Lineare Algebra. 1. Übungsstunde. Steven Battilana

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra. 1. Übungsstunde. Steven Battilana"

Transkript

1 Lineare Algebra 1. Übungsstunde Steven Battilana September 3, 016

2 1 Komplexe Zahlen In R können wir zusätzlich zur Addition eine weitere Verknüpfung einführen, die komplexe Multiplikation : R R (a, b), (c, d) (ac bd, ad + bc) R. Diese Operation ist assoziativ mit neutralem Element (1, 0). Weiter gilt für (a, b) (0, 0) die Gleichung ( ) a (a, b) a + b, b = (1, 0); (1) a + b das heisst, ( ) a a + b, b R a + b ist zu (a, b) invers. Schliesslich ist die komplexe Multiplikation kommutativ, und es gilt das Distributivgesetz ((a 1, b 1 ) + (a, b )) (c, d) = (a 1, b 1 ) (c, d) + (a, b ) (c, d). Somit bildet R bzgl. Addition und komplexer Muliplikation einen Zahlkörper, den Körper (engl. Field) der komlexen Zahlen C. Wir können den Standardbasisvektor e 1 = (1, 0) R mit der Zahl 1 R identifizieren. Weiter setzen wir e = (0, 1) =: i, die imaginäre Einheit, mit i = ( 1, 0) = 1. Somit hat jedes z = (x, y) C die eindeutige Darstellung (kartesische Form) z = xe 1 + ye = x + iy mit Realteil x = Re(z) und Imaginärteil y = Im(z). Die Konjugation von z = x + iy C sei z = x iy C. Die Konjugation hat die folgenden Eigenschaften: (i) Für alle z = x + iy = (x, y) C = R gilt z z = (x + iy) (x iy) = x i y = x + y = z. (ii) Für alle z 1, z C gilt z 1 + z = z 1 + z ; z 1 z = z 1 z.

3 Definition (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z = re iϕ, z = r(cos ϕ + i sin ϕ), mit r = z, x = r cos ϕ, y = r sin ϕ. arctan( y ), x > 0 x arctan( y ) + π, x < 0 y 0 x arctan( y ϕ = ) π, x < 0 y < 0 x π, x = 0 y > 0 π, x = 0 y < 0 undefiniert, x = 0 y = 0 Bemerkung (Ausblick). z +1 = 0 ist ein Beispiel für eine in R unlösbare Gleichung, die in C Lösungen hat (nämlich z = ±i). Allgemein gilt der Fundamentalsatz der Algebra: Jedes Polynom p(z) = z n + a n 1 z n a 0 vom Grad n 1 hat in C eine Nullstelle. Das heisst, C ist im Unterschied zu R algebraisch vollständig. Beispiel 1: 6 + 7i 3 8i = 6 + 7i 3 8i 3 + 8i 3 + 8i Beispiel : = i + 48i + 56i 9 64i = z = 1 + i r = = i + 48i = i 73 ϕ = arctan( 1 1 ) = π 4 z = e i π 4 Beispiel 3: 7e i π 3 π = 7(cos( 3 ) + i sin(π 3 )) = i = i Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n Unbekannte und stellt ein LGS dar. Falls m > n, dann ist das LGS überbestimmt (numerisch lösbar) m < n, dann ist das LGS unterbestimmt (analytisch lösbar) m = n, sonst (analytisch lösbar) 3

4 Wobei a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + + a n x n = b. a m1 x 1 + a m x + + a mn x n = b m. Ax = b a 11 a 1 a 1n a 1 a a n x 1 b 1 A =.., x =., b =. x a m1 a m a n b m mn A = Koeffizientenmatrix, x = Unbekanntenvektor, b = Lösungsvektor (RHS) Lösungsansatz: Gauss-Elimination Bemerkung. Für ein LGS gilt jeweils eines der folgenden Punkte: Es besitzt genau eine Lösung, dann nennt man es ein reguläres LGS keine Lösung, dann nennt man es ein singuläres LGS viele Lösungen, dann nennt man es ebenfalls ein singuläres LGS 4

5 Gegeben: (für m < n m = n) a 11 a 1 a 1n a 1 a a n b 1 A =.., b =. b a m1 a m a m mn Gesucht: x 1 x =. 1. Stelle die erweiterte Koeffizientenmatrix auf a 11 a 1n b 1... = ( A b ). a m1 a mn b m x n. Bringe ( A b ) durch Operationen der Art (I), (II), (III) in folgende Form (Zeilenstufenform, d.h. es muss nicht umbedingt die Einheitsmatrix ergeben!): 1 0 x ( 1 x ), wobei 1 = Einheitsmatrix 0 1 x n (I) Zeilen vertauschen (II) Addition/Subtraktion von einer Zeile (Gleichung) zu einer anderen (III) Ver-k-fachen einer Zeile (Gleichung) mit k R \ {0} 3. Am besten geht das, wenn ihr das folgende Verhltnis bildet (dies werden wir später nochmals brauchen!) l ij := a i1 a jj und dies folgend nutzt x 1 x x 3 RHS (i) ( a 11 a 1 a 13 b 1 ) (ii) a 1 a a 3 b (iii) a 31 a 3 a 33 b 3 (ii) l 1 (i) a 11 a 1 a 13 b 1 a 1 l 1 a 11 a l 1 a 1 a 3 l 1 a 13 b l 1 b 1 a 31 a 3 a 33 b 3 5

6 (iii) l 31 (i) Beispiel 4: a 11 a 1 a 13 b 1 a 11 a 1 a 13 b 1 0 ã ã 3 b 0 ã ã 3 b... a 31 l 31 a 11 a 3 l 31 a 1 a 33 l 31 a 13 b l 31 b 1 0 ã 3 ã 33 b x 1 x x 3 = 4x 1 x + x 3 = 8x 1 4x + 6x 3 = 6 (iii) l 31 (i) (ii) l 1 (i) (ii) (iii) l 3 (ii) (i) ( ) 1 (ii) (i) =: ( ) In der 3. Zeile gibt es nur Nullen viele Lösungen. Mit Rückwärtseinsetzen erhalten wir von der. Zeile: x 3 = 1 Mit Rückwärtseinsetzen erhalten wir von der 1. Zeile: x 1 1 x = 0 x 1 = 1 x Wähle z.b. x = t als freien Parameter 1 t L = t 1 t R Bemerkung. Falls wir statt ( ) z.b erhalten hätten, gäbe es keine Lösung, weil in der 3. Zeile 0 = steht, was bekanntlich einen Widerspruch darstellt. 6

7 Beispiel 5: Für welche Werte von a R besitzt das folgende homogene lineare Gleichungssystem eine nichttriviale (von 0 verschiedene) Lösung? x 1 x 3 = x 1 + ax x 3 = 0 a x 1 + ax 10x 3 = 0 a 1 0 a a 10 0 Lösung: a 1 0 a 1 a a 10 0 a a (iii) l 31 (i) 0 a 3 0 a a Fall: x 3 0 Die 3. Zeile gibt uns (iii) l 3 (ii) a 3 a a a a 4 (ii) l 1 (i) (a 4)x 3 = 0 a 4 = 0 a = ± Wir wählen x 3 =: s, s R \ {0} als freien Parameter. Mit Rückwärtseinsetzen erhalten wir von der. Zeile ax 3s = 0 ax = 3s x = 3s a Mit Rückwärtseinsetzen erhalten wir von der 1. Zeile x 1 s = 0 x 1 = s Somit sind wir bereits bei der Lösung von diesem Fall angelangt: s L = s R \ {0}, a = ± 3s a s. Fall: x 3 = 0 Somit macht die 3. Zeile keine Aussage über a. Also müssen wir auf die. Zeile ausweichen. ax 3x 3 = 0 ax 3 0 = 0 ax = 0 a = 0 x = 0 (a) a = 0, x 0: Wir wählen x = t, t R \ {0} als freien Parameter. Mit Rückwärtseinsetzen erhalten wir von der 1. Zeile x 1 = 0. Somit erhalten wir die Lösung: 0 L = t 0 t R \ {0}, a = 0 (b) x = 0: Somit folgt aus der 1. Zeile: x 1 = 0 0 Dieser Fall liefert nur die triviale Lösung 0 und kann ausgeschlossen werden. 0 Insgesamt folgt also, dass wir für a {, 0, } nichttriviale Lösungen erhalten. 7

8 3 MATLAB Wenn ihr eine Funktion habt, aber nicht sicher seid, was es als Input benötigt oder was es zurück gibt könnt ihr das wie folgt herausfinden: Im Matlab Command Window mit: help <name> oder doc <name> Sonst könnt ihr auch Google benutzen. Beispiel 6: Lucas-Zahlen Definition, n = 0 L n := 1, n = 1 L n 1 + L n, n > 1 So erhalten wir die Folge:, 1, 3, 4, 7, 11, 18, 9, 47, 76, 13,... Aufgabe Schreibe eine Matlab-Funktion lucas(n), die zu einer gegebenen positiven ganzen Zahl n die Lucas-Zahlen L 0,..., L n berechnet. Beispiel 7: Schreibe eine Matlab-Funktion drawcircle(c,r), welche einen Kreis mit Radius r und dem Zentrum C = (C(1), C()) zeichnet. Funktionsaufruf: drawcircle([7,3], 4). 8

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Kapitel 10 Komplexe Zahlen

Kapitel 10 Komplexe Zahlen Komplexe Zahlen Kapitel 10 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite 94 / 112 Komplexe Zahlen Die komplexen Zahlen entstehen aus den reellen Zahlen, indem eine neues Element i (in der Elektrotechnik

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z. 0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem

Mehr

Komplexe Zahlen und Allgemeines zu Gruppen

Komplexe Zahlen und Allgemeines zu Gruppen Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Lineare Gleichungssysteme (LGS) 2 1.1 Grundlagen..................................................

Mehr

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1

Die Lösungsmenge besteht aus allen n-tupeln reeller Zahlen x 1 III. Lineare Gleichungssysteme ================================================================= 3. Einführung ---------------------------------------------------------------------------------------------------------------

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit)

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit) Die komplexen Zahlen 1. Einführung A) Erweiterung des Zahlenkörpers Def. 1 (imaginäre Einheit) Die Gl. x 2 + 1 = 0 hat zwei Lösungen, nämlich i und - i. Es soll also gelten: i 2 = -1 und ( - i ) 2 = -1.

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 40 Kapitel 12 Komplexe Zahlen Kapitel 12 Komplexe Zahlen Mathematischer Vorkurs

Mehr

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Komplexe Zahlen (Seite 1)

Komplexe Zahlen (Seite 1) (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

Brückenkurs Mathematik. Freitag Freitag

Brückenkurs Mathematik. Freitag Freitag Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Fakultät für Mathematik PD Dr. Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Siebte Woche, 21.5.2014 4 Ringe und Körper (Fortsetzung) Satz: Es sei R ein Ring

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/62 Prof. Dr. Erich Walter Farkas Mathematik I 7. Komplexe Zahlen Definition einer

Mehr

10 Lineare Gleichungssysteme

10 Lineare Gleichungssysteme ChrNelius : Lineare Algebra I (WS 2004/05) 1 10 Lineare Gleichungssysteme (101) Bezeichnungen: Ein System a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 ( ) a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14052018 (Teil 1) 7 Mai 2018 Steven Köhler mathe@stevenkoehlerde mathestevenkoehlerde 2 c 2018 Steven Köhler 7 Mai 2018 Matrizen

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

2. Gruppen und Körper

2. Gruppen und Körper 2. Gruppen und Körper (2.1) Def. Eine Gruppe ist eine Menge, genannt G, und eine Abbildung ( innere Verknüpfung ) von G G nach G, hier bezeichnet als so daß folgende Eigenschaften erfüllt sind: : G G G,

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Tutorium: Analysis und Lineare Algebra. Vorbereitung der Bonusklausur am (Teil 1, Lösungen)

Tutorium: Analysis und Lineare Algebra. Vorbereitung der Bonusklausur am (Teil 1, Lösungen) Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 22.5.217 (Teil 1, Lösungen) 1. Mai 217 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 217 Steven Köhler 1. Mai 217

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

KOMPLEXE ZAHLEN UND FUNKTIONEN

KOMPLEXE ZAHLEN UND FUNKTIONEN Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

3. Zahlbereiche und algebraische Strukturen

3. Zahlbereiche und algebraische Strukturen technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines

Mehr

Grundlagen. Mathematik I für Chemiker. Daniel Gerth

Grundlagen. Mathematik I für Chemiker. Daniel Gerth Grundlagen Mathematik I für Chemiker Daniel Gerth Überblick Komplexe Zahlen Dieses Kapitel erklärt: Was komplexe Zahlen sind Wie man mit ihnen rechnet Daniel Gerth (JKU) Grundlagen 2 / 30 Inhaltsverzeichnis

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Konvergenzkriterien für Reihen Gegeben: a i Folge, s n = Divergenzkriterium n a i i=1 Ist s n konvergent a i ist Nullfolge Also äquivalent

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Komplexe Zahlen. Gymnasium Immensee PAM: Basiskurs Mathematik. Bettina Bieri

Komplexe Zahlen. Gymnasium Immensee PAM: Basiskurs Mathematik. Bettina Bieri Komplexe Zahlen Gymnasium Immensee PAM: Basiskurs Mathematik Bettina Bieri 13. Juli 2011 Inhaltsverzeichnis 1 Mathematische Abkürzungen 1 1.1 Mengen.............................. 2 1.1.1 Symbole zu Mengen...................

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 2. Aufgabe 2.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 2. Aufgabe 2.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Dr. V. Gradinaru D. Devaud A. Hiltebrand Herbstsemester 04 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Multiple Choice: Online abzugeben. Ev. sind mehrere

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr

(a) Motivation zur Definition komplexer Zahlen

(a) Motivation zur Definition komplexer Zahlen 1 Anhang B (a) Motivation zur Definition komplexer Zahlen Neue Zahlen wurden stets dann definiert, wenn die Anwendung von Rechenoperationen auf bekannte Zahlen innerhalb der Menge letzterer keine Lösung

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

2.3 Lineare Abbildungen und Matrizen

2.3 Lineare Abbildungen und Matrizen 2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen

Mehr

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/60

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya Lineare Gleichungssysteme 1-E Ma 1 Lubov Vassilevskaya Systeme linearer Funktionen und Gleichungen y = a 1 a 2... a n lineare Funktion Funktion ersten Grades,,..., unabhängige Variablen y abhängige Variable

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen):

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen): Übungsaufgaben 1. Übung: Woche vom 17.-21.10.16 (komplexe Zahlen): Heft Ü1: 3.9 (a,b); 3.10, 3.12 (a-c); 3.13 (a-c); 3.2 (a,b,d); 3.3 (c,d,f) Wiederholung Komplexe Zahlen Definition (Imaginäre Einheit,

Mehr

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:

KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS

6.2. Prüfungsaufgaben zur Lösbarkeit von LGS 6.. Prüfungsaufgaben zur Lösbarkeit von LGS Aufgabe : Lösbarkeit von LGS () Berechne mit Hilfe des Gauß-Verfahrens die Lösungsmengen der drei folgenden inhomogenen Gleichungssysteme. Gib außerdem die Lösungsmengen

Mehr