. Der Graph einer solchen Funktion wird mit G a. an und bestimmen Sie die Art der Definitionslücke. ID = IR \ { 2 a } 2 1 = 0 1 = 0 Widerspruch

Größe: px
Ab Seite anzeigen:

Download ". Der Graph einer solchen Funktion wird mit G a. an und bestimmen Sie die Art der Definitionslücke. ID = IR \ { 2 a } 2 1 = 0 1 = 0 Widerspruch"

Transkript

1 Abschlussprüfung Berufliche Oberschule 0 Mathematik Technik - A I - Lösung Teilaufgabe.0 a Gegeben sind die reellen Funktionen f a ( ) mit a IR in der maimalen a Definitionsmenge D a. Der Graph einer solchen Funktion wird mit G a bezeichnet. Teilaufgabe. ( BE) Geben Sie D a an und bestimmen Sie die Art der Definitionslücke. a 0 auflösen a ID IR \ { a } Nennernullstelle in Zähler einsetzen: ( a) a ( a) 0 a a 0 0 Widerspruch Die Definitionslücke ist also eine Polstelle mit Vorzeichenwechsel. Teilaufgabe. (6 BE) Ermitteln Sie, für welche Parameterwerte a die Funktion f a zwei verschiedene Nullstellen, genau eine Nullstelle bzw. keine Nullstelle hat, und geben Sie die entsprechenden Nullstellen jeweils an. f a ( ) 0 a 0 a a a a Zwei Nullstellen, falls a 0 auflösen a a a a a a a Eine Nullstelle, falls a 0 auflösen a a a Keine Nullstellen, falls a 0 auflösen a a AP 0, Mathematik Technik. Klasse, A I - Lösung Seite von 8

2 Teilaufgabe. (6 BE) Untersuchen Sie das Verhalten der Funktionswerte f a ( ) für und bestimmen Sie die Gleichungen aller Asymptoten des Graphen G a. Polynomdivision: a a ( a ) Schiefe Asympotote A : g ( ) Grenzwerte: lim ( a ) lim ( a ) Vertikale Asympotote A : a Teilaufgabe. (8 BE) Bestimmen Sie die maimalen Monotonieintervalle der Funktion f a und ermitteln Sie damit Art und Lage der Etrempunkte des Graphen G a. [ Mögliches Teilergebnis: f' a ( ) ( a) ( a) ] f' a ( ) ( a ) ( a ) a ( a ) 8a 8a a ( a ) f' a ( ) a 8a ( a ) a a ( a) ( a) ( a) Horizontale Tangenten: ( a) 0 auflösen a a E a E a AP 0, Mathematik Technik. Klasse, A I - Lösung Seite von 8

3 Vorzeichentabelle und Monotonieeigenschaften: a E E Zähler Nenner f`' a () G a sms smf smf sms HP Pol TP ( a ) a ( a ) f a ( a ) vereinfachen f ( a ) a a ( a ) a ( a ) a ( a ) f a ( a ) vereinfachen f ( a ) a a ( a) a HP( a a ) TP( a a) Teilaufgabe.5 ( BE) Zeigen Sie, dass unabhängig von a der Tiefpunkt T a ( a / a ) und der Hochpunkt H a ( a / a ) des Graphen G a immer denselben Abstand voneinander haben. Abstand über Pythagoras: Da ( ) [( a ) ( a ) ] [( a ) ( a ) ] vereinfachen D( a) unabhängig von a Teilaufgabe.6 (5 BE) Setzen Sie a und zeichnen Sie den Graphen G mit seinen Asymptoten für 6 in ein kartesisches Koordinatensystem. Maßstab: LE cm. f( ) Werte "" "y" AP 0, Mathematik Technik. Klasse, A I - Lösung Seite von 8

4 6 5 y-achse Fläche Graph von f Kurvenpunkte Schiefe Asymptote Vertikale Asymptote -Achse Teilaufgabe.7.0 Für a erhält man nach entsprechender Umformung die Funktion f ( ) in ihrer maimalen Definitionsmenge D. Der Graph G begrenzt mit den drei Geraden mit den Gleichungen y 0, kund k mit k IR und k ein Flächenstück A k. Teilaufgabe.7. (9 BE) Kennzeichnen Sie für k das Flächenstück A im Schaubild der Aufgabe.6 und zeigen Sie, dass für die von k abhängige Flächenmaßzahl F des Flächenstücks A k gilt: k ln k k Flächenmaßzahl: k k d AP 0, Mathematik Technik. Klasse, A I - Lösung Seite von 8

5 Stammfunktion: d ln( ) G ( ) ln Gk ( ) ln k ( k ) Gk ( ) ln k k Flächenmaßzahl: Gk ( ) Gk ( ) ln k ln k k ( k ) k ln k ln k Die Zusammenfassung der Logarithmusterme liefert die Behauptung. Teilaufgabe.7. (9 BE) Bestimmen Sie den Parameterwert k so, dass die Flächenmaßzahl F ihren absolut kleinsten Wert annimmt. F' ( k) k ln k k k ( k ) ( k ) k ( k ) F' ( k) ( k ) ( k ) F' ( k) k k ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) Horizontale Tangenten: ( k ) ( k ) 0 vereinfachen k k 0 k k 0 auflösen k nicht definiert AP 0, Mathematik Technik. Klasse, A I - Lösung Seite 5 von 8

6 Funktionswert: F(.68).0 Vergleich mit den Randwerten: lim k k ln k k lim k k ln k k Also für k.68 absolutes Minimum. Teilaufgabe.0 Nach einem Modell des britischen Ökonomen Thomas Malthus kann die Zahl B der Weltbevölkerung in Abhängigkeit von der Zeit t (in Jahren) näherungsweise durch folgende Funktionsgleichung beschrieben werden, wobei Einheiten werden nicht mitgeführt werden: Bt () B 0 e rt wobei gilt t IR und t 0 sowie r IR und r 0. Dabei gibt B 0 die Bevölkerungszahl zum Zeitpunkt t 0a,..800 an und r ist ein Maß für die Wachstumsrate der Bevölkerung. Am..950 betrug die Weltbevölkerung etwa.7 Milliarden Menschen, und am..050 werden etwa 9.5 Milliarden Menschen weltweit erwartet. Teilaufgabe. (5 BE) Zeigen Sie, dass für die Werte von B 0 und r gilt: B und r 9.0. B 0 r B 0 e 50r.70 9 B 0 e 50r B r 9. 0 auflösen B 0 r ( 9.0e ) Gleitkommazahl Teilaufgabe. ( BE) Stellen Sie die Entwicklung der Weltbevölkerung zwischen..800 und..050 mit einem geeigneten Maßstab graphisch dar. Bt () t e AP 0, Mathematik Technik. Klasse, A I - Lösung Seite 6 von 8

7 B(t) t t t Bt Bt Bt Graphik: t t Δt Bt Bt Zeit t in Jahren Teilaufgabe. (5 BE) Entnehmen Sie einer entsprechenden Markierung im Diagramm der Aufgabe. zu einem beliebigen Zeitpunkt t das Zeitintervall Δt, für das folgende Bedingung gilt: Bt ( Δt) Bt () Zeigen Sie durch Rechnung, dass das Zeitintervall Δt unabhängig vom Zeitpunkt t ist, und berechnen Sie Δt auf eine Nachkommastelle gerundet Bt Bt in etwa gleich mit: Bt Bt ( Δt) Bt () B 0 e r( tδt) B 0 e rt e rδt Δt r ln( ) Δt 7.50 unabhängig von t AP 0, Mathematik Technik. Klasse, A I - Lösung Seite 7 von 8

8 Teilaufgabe. (7 BE) Die natürliche Tragfähigkeitsgrenze der Erde ist der Zeitpunkt t TG, an dem die Maßzahl der zur Verfügung stehenden Nahrungsmittel Nt ().50 7 t.00 9 mit t IR und t 0 (t in Jahren) nicht mehr größer ist als die Zahl der Weltbevölkerung Bt (). (Eine Nahrungsmitteleinheit entspricht zur Vereinfachung dabei einer Bevölkerungseinheit.) Bestimmen Sie mithilfe des Newtonverfahrens den Zeitpunkt t TG. Benutzen Sie als Startwert t 0 0, führen Sie nur einen Näherungsschritt durch, runden Sie das Ergebnis auf ganze Jahre und geben Sie auch das entsprechende Jahr unserer Zeitrechnung an. B(t) und N(t) t TG Nt TG Bt () t e Nt ().50 7 t.00 9 Gemeinsame Maßzahl: 0 9 Bt () Nt () Bt () Nt () Differenzfunktion: Zeit t in Jahren Graph von B Kurvenpunkte Graph von N Gemeinsame Maßzahl Dt () Bt () Nt () Konkrete Differenzfunktion: Ableitungsfunktion: D ( ) e D' ( ) e.50 7 D( 0) D' ( 0) D( 0) Newton-Algorithmus: TG D' ( 0) TG 0 Zeitrechnung: Das Datum ist der..00 AP 0, Mathematik Technik. Klasse, A I - Lösung Seite 8 von 8

Abschlussprüfung Berufliche Oberschule 2014 Mathematik 12 Technik - A II - Lösung. f a ( x) = 1. x 2 in der jeweils

Abschlussprüfung Berufliche Oberschule 2014 Mathematik 12 Technik - A II - Lösung. f a ( x) = 1. x 2 in der jeweils Abschlussprüfung Berufliche Oberschule 04 Mathematik Technik - A II - Lösung Teilaufgabe.0 ( a) a Gegeben sind mit a IR die reellen Funktionen f a mit f a ( ) in der jeweils ( a) größtmöglichen Definitionsmenge

Mehr

MATHEMATIK. Fachabituiprüfung 2011 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2011 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabituiprüfung 2011 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Mittwoch, 1. Juni 2011, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0)

und geben Sie die Gleichungen und Art aller Asymptoten an. an, bestimmen Sie die Koordinaten der Achsenschnittpunkte von G f auflösen x x 2 2 ( 2/ 0) Abiturprüfung Berufliche Oberschule Mathematik Nichttechnik - A II - Lösung Teilaufgabe. x Gegeben ist die Funktion f( x) ( x ) in ihrer maximalen Definitionsmenge D f IR. Der zugehörige Graph heißt. Teilaufgabe.

Mehr

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Technik - A II - Lösung mit CAS. e 2x mit der maximalen Definitionsmenge D f = IR.

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Technik - A II - Lösung mit CAS. e 2x mit der maximalen Definitionsmenge D f = IR. Abschlussprüfung Berufliche Oberschule 07 Mathematik Technik - A II - Lösung mit Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( ) e mit der maimalen Definitionsmenge D f IR. Teilaufgabe. ( BE)

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2017 Mathematik 13 Nichttechnik - A I - Lösung Teilaufgabe 1.0

mathphys-online Abiturprüfung Berufliche Oberschule 2017 Mathematik 13 Nichttechnik - A I - Lösung Teilaufgabe 1.0 Abiturprüfung Berufliche Oberschule 27 Mathematik 3 Nichttechnik - A I - Lösung Teilaufgabe. Gegeben ist die Funktion g mit g ( ) 2 mit der maimalen Definitionsmenge D g IR. Teilaufgabe. (7 BE) Geben Sie

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0 Abschlussprüfung Berufliche Oberschule Mathematik Technik - A II - Lösung Teilaufgabe. Gegeben sind die reellen Funktionen f( x) mit x IR. Teilaufgabe. (5 BE) Untersuchen Sie das Verhalten der Funktionswerte

Mehr

Abschlussaufgabe Nichttechnik - A II - Lsg.

Abschlussaufgabe Nichttechnik - A II - Lsg. GS - 8.6.8 - m8_nta_lsg.xmcd Abschlussaufgabe 8 - Nichttechnik - A II - Lsg.. Gegeben ist die Funktion f( x) ID f IR \ { }. Ihr Graph wird mit G f bezeichnet. ( x ) in ihrer maximalen Definitionsmenge.

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung GS.06.0 - m_nt-a_lsg_gs_pdf Abschlussprüfung 0 - Mathematik Nichttechnik A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. 0 x x 8 x mit der Definitionsmenge Teilaufgabe.

Mehr

Abschlussprüfung Berufliche Oberschule 2016 Mathematik 12 Nichttechnik - A I - Lösung x. = x 3 8x

Abschlussprüfung Berufliche Oberschule 2016 Mathematik 12 Nichttechnik - A I - Lösung x. = x 3 8x Abschlussprüfung Berufliche Oberschule Mathematik Nichttechnik - A I - Lösung Teilaufgabe. Gegeben ist die Funktion f mit f( ) Der Graph wir mit G f bezeichnet. 8 und D f IR. Teilaufgabe. ( BE) Ermitteln

Mehr

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f.

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f. Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f( x) x x mit D f = IR. Teilaufgabe. (5 BE) Berechnen Sie die Nullstellen

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A I - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A I - Lösung GS.06.0 - m_nt-a_lsg_gs.pdf Abschlussprüfung 0 - Mathematik Nichttechnik A I - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. x x x mit der Definitionsmenge Teilaufgabe. (7

Mehr

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung Abschlussprüfung Berufliche Oberschule Mathematik Nichttechnik - A I - Lösung Teilaufgabe. Gegeben ist die ganzrationale Funktion g dritten Grades mit D g IR, deren Graph G g in untenstehender Abbildung

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - A I - Lösung. y-achse 1

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - A I - Lösung. y-achse 1 Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A I - Lösung Teilaufgabe Nebenstehende Abbildung zeigt den Graphen G f' der ersten Ableitungsfunktion einer in ganz IR definierten ganzrationalen

Mehr

Aufgaben zur e-funktion

Aufgaben zur e-funktion Aufgaben zur e-funktion 1.0 Gegeben ist die reelle Funktion f(x) = 2x 2x e 1 x2 mit x R (Abitur 2000 AII). 1.1 Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion f und bestimmen Sie die Nullstellen

Mehr

Abschlussprüfung an Fachoberschulen in Bayern Mathematik 2015 Analysis A2 Ausbildungsrichtung Technik

Abschlussprüfung an Fachoberschulen in Bayern Mathematik 2015 Analysis A2 Ausbildungsrichtung Technik MK 7 B_T_A_MK_Loesxmcd Abschlussprüfung an Fachoberschulen in Bayern Mathematik Analysis A Ausbildungsrichtung Technik Gegeben sind die reellen Funktionen f a : x --> x x x Definitionsmenge D fa R und

Mehr

Abiturprüfung Mathematik 13 Nichttechnik A II - Lösung

Abiturprüfung Mathematik 13 Nichttechnik A II - Lösung 3. Klasse Nichttechnik Abitur : Analysis II GS 8.6. - m_3nt-a-lsg_gs.mcd Teilaufgabe. Abiturprüfung - Mathematik 3 Nichttechnik A II - Lösung 4 4 Gegeben ist die reelle Funktion g mit g ( ) in der maimalen

Mehr

2) 2 4 in der größtmöglichen Definitionsmenge

2) 2 4 in der größtmöglichen Definitionsmenge Abschlussprüfung Berufliche Oberschule 009 Mathematik 13 Nichttechnik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die Funktion f( x) ln ( x ) 4 in der größtmöglichen Definitionsmenge D f IR. Ihr Graph wird

Mehr

2x 1. x 3 mit der maximalen Definitionsmenge D f IR. und die Art der Definitionslücke von f an und bestimmen Sie die Nullstelle von f.

2x 1. x 3 mit der maximalen Definitionsmenge D f IR. und die Art der Definitionslücke von f an und bestimmen Sie die Nullstelle von f. Aiturprüfung Berufliche Oerschule 07 Mathematik Nichttechnik - A II - Lösung Teilaufgae.0 Gegeen ist die reelle Funktion f mit f( x) Ihr Graph wird mit G f ezeichnet. x mit der maximalen Definitionsmenge

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung GS 9.6.7 - m7_nt-a_lsg_gs.pdf Abschlussprüfung 7 - Mathematik Nichttechnik A II - Lösung Teilaufgabe. Der Graph einer ganzrationalen Funktion f vierten Grades mit D f IR ist symmetrisch zur y-achse und

Mehr

, das Symmetrieverhalten des Graphen von f a. und die Werte von a, für welche die Wertemenge von f a. die Zahl 1 enthält. a 2 x 2 vgl.

, das Symmetrieverhalten des Graphen von f a. und die Werte von a, für welche die Wertemenge von f a. die Zahl 1 enthält. a 2 x 2 vgl. Abiturprüfung Berufliche Oberschule 00 Mathematik Technik - A II - Lösung Teilaufgabe.0 Gegeben ist die Funktion f a ( ) a a mit a IR \ {0} in der von a unabhängigen Definitionsmenge D f IR \ {0}. Teilaufgabe.

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A I - Lösung. = x x 2 2a x

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A I - Lösung. = x x 2 2a x Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A I - Lösung Teilaufgabe.0 Gegeben sind die reellen Funktionen f mit dem Funktionsterm f a ( x) wobei x, a IR und a 0. = x a x a x, Teilaufgabe.

Mehr

Fachabiturprüfung 2016 zum Erwerb der Fachhochschulreife an

Fachabiturprüfung 2016 zum Erwerb der Fachhochschulreife an Fachabiturprüfung 016 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen M A T H E M A T I K Ausbildungsrichtung Technik Dienstag, 31. Mai 016, 9.00-1.00 Uhr Die Schülerinnen und

Mehr

Aufgaben zur e- und ln-funktion

Aufgaben zur e- und ln-funktion Aufgaben zur e- und ln-funktion 1.0 Gegeben ist die Funktion f(x) = 2x2 2 mit D. Ihr Graph sei G f. (Abitur 2008 AI) e x f =! 1.1 Geben Sie die Schnittpunkte von G f mit den Koordinatenachsen an. 1.2 Untersuchen

Mehr

MATHEMATIK. Fachabiturprüfung 2012 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2012 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2012 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 25. Mai 2012, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

x 2 mit a IR in der maximalen, Teilaufgabe 1.1 (8 BE) Ermitteln Sie die Art der Definitionslücke sowie die Anzahl der Nullstellen von f a

x 2 mit a IR in der maximalen, Teilaufgabe 1.1 (8 BE) Ermitteln Sie die Art der Definitionslücke sowie die Anzahl der Nullstellen von f a Abschlssprüfng Berfliche Oberschle 00 Mathematik Technik - A I - Lösng Teilafgabe.0 Gegeben sind die reellen Fnktionen f a ( x) von a nabhängigen Definitionsmenge D x ax a = x mit a IR in der maximalen,

Mehr

Abschlussaufgabe Nichttechnik - Analysis I - Lsg.

Abschlussaufgabe Nichttechnik - Analysis I - Lsg. Analysis NT GS -.6.7 - m7_nta_l.mcd Abschlussaufgabe 7 - Nichttechnik - Analysis I - Lsg.. Gegeben sind die reellen Funktionen f k ( x) und ID fk ( ) x k x k x mit k IR k IR. Der Graph einer solchen Funktion

Mehr

GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN

GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN GRENZWERTE BEI GEBROCHENRATIONALEN FUNKTIONEN Graph von f mit Epsilonstreifen und Asymptoten.5.5 y-achse 0.5 6 0 8 6 0 6 8 0 6 0.5.5 -Achse Inhaltsverzeichnis Kapitel Inhalt Seite Einführung Der Grenzwertbegriff.

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

M A T H E M A T I K mit CAS

M A T H E M A T I K mit CAS Fachabiturprüfung 016 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen M A T H E M A T I K mit CAS Ausbildungsrichtung Technik Dienstag, 31. Mai 016, 9.00-1.00 Uhr Die Schülerinnen

Mehr

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }.

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }. Abiturprüfung Berufliche Oberschule 6 Mathematik 3 Technik - A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe. (

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2007 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1.0 x Gegeben ist die Funktion f a

mathphys-online Abiturprüfung Berufliche Oberschule 2007 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1.0 x Gegeben ist die Funktion f a Abiturprüfung Berufliche Oberschule 007 Mathematik 3 Technik - A I - Lösung Teilaufgabe.0 Gegeben ist die Funktion f a mit f a ( ) ln mit a IR + und der maimalen Definitionsmenge D IR. a fa Teilaufgabe.

Mehr

2004 AI. mit k IR 27 IR. Der Graph einer solchen Funktion wird mit G fk

2004 AI. mit k IR 27 IR. Der Graph einer solchen Funktion wird mit G fk 004 AI.0 Gegeben sind die reellen Funktionen f k : 3 k mit k IR 7 undidf k IR. Der Graph einer solchen Funktion wird mit G fk bezeichnet.. Es sei zunächst k. Ermitteln Sie in Abhängigkeit von k die Lage

Mehr

2009 AI f : x f x, ID f. f x. f x x x ax b Nun setzt man die Koordinaten des Punktes P ein, so folgt: f 0 b

2009 AI f : x f x, ID f. f x. f x x x ax b Nun setzt man die Koordinaten des Punktes P ein, so folgt: f 0 b 009 AI f : x f x, ID f.0 Von der ganzrationalen Funktion f x x gegeben. Ableitung 9 Der Graph P 0. G f schneidet die x-achse an der Stelle f x. Bestimmen Sie den Funktionsterm IR dritten Grades ist die

Mehr

MATHEMATIK mit CAS. Fachabiturprüfung 2014 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK mit CAS. Fachabiturprüfung 2014 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2014 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK mit CAS Ausbildungsrichtung Technik Mittwoch, 28. Mai 2014, 9.00-12.00 Uhr Die Schülerinnen

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung

Abiturprüfung Mathematik 13 Technik A II - Lösung GS.6.6 - m6_3t-a_lsg_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) mit der Definitionsmenge D f IR \ { ; 3 }. Teilaufgabe. ( BE) Geben Sie

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 004 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 4. Juni 004 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Abschlussaufgabe Nichttechnik - Analysis II

Abschlussaufgabe Nichttechnik - Analysis II Analysis NT GS - 0.06.06 - m06_ntalsg_gs.mcd Abschlussaufgabe 006 - Nichttechnik - Analysis II.0 Gegeben sind die reellen Funktionen fx ( ) mit ID f = ID g = IR. ( ) = x und gx ( ) = fx ( ) +. Zeigen Sie,

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

MATHEMATIK. Fachabiturprüfung 2014 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2014 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2014 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Mittwoch, 28. Mai 2014, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Aufgaben zu Ableitung und Integral der ln-funktion

Aufgaben zu Ableitung und Integral der ln-funktion Aufgaben zu Ableitung und Integral der ln-funktion. Bilden Sie von folgenden Funktionen jeweils die. Ableitung. a) f(x) = x+lnx b) f(x) = (lnx) c) f(x) = x(lnx) xlnx+x d) f(x) = e) f) x (lnx ) f(x) = x

Mehr

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR.

mathphys-online Trigonometrische Funktionen - Aufgaben 2 Aufgabe 1: Abschlussprüfung 1999 / AI 2 Gegeben ist die Funktion f( x) π sin = und x IR. - Aufgaben Aufgabe : Abschlussprüfung 999 / AI Gegeben ist ie Funktion f( x) sin ( x ) = un x IR. a) Ermitteln Sie alle Nullstellen un Extrempunkte er Funktion f. b) Zeichnen Sie en Graphen er Funktion

Mehr

MATHEMATIK. Fachabiturprüfung 2010 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2010 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2010 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Dienstag, 8. Juni 2010, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 007 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag,. Juni 007 Prüfungsdauer: 09:00 :00 Uhr Hilfsmittel: Elektronischer,

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

ABITURPRÜFUNG 2017 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK

ABITURPRÜFUNG 2017 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK ABITURPRÜFUNG 17 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK Nichttechnische Ausbildungsrichtungen Donnerstag, 1. Juni 17, 9. Uhr bis 1. Uhr Die Schülerinnen

Mehr

W (t) = W (t) mit. ) [7] dt 3.2 Zeigen Sie, dass die Zeitdifferenz zwischen zwei unmittelbar aufeinander folgenden Maxima der Auslenkung konstant t

W (t) = W (t) mit. ) [7] dt 3.2 Zeigen Sie, dass die Zeitdifferenz zwischen zwei unmittelbar aufeinander folgenden Maxima der Auslenkung konstant t Abschlussprüfungen zu: Exponentielle Zunahme / Abnahme AP 2000 AI 2.0 Für den Wert W(t) eines Autos (in DM) in Abhängigkeit von der Zeit t 0 (in Tagen) gelte der Zusammenhang W(t) = W o e kt mit einer

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung mthphys-online Abschlussprüfung Berufliche Oberschule Mthemtik Nichttechnik - A II - Lösung Teilufgbe. Der Grph G f einer gnzrtionlen Funktion f dritten Grdes besitzt den Extrempunkt E( / ), 7 schneidet

Mehr

Nachtermin 2002 Nichttechnik 12. Aufgabengruppe A

Nachtermin 2002 Nichttechnik 12. Aufgabengruppe A Aufgabengruppe A Gegeben sind die reellen Funktionen f : x a f (x); D = IR k k f f k 1 1 2 (x) = x + (k 1)x k x mit k IR k 1. 2 bezeichnet. k + Der Graph einer solchen Funktion fk mit ' 1.1 Berechnen Sie

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - A II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 9 Mathemati Nichttechni - A II - Lösung Teilaufgabe. Gegeben sin ie reellen Funtionen f ( x) = x x mit IR un ID = IR. fa Der Graph einer solchen Funtion wir mit G

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 03 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Der Graph G f einer ganzrationalen Funktion f mit er Definionsmenge D f = IR berührt ie bei x = un schneiet

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben

Nachhilfen: Algebra und Differentialrechnung Wiederholung: 2. Abschnitt mit Übungsaufgaben Wiederholung:. Abschnitt mit Übungsaufgaben Grundwissen (GW) GW. Lösen Sie folgende algebraische Gleichungen bzw. Ungleichungen in der Grundmenge R: a) 5 = 0 a) 5 0 Teilergebnis: ] ;,5] b) Lösen Sie die

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung II

Abitur 2017 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 006 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag,. Juni 006 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

ABITURPRÜFUNG 2015 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK

ABITURPRÜFUNG 2015 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK ABITURPRÜFUNG 015 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK Nichttechnische Ausbildungsrichtungen Freitag,. Mai 015, 9.00 Uhr bis 1.00 Uhr Die Schülerinnen

Mehr

ABITURPRÜFUNG 2013 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK

ABITURPRÜFUNG 2013 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK ABITURPRÜFUNG 2013 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK Nichttechnische Ausbildungsrichtungen Dienstag, 4. Juni 2013, 9.00 Uhr bis 12.00 Uhr

Mehr

ABITURPRÜFUNG 2015 AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik

ABITURPRÜFUNG 2015 AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik ABITURPRÜFUNG 05 AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK Ausbildungsrichtung Technik Freitag, den. Mai 05, 9.00 Uhr bis.00 Uhr Die Schülerinnen

Mehr

Abitur 2015 Mathematik Infinitesimalrechnung I

Abitur 2015 Mathematik Infinitesimalrechnung I Seite 1 Abiturloesung.de - Abituraufgaben Abitur 215 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion f : x ( x 3 8 ) (2 + ln x) mit maximalem Definitionsbereich D. Teilaufgabe Teil A 1a (1

Mehr

ABITURPRÜFUNG 2010 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK

ABITURPRÜFUNG 2010 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK ABITURPRÜFUNG 2010 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK Nichttechnische Ausbildungsrichtungen Dienstag, 18. Mai 2010, 9.00 Uhr bis 12.00 Uhr

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Die gebrochenrationale Funktion

Die gebrochenrationale Funktion Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

B Anwendungen der Differenzialrechnung

B Anwendungen der Differenzialrechnung B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabenblatt D Differenzialrechnung Prof Dr Peter Plappert Fachbereich Grundlagen Die Aufgaben dieses Aufgabenblattes sollen ohne die Benutzung von Taschenrechnern bearbeitet

Mehr

ABITURPRÜFUNG 2011 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK

ABITURPRÜFUNG 2011 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK ABITURPRÜFUNG 2011 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK Nichttechnische Ausbildungsrichtungen Mittwoch, 1. Juni 2011, 9.00 Uhr bis 12.00 Uhr

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

Hausaufgabe Analysis-Buch Seite 172, Aufgabe 23. Gegeben ist die Funktion f k mit f k (x) = x2 k 2. , wobei k > 0 ist.

Hausaufgabe Analysis-Buch Seite 172, Aufgabe 23. Gegeben ist die Funktion f k mit f k (x) = x2 k 2. , wobei k > 0 ist. ..6. 5. Hausaufgabe.. Analysis-Buch Seite 7, Aufgabe Gegeben ist die Funktion f k mit f k ( = k, wobei k > ist. k G fk ist der Graph von f k. a Bestimme den maimalen Definitionsbereich und untersuche f

Mehr

e x D = R a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von S an.

e x D = R a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von S an. Aufgabe 1 2e Gegeben ist die Funktion f mit f() = mit dem Definitionsbereich. e D = R + 9 a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von

Mehr

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist.

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist. Differenzialrechnung 51 1.2.2 Etrempunkte Die Funktion f mit f () = 1 12 3 7 4 2 + 10 + 17 3 beschreibt näherungsweise die wöch entlichen Verkaufszahlen von Rasenmähern. Dabei ist die Zeit in Wochen nach

Mehr

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt. Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,

Mehr

Abschlussaufgabe Nichttechnik - A II - Lösung

Abschlussaufgabe Nichttechnik - A II - Lösung GS - 7 - m_nta_lsgmc Abschlussaufgabe - Nichttechni - A II - Lösung Gegeben ist ie relle Funtion f ( x) x = x mit IR > un ID f = IR Der Graph wir mit G f bezeichnet Bestimmen Sie Lage un Vielfachheit er

Mehr

Zusammenfassung: Differenzialrechnung 2

Zusammenfassung: Differenzialrechnung 2 LGÖ Ks M 11 Schuljahr 17/18 Zusammenfassung: Differenzialrechnung Inhaltsverzeichnis Etrem- und Wendepunkte... 1 Etremwertprobleme... 8 Etrem- und Wendepunkte Definition: Ist eine reelle Zahl, dann heißt

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 Abitur 2012 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an. Teilaufgabe Teil 1 1a (2 BE)

Mehr

8 5 9 : 8 5 ; 0 85<8. 8 : 8 0 > 1 Der Schnittpunkt mit der x-achse ist? 1 0.

8 5 9 : 8 5 ; 0 85<8. 8 : 8 0 > 1 Der Schnittpunkt mit der x-achse ist? 1 0. Aufgabe M04A1 Gegeben ist die Funktion mit. Ein Teil des Graphen ist abgebildet. a) Geben Sie die maximale Definitionsmenge von und Gleichungen der Asymptoten von an. besitzt einen Schnittpunkt mit der

Mehr

Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG...2 Arbeitsbogen

Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG...2 Arbeitsbogen Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG... Arbeitsbogen -...............5 5...5 6...6 7...6 8...7 9...8 Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG Arbeitsbogen - Bestimmen Sie a) b) + a) Bei so

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

Abitur 2018 Mathematik Infinitesimalrechnung I

Abitur 2018 Mathematik Infinitesimalrechnung I Seite 1 Abitur 2018 Mathematik Infinitesimalrechnung I Teilaufgabe Teil A 1 (4 BE) Geben Sie für die Funktionen f 1 und f 2 jeweils die maximale Definitionsmenge und die Nullstelle an. f 1 : x 2x + 3 x

Mehr

Abitur 2015 Mathematik Infinitesimalrechnung II

Abitur 2015 Mathematik Infinitesimalrechnung II Seite 1 Abitur 2015 Mathematik Infinitesimalrechnung II Gegeben ist die Funktion g : x ln(2x + 3) mit maximaler Definitionsmenge D und Wertemenge W. Der Graph von g wird mit G g bezeichnet. Teilaufgabe

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

wenn f ( x 0 ) der größte Funktionswert für alle x aus einer Umgebung Dieser größte Funktionswert f ( x 0 ) heißt relatives (lokales) Maximum

wenn f ( x 0 ) der größte Funktionswert für alle x aus einer Umgebung Dieser größte Funktionswert f ( x 0 ) heißt relatives (lokales) Maximum R. Brinkmann http://brinkmann-du.de Seite 06.0.008 Etrempunkte ganzrationaler Funktionen Vorbetrachtungen und Begriffserklärungen Beim zeichnen eines Funktionsgraphen war es bislang unbefriedigend, den

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Familie Abschlussprüfung an der Berufsoberschule im Schuljahr 6/7 Fach (C) Nur für die Lehrkraft Prüfungstag 9. Mai 7 Prüfungszeit Zugelassene Hilfsmittel 9: :

Mehr

Illustrierende Aufgaben zum LehrplanPLUS. Gebrochen-rationale Funktionen

Illustrierende Aufgaben zum LehrplanPLUS. Gebrochen-rationale Funktionen Gebrochen-rationale Funktionen Stand: 26.10.2018 Jahrgangsstufen Fach/Fächer FOS 12 (T), BOS 12 (T), FOS 13 (NT), BOS 13 (NT) Mathematik Übergreifende Bildungs- und Erziehungsziele Benötigtes Material

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 008 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 6. Juni 008 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 7 Wahlteil Analysis Wahlteil Analysis 7 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 8 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2009 BW

Abitur allg. bildendes Gymnasium Wahlteil Analysis 2009 BW Lösung A1.1 Lösungslogik GTR-Einstellungen: Y1=6100/ 16 Y2= 1 Y3=1.5 14 a) Asymptoten: Waagrecht: Wir betrachten die Funktionswerte am Rande des Systems ( ). Senkrecht: Wir untersuchen, für welche Werte

Mehr

Untersuchen Sie die Funktion f auf Monotonie und auf die Existenz von lokalen Extrema.

Untersuchen Sie die Funktion f auf Monotonie und auf die Existenz von lokalen Extrema. Gegeben sind die Funktionen f und g durch y y f() g(), ln, D f R, und! 0. Ihre Graphen werden mit F bzw. G bezeichnet. a) Ermitteln Sie den größtmöglichen Definitionsbereich D f der Funktion f. Untersuchen

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr