A(f 1 ) + A(f 2 ); 2. A ist homogen, d.h. A(λf) = λa(f) für alle λ R; 3. A ist beschränkt, d.h. es existiert ein M [0, ) derart, dass A(f) M f H für alle f H erfüllt ist. Lineare Funktionale können natürlich auch auf Banachräumen definiert werden. Es kann auch der Wertevorrat R(A) wieder aus einem allgemeinen Banachraum sein. In diesem letzten Fall sprechen wir von (beschränkten) linearen Operatoren. Aus der Definition lesen wir unmittelbar A(0) = A(0 f) = 0 A(f) = 0 sowie A( λ 2 f) = λ 2 A(f) ab. Wir kommen nun zum Begriff eines stetigen linearen Funktionals. Definition. Das lineare Funktional A heißt stetig, falls jede in H konvergente Folge {f k } k=1,2,... in eine konvergent Folge {A(f k )} k=1,2,... abgebildet wird. In unserem Zusammenhang ist folgendes Resultat wichtig. Satz. Ein lineares Funktional ist genau dann stetig, wenn es beschränkt ist. Beweis. (Triebel [18], Beweis zu Satz 6.1) 1. Sei A beschränkt. Betrachte die in H konvergente Folge f k f. Aus der Beschränktheit folgt d.h. A(f k ) A(f) für k. Also ist A stetig. A(f k ) A(f) = A(f k f) M f k f H, 2. Sei A stetig. Angenommen, A ist nicht beschränkt. Dann gibt es Elemente f k H mit f k H = 1, A(f k ) k für k = 1, 2,... Die Folge g k := f k k konvergiert gegen 0, d.h. es gilt auch A(g k ) 0 für k wegen der Stetigkeit. Das ist aber ein Widerspruch zu Damit ist der Satz bewiesen. A(g k ) = 1 k A(f k) 1 für alle k = 1, 2,...

2 70 KAPITEL V. BESCHRÄNKTE LINEARE FUNKTIONALE AUF HILBERTRÄUMEN 13.2 Der Rieszsche Darstellungssatz In Vorlesung 9 hatten wir die Aussage des Rieszschen Darstellungssatzes auf L p vorgestellt. Hier nun wollen wir diesen Darstellungssatz in Hilberträumen kennenlernen und beweisen. Betrachte zur Vorbereitung das spezielle lineare Funktional A(f) = f, g zu fixiertem g H. Nach der Schwarzschen Ungleichung ist A(f) f H g H. Definition. Für die Norm des Operators A setzen wir Im obigen Beispiel gilt also Andererseits ist Insgesamt erhalten wir A H := sup f H\{0} A(f) f H = A H g H. sup A(f). f H, f H=1 g 2 H = g, g = A(g) A H g H, daher g H A H. A H = g H. Dieses spezielle Resultat verallgemeinert sich nun wie folgt: Satz. Jedes beschränkte, lineare Funktional A(f) im Hilbertraum H lässt sich in der Form A(f) = f, g schreiben. Die erzeugende Funktion g H ist durch A eindeutig bestimmt. Es gilt dabei A H = g H. Mit anderen Worten: Jedem linearen und beschränkten Funktional A(f) über dem Hilbertraum H ist eineindeutig ein Hilbertraumelement g zugeordnet. Damit bildet die Menge solcher Funktionale wieder ein Hilbertraum! Warum? Beweis. (Triebel [18], Beweis zu Satz 9.1) 1. Wir setzen voraus, dass A(f) nicht identisch Null ist. Dann ist H 1 = { u : u H, A(u) = 0 } ein echter Unterraum von H. Aus der Stetigkeit des linearen Funktionals A folgt, dass H 1 abgeschlossen ist. Wähle ein v H1 mit v 0. Es ist dann A(v) 0, und wir erhalten v H 1, f A(f) A(v) v H 1, denn wir berechnen Damit ist aber auch bzw. nach Umstellen ( A f A(f) ) A(v) v = A(f) A(f) A(v) = 0. A(v) 0 = v, f A(f) A(v) v = v, f A(f) A(v) v 2 H A(f) = A(v) A(v) v 2 v, f = H v 2 v, f = g, f H mit der Setzung g = A(v) v. Wir sind nun in der eingangs besprochenensituation eines Skalarprodukts! v 2 H

3 13.3. DER SATZ VON LAX UND MILGRAM Die Identität A H = g H haben wir oben bereits nachgewiesen. 3. Es verbleibt, die Eindeutigkeit zu zeigen. Sei dazu mit g g, und für alle f H muss gelten A(f) = f, g = f, g = f, g g = 0. Setze speziell f = g g, so folgt g g, g g = 0, d.h. g = g. Damit ist der Satz bewiesen. Diesen Darstellungssatz (im L 2 ) fanden unabhängig voneinander M. Fréchet und F. Riesz. Er wurde im Jahr 1907 im gleichen Heft der Compes Rendus, Band 144, veröffentlicht. Der Darstellungssatz von Riesz gilt auch für allgemeinere Banachräume. Wir wiederholen dazu aus der neunten Vorlesung den Satz. Sei 1 p <. Zu jedem beschränkten Funktional A auf L p (Ω) gibt es genau eine Funktion g L q (Ω) mit 1 p + 1 q = 1, so dass A(f) = fg dx für alle f L p (Ω). Ω Das Integral auf der rechten Seite hier kann auch als Skalarprodukt gedeutet werden, allerdings sind die beiden Faktoren aus i.a. verschiedenen Räumen. Die Koeffizienten p und q heissen zueinander konjugiert. Auch für den Fall nichtnegativer, linearer Funktionale A: C 0 (R n ) R gibt es einen solchen Darstellungssatz: Zu jedem solchen A existiert nämlich ein Radon-Maß µ auf R n mit der Eigenschaft A(f) = f(x)dµ(x). R n Schließlich ist es möglich, den R n durch einen sogenannten lokalkompakten Raum Hausdorff-Raum X zu ersetzen, welcher dadurch gekennzeichnet ist, dass jeder Punkt eine kompakte Umgebung besitzt. Für ein detailliertes Studium verweisen wir auf die Literatur zur Maßtheorie Der Satz von Lax und Milgram Der Rieszsche Darstellungssatz stellt uns ein für die Funktionalanalysis und insbesondere für die Theorie der partiellen Differentialgleichungen äußerst wichtiges Hilfsmittel zur Verfügung: Satz. Sei a: H H R eine Sesquilinearform, d.h. es gilt Ferner gebe es reelle Zahlen 0 < c 0, c 1 <, so dass (i) a(f, g) c 1 f H g H, d.h. a ist beschränkt; (ii) a(f, f) c 0 f 2 H, d.h. a ist koerziv a(λf 1 + µf 2, g) = λa(f 1, g) + µa(f 2, g). für alle f, g H. Dann existiert genau ein linearer Operator B: H H mit a(f, g) = f, B(g) für alle f, g H. Ferner ist B invertierbar, d.h. es existiert ein linearer Operator B 1 mit den Eigenschaften B B 1 = B 1 B = id und der identischen Abbildung h id(h) = h, und es gelten B(g) H c 1 g H, B 1 (g) H 1 c 0 g H für alle g H.

4 72 KAPITEL V. BESCHRÄNKTE LINEARE FUNKTIONALE AUF HILBERTRÄUMEN Der Satz von Lax und Milgram stellt eine Verallgemeinerung des Rieszschen Darstellungssatzes auf Bilinearformen dar. In Numerik und Theorie der partiellen Differentialgleichungen wird der Satz von Lax und Milgram in verschiedenen allgemeineren Formen diskutiert. Beweis. (Dobrowolski [20], Beweis zu Satz 2.29) Sei g H fest gewählt. Dann ist A g (f) = a(f, g) ein lineares Funktional, wobei die Linearität aus A g (λf 1 + µf 2 ) = a(λf 1 + µf 2, g) = a(λf 1, g) + a(µf 2, g) = λa(f 1, g) + µa(f 2, g) = λa g (f 1 ) + µa g (f 2 ) folgt. In den folgenden Punkten wollen wir alle im Satz behaupteten Eigenschaften von A g im Detail herausarbeiten. A g ist beschränkt, also auch stetig, denn wir berechnen A g H = sup A g (f) = sup a(f, g) c 1 g H, f H, f H=1 f H, f H=1 weshalb A g beschränkt ist. Nach dem Satz aus Abschnitt 13.1 ist damit A g auch stetig. Nach dem Rieszschen Darstellungssatz können wir die Wirkung von A g als Skalarprodukt darstellen A g (f) = f, h für alle f H mit einer eindeutig festgelegten erzeugenden Funktion h H. Mit anderen Worten finden wir für zu jedem fest gewählten g H ein eindeutig bestimmtes h H mit der Eigenschaft A g (f) = f, h für alle f H. Demnach läßt sich h als Bild einer Abbildung B: H H schreiben: was bedeutet h = B(g), A g (f) = a(f, g) = f, B(g) für alle f H. Das ist schon die gesuchte Darstellung. Allerdings müssen wir uns noch davon überzeugen, dass B auch wirklich eine wie im Satz behauptete geeignete lineare Abbildung ist. Zunächst ist B linear, denn unter Benutzung der Bilinearität der Form a: H H R berechnen wir f, B(λg 1 + µg 2 ) = a(f, λg 1 + µg 2 ) = λa(f, g 1 ) + µa(f, g 2 ) = λ f, B(g 1 ) + µ f, B(g 2 ) = f, λb(g 1 ) + f, µb(g 2 ) = f, λb(g 1 ) + µb(g 2 ) für alle f H. Daraus folgt die Linearität der Abbildung B. Ferner ist B beschränkt und stetig als Abbildung von H in H in folgendem Sinne: nach Voraussetzung (i) des Satzes, d.h. B(g) 2 H = B(g), B(g) = a(b(g), g) c 1 B(g) H g H B(g) H c 1 g H für alle g H. Damit ist B beschränkt, wenn wir - analog zum Fall linearer Funktionale - die Beschränktheit von Operatoren definieren. Genauso ersehen wir, dass B stetig ist, wenn wir die bekannte Stetigkeitsdefinition für lineare Funktionale ausdehnen: Eine im Mittel konvergente Folge {g k } k=1,2,... H mit g k g H 0 für k wird in eine konvergente Folge {B(g k )} k=1,2,... H abgebildet, denn B(g k ) B(g) H = B(g k g) H c 1 g k g H.

5 13.3. DER SATZ VON LAX UND MILGRAM 73 DerKern der Abbildung B ist trivialim folgenden Sinne: Die Schwarzsche Ungleichung liefert zunächst c 0 f 2 H a(f, f) = f, B(f) B(f) H f H bzw. B(f) H c 0 f H für alle f H. Dieses bedeutet aber N(B) := { f H : B(f) = 0 } besteht nur aus der Nullabbildung: N(B) = {0}. Das wiederum impliziert, dass B injektiv ist: Sind nämlich g 1 g 2 zwei Elemente aus H mit B(g 1 ) = h und B(g 2 ) = h, so ermitteln wir 0 = B(g 1 ) B(g 2 ) = B(g 1 g 2 ), also g 1 = g 2 in H. Es folgt, dass der Wertevorrat R(B) abgeschlossen ist. Dabei ist erst einmal R(B) = { h H : h = B(f) für ein f H }. Wähle nun eine Folge {f k } k=1,2,... H. Gilt nun g k = B(f k ) g H (und das ist unsere Ausgangsfolge für diesen Beweispunkt), so folgt auch c 1 1 f k f l H B(f k f l ) H. Da nun {B(f k )} k=1,2,... konvergiert und somit in H eine Cauchy-Folge ist, wissen wir nun, dass auch {f k } k=1,2,... eine Cauchy-Folge ist, und es konvergiert f k f in H. Unter Ausnutzung der Stetigkeit von B erhalten wir B(f k ) B(f) = g, d.h. g ist Bild von f unter B, und R(B) ist abgeschlossen. Schließlich zeigen wir, dass B bijektiv ist. Sei dazu ein f 0 H gewählt mit f 0 R(B) H. Wegen folgt f 0, B(f) = 0 für alle f H 0 = f 0, B(f 0 ) = a(f 0, f 0 ) c 0 f 0 2 H, und daher muss f 0 = 0 sein. Also besteht der zu R(B) orthogonale Raum nur aus dem Nullelement. Da aber andererseits R(B) H abgeschlossen ist, schließen wir nach den Resultaten aus Abschnitt 12.2 R(B) = H. Daher ist B bijektiv, und es existiert die Inverse B 1 mit B B 1 = B 1 B = id. Ersetzen wir schließlich in f H c 1 0 B(f) H die Funktion f durch B 1 (g), so folgt auch die im Satz behauptete Normabschätzung für B 1. Es ist alles gezeigt.

6 74 KAPITEL V. BESCHRÄNKTE LINEARE FUNKTIONALE AUF HILBERTRÄUMEN

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Riesz scher Darstellungssatz und Duale Räume

Riesz scher Darstellungssatz und Duale Räume Riesz scher Darstellungssatz und Duale Räume LV Numerik Partieller Differentialgleichungen Bärwolff SS 2010 14.06.2010 Julia Buwaya In der Vorlesung wurde der Riesz sche Dartsellungssatz als wichtiges

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Ein Blick über den Tellerrand... mit FreeFem++

Ein Blick über den Tellerrand... mit FreeFem++ Ein Blick über den Tellerrand... mit FreeFem++ Eine Einführung und etwas Theorie Steffen Weißer Universität des Saarlandes 30. Oktober 2015 Gliederung 1 Zum Seminar 2 Was ist eine PDE? 3 Etwas Funktionalanalysis

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Existenz von schwachen Lösungen zu verallgemeinerten elliptischen Gleichungen

Existenz von schwachen Lösungen zu verallgemeinerten elliptischen Gleichungen Existenz von schwachen Lösungen zu verallgemeinerten elliptischen Gleichungen LM München 13.12.2012 Existenz von schwachen Lösungen zu verallgemeinerten elliptischen Gleichung 1/15 Einführung Lu = u =

Mehr

Schwache Lösungstheorie

Schwache Lösungstheorie Kapitel 4 Schwache Lösungstheorie Bemerkung 4.1 Motivation. Dieses Kapitel stellt eine Erweiterung des Lösungsbegriffes von partiellen Differentialgleichungen vor die schwache Lösung. Diese Erweiterung

Mehr

Problemblatt. zur Linearen Funktionalanalysis. Stetigkeit von Funktionen?

Problemblatt. zur Linearen Funktionalanalysis. Stetigkeit von Funktionen? Universität Potsdam Sommersemester 2009 Steffen Fröhlich Problemblatt zur Linearen Funktionalanalysis Normen und Metriken 1. Definieren Sie den Begriff Vektorraum. 2. Nennen Sie die Normaxiome. 3. Wann

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

Eigenschaften kompakter Operatoren

Eigenschaften kompakter Operatoren Eigenschaften kompakter Operatoren Denition Seien X, Y normierte Räume und sei A : X Y linear. Dann heiÿt A kompakt (vollstetig), wenn für jede beschränkte Menge B X die Menge A(B) kompakt ist. Eigenschaften

Mehr

Höhere Funktionalanalysis WS2016/17 Übungsblatt

Höhere Funktionalanalysis WS2016/17 Übungsblatt Höhere Funktionalanalysis WS2016/17 Übungsblatt 1 11.10.2016 Aufgabe 1. Berechne die Normen der Operatoren (a) f L [0, 1], M f : L 2 [0, 1] L 2 [0, 1], (M f g)(x) = f(x)g(x). (b) g C[0, 1], T g : C[0,

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

10 Hilberträume. (b) λx,y = λ x,y für x,y X, λ K. (c) x, y = y, x für x, y X (Komplexe Konjugation nur im Falle K = C)

10 Hilberträume. (b) λx,y = λ x,y für x,y X, λ K. (c) x, y = y, x für x, y X (Komplexe Konjugation nur im Falle K = C) 10 Hilberträume 10.1. Definition. Sei X ein Vektorraum über K. Eine Abbildung, : X X K heißt Skalarprodukt, falls (a) x 1 + x,y = x 1,y + x,y für x 1,x,y X (b) λx,y = λ x,y für x,y X, λ K (c) x, y = y,

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Seminar: Integralgleichungen (WS 06/07)

Seminar: Integralgleichungen (WS 06/07) Seminar: Integralgleichungen (WS 06/07) Numerische Behandlung der Fredholmschen Integralgleichung - Teil 1 Melanie Seifried Erik Ivar Fredholm (1866-1927) Schwedischer Mathematiker, der große Beiträge

Mehr

Bezeichnungen und Hilfsmittel aus der Analysis

Bezeichnungen und Hilfsmittel aus der Analysis Finite Elemente I 169 A Bezeichnungen und Hilfsmittel aus der Analysis A Bezeichnungen und Hilfsmittel aus der Analysis TU Bergakademie Freiberg, WS 2010/111 Finite Elemente I 170 A.1 Normierte Vektorräume

Mehr

1 Konvergenz im p ten Mittel

1 Konvergenz im p ten Mittel Konvergenz im p ten Mittel 1 1 Konvergenz im p ten Mittel In diesem Paragraphen werden zunächst in Abschnitt 1.1 die L p Räume eingeführt. Diese erweisen sich als vollständige, lineare Räume über R. In

Mehr

Kompakte Operatoren in Hilberträumen

Kompakte Operatoren in Hilberträumen Kompakte Operatoren in Hilberträumen 1 Vorbemerkungen Im Folgenden bezeichne H immer einen seperablen Hilbertraum über C Mit B(H 1, H 2 ) bezeichnen wir die Menge aller beschränkten linearen Operatoren

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

12 Aufgaben zu linearen Funktionalen

12 Aufgaben zu linearen Funktionalen 266 12. Aufgaben zu linearen Funktionalen A B C 12 Aufgaben zu linearen Funktionalen 12.1 Stetige Funktionale (siehe auch 11.6.E, 12.2, 13.4.A) Sei E ein topologischer Vektorraum und ϕ: E K (ϕ ) linear.

Mehr

Lösungsvorschlag zur Klausur

Lösungsvorschlag zur Klausur FAKULTÄT FÜ MATHEMATIK Prof. Dr. Patrizio Neff Frank Osterbrink Johannes Lankeit 27.7.23 Lösungsvorschlag zur Klausur Hinweise zur Bearbeitung: - Die Bearbeitungszeit für die Klausur beträgt 8 Minuten.

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Lineare Funktionalanalysis

Lineare Funktionalanalysis Hans Wilhelm Alt Lineare Funktionalanalysis Eine anwendungsorientierte Einführung Zweite, verbesserte Auflage mit 19 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong

Mehr

Vorlesung Der Satz von Fubini. 6.2 Der Satz von Beppo Levi 6.1. DER SATZ VON FUBINI 33

Vorlesung Der Satz von Fubini. 6.2 Der Satz von Beppo Levi 6.1. DER SATZ VON FUBINI 33 6.1. DER SATZ VON FUBINI 33 Vorlesung 6 6.1 Der Satz von Fubini Das Lebesgue-Integralkann natürlichauchüber mehrdimensionale Gebiete definiert werden. Wir haben uns hier auf den eindimenionalen Fallbeschränkt.

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

12 Biholomorphe Abbildungen

12 Biholomorphe Abbildungen 12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges 11. Kompakte Operatoren Seien X, Y Banachräume, und sei T : X Y ein linearer Operator. Definition 11.1. T heißt kompakt, enn T (B) eine kompakte Teilmenge von Y ist für alle beschränkten Mengen B X. Wir

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Projektionen auf abgeschlossene konvexe Mengen

Projektionen auf abgeschlossene konvexe Mengen Projektionen auf abgeschlossene konvexe Mengen Seminarvortrag von Veronika Pick Seminar Optimierung bei Herrn Prof. Dr. F. Jarre Heinrich-Heine-Universität Düsseldorf SS 2006 1 Vorbemerkung Das Seminarthema

Mehr

2.3 Eigenschaften linearer Operatoren

2.3 Eigenschaften linearer Operatoren 2.3. LINEARE OPERATOREN 47 2.3 Eigenschaften linearer Operatoren Es seien V, W normierte Räume. Die Elemente von L(V ; W ) werden oft als lineare Operatoren bezeichnet. Wir hatten gesehen, dass die Stetigkeit

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Existenzsatz von Lions

Existenzsatz von Lions II.4. Darstellung von Sesquilinearformen 37 Existenzsatz von Lions Im Satz von Lax-Milgram wurde mittels einer Sesquilinear- bzw. Bilinearform ein Operator T L (H) eines Hilbertraumes H und seine Invertierbarkeit

Mehr

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren Beispiele Grundlagen Kompakte Operatoren Regularisierungsoperatoren Transportgleichung Dierenzieren ( nx ) (f δ n ) (x) = f (x) + n cos, x [0, 1], δ Regularisierung!! Inverse Wärmeleitung Durc f (f δ n

Mehr

Vorlesung Das Fundamentallemma der Variationsrechnung

Vorlesung Das Fundamentallemma der Variationsrechnung 5.. DAS FUNDAMENTALLEMMA DER VARIATIONSRECHNUNG 8 Vorlesung 5 5. Das Fundamentallemma der Variationsrechnung Es sei im Folgenden R n offen, zusammenhängend und beschränkt. Dann ist R n komakt. Wir wollen

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Einführung in die Grundlagen der Numerik

Einführung in die Grundlagen der Numerik Einführung in die Grundlagen der Numerik Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Wintersemester 2014/2015 Normierter Vektorraum Sei X ein R-Vektorraum. Dann heißt

Mehr

Lineare Abbildungen - I

Lineare Abbildungen - I Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit

Mehr

Spektraltheorie. 8. Übungsblatt - Lösungsvorschläge

Spektraltheorie. 8. Übungsblatt - Lösungsvorschläge 0606208 PD Dr Peer Kunstmann MSc Michael Ullmann Sektraltheorie 8 Übungsblatt - Lösungsvorschläge Aufgabe Nachtrag zur letzten Übung) In dieser Aufgabe wollen wir die Otimalität der Hölder-Ungleichung

Mehr

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 1 Zusammenfassung Dieser Paragraf richtet sich im Aufbau weitgehend nach 42, um den Zerlegungssatz (44.7) analog zum Satz über die

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Spektraltheorie. 2. Übungsblatt - Lösungsvorschläge. (Elementare Aussagen über Spektrum & Resolventenfunktion)

Spektraltheorie. 2. Übungsblatt - Lösungsvorschläge. (Elementare Aussagen über Spektrum & Resolventenfunktion) 4.4.8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Spektraltheorie. Übungsblatt - Lösungsvorschläge Aufgabe Elementare Aussagen über Spektrum & Resolventenfunktion Seien X, X, Y, Y Banachräume und S, T

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 8.11.2016 Kapital 2. Konvergenz 1. Grenzwerte von Folgen Definition 1.1 (Folge) Eine Folge reeller Zahlen ist eine Abbildung N R, n a n. a n heißt das n-te Glied der Folge, die Folge

Mehr

Fouriertransformation und Unschärfeprinzip

Fouriertransformation und Unschärfeprinzip Information, Codierung, Komplexität 2 SS 2007 24. April 2007 Das berühmte von Heisenberg in der Quantentheorie beruht, rein mathematisch betrachtet, auf einer grundlegenden Eigenschaft der der Dichtefunktionen

Mehr

Vollständiger Raum, Banachraum

Vollständiger Raum, Banachraum Grundbegriffe beschränkte Menge Cauchyfolge Vollständiger Raum, Banachraum Kriterium für die Vollständigkeit Präkompakte Menge Kompakte Menge Entropiezahl Eigenschaften kompakter und präkompakter Mengen

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Finite Elemente. bzw. F + E K = 1. (1)

Finite Elemente. bzw. F + E K = 1. (1) Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 25 Finite Elemente Übung 2 Aufgabe 6 (Eulerscher Polyedersatz für Triangulierung)

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2

D-MATH Funktionalanalysis II FS 2014 Prof. M. Struwe. Lösung 2 D-MATH Funktionalanalysis FS 214 Prof. M. Struwe Lösung 2 1. a) Wir unterscheiden zwei Fälle. Fall 1: 1 < p < : Seien u L p () und (u k ) W 1,p () eine beschränkte Folge, so dass u k u in L p () für k.

Mehr

4.2 Die adjungierte Abbildung

4.2 Die adjungierte Abbildung 4.2. DIE ADJUNGIERTE ABBILDUNG 177 4.2 Die adjungierte Abbildung Die Vektorräume dieses Paragraphen seien sämtlich euklidisch, die Norm kommt jetzt also vom inneren Produkt her, v = v v. Zu f Hom R (V,

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Die angesprochene Thematik macht den Kern dieser Veranstaltung aus. Lineare Techniken sind zentral für weite Bereiche mathematischen Argumentierens. Durch in der Analysis

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Lineare Funktionalanalysis

Lineare Funktionalanalysis Hans Wilhelm Alt Lineare Funktionalanalysis Eine anwendungsorientierte Einführung Fünfte, überarbeitete Auflage Mit 19 Abbildungen 4y Spri inger Inhaltsverzeichnis Einleitung. 1 0 Strukturen 9 0.1 Skalarprodukt

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012 Darstellungssatz von Riesz in vollständig regulären Räumen Carina Pöll 0726726 Wintersemester 2012 Inhaltsverzeichnis 1 Einleitung 1 2 Definitionen und Resultate aus der Topologie 1 3 Der Darstellungssatz

Mehr

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf d Gewöhnliche Differentialgleichungen Woche 6 Existenz nach Picard-Lindelöf 6.1 Vorbereitung für den Existenzsatz 6.1.1 Stetigkeit und Lipschitz-Stetigkeit Definition 6.1 Seien (V 1, 1 und (V 2, 2 zwei

Mehr

Multiplikationsoperatoren

Multiplikationsoperatoren Multiplikationsoperatoren Dennis Dyck 07.04.2014 1 Einleitung In dem ersten Vortrag des eminars soll es um die Untersuchung von Multiplikationsoperatoren gehen. Es werden grundlegende Eigenschaften hergeleitet

Mehr

Vergleich und Erzeugung von Topologien und topologischen

Vergleich und Erzeugung von Topologien und topologischen KAPITEL 3 Vergleich und Erzeugung von Topologien und topologischen Räumen 3.1. Definition. Auf einer Menge X seien zwei Topologien τ und σ gegeben. Ist jede bezüglich σ offene Menge auch bezüglich τ offen,

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

([0, 1]) und int K = p 1

([0, 1]) und int K = p 1 126 III. Der Satz von Hahn-Banach und seine Konsequenzen wie man durch Einsetzen unmittelbar erkennt. Zeigen wir noch die Halbstetigkeit von f: Sei(x n ) eine Folge in L p (R) mitx n x in L p (R) und f(x

Mehr

Analysis II. Vorlesung 47

Analysis II. Vorlesung 47 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Zu einer reellwertigen Funktion Vorlesung 47 interessieren wir uns wie schon bei einem eindimensionalen Definitionsbereich für die Extrema, also Maxima

Mehr

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 Vollständigkeit Andreas Schmitt Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 1 Einleitung Bei der Konvergenz von Folgen im Raum der reellen Zahlen R trifft man schnell auf den Begriff der Cauchy-Folge.

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Kapitel I. Hilberträume.

Kapitel I. Hilberträume. Kapitel I. Hilberträume. 1. Grundbegriffe. Ein Prä-Hilbertraum ist ein Vektorraum über C mit einem inneren Produkt (=Skalarprodukt, positive Form). Wir beginnen daher mit (Sesquilinear-) Formen. 1.1. Definition.

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Ferienkurs in Maß- und Integrationstheorie

Ferienkurs in Maß- und Integrationstheorie Zentrum Mathematik Technische Universität München Dipl. Math. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Maß- und Integrationstheorie Aufgabe. (σ-algebren Sei eine Menge und A eine σ-algebra in. Seien

Mehr

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte

Mehr

10 Der Satz von Radon-Nikodym

10 Der Satz von Radon-Nikodym uch im Sinne einer Vorabinformation vor der Stochastik-Vorlesung wollen wir abschließend kurz absolut stetige Maße und den Satz von Radon-Nikodym streifen. Definition 10.1. Seien (, M) ein messbarer Raum

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Zusammenfassung. 2.7 Eigenwerte und Eigenvektoren 53. in 2.1: Lösung eines linearen Gleichungssystems

Zusammenfassung. 2.7 Eigenwerte und Eigenvektoren 53. in 2.1: Lösung eines linearen Gleichungssystems 7 Eigenwerte und Eigenvektoren 53 Zusammenfassung in : Lösung eines linearen Gleichungssystems Formalisierung: a x + a x + + a n x n b a x + a x + + a n x n b a m x + a m x + + a mn x n b m A x b Lösungsmethode:

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie KIT SS 2013 Institut für Analysis 06.05.2013 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik II für die Fachrichtung Physik 4. Übungsblatt Aufgabe 1 Bestimmen

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 2 Beweise Sie folgende

Mehr