Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Größe: px
Ab Seite anzeigen:

Download "Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops"

Transkript

1 1 Beugung an palt und Gitter, Auflösungsvermögen des Mikroskops 1 Einleitung Das Mikroskop ist in Medizin, Technik und Naturwissenschaft ein wichtiges Werkzeug um Informationen über Objekte auf Mikrometerskala zu erhalten. Das Auflösungsvermögen des Mikroskops ist jedoch nicht über die Wellenlänge des verwendeten Lichts hinaus steigerbar. Der Praktikumsversuch soll dieses Phänomens verständlich machen und zeigen, wie die Auflösungsgrenze des Mikroskops mit der Wellennatur des Lichts zusammenhängt. 2 Versuchsvorbereitung Abbildung mit einer ammellinse, Abbildungsgleichung und Vergrößerung, Bildweite, Gegenstandsweite, numerische Apertur, Wellenlänge, Farbe, Kohärenzlänge, Interferenz, Huygen sches Prinzip, Beugung am Einzelspalt, Doppelspalt und Gitter trahlenoptik: Konstruieren ie das Bild an einer ammellinse, skizzieren ie den trahlengang im Mikroskop, Beantworten ie die Frage zu Abb. 2. Wellenoptik: kizzieren ie die Beugung am Doppelspalt, wie hängt die Richtung zum ersten Beugungsmaximum vom Abstand der palte und von der Wellenlänge des Lichts ab. Deuten ie letzteres für blaues und rotes Licht in ihrer Zeichnung an. Was ändert sich bei der Beugung am Einzelspalt? Zeichnen ie den trahlengang vor dem Mikroskopobjektiv aus Abb. 6 und zeigen ie, wie man auf Gln. 2 kommt. 2.1 Geometrische Optik Im Rahmen der geometrischen Optik wird die Ausbreitung von Licht durch trahlen beschrieben, die sich im Vakuum oder in Luft geradlinig ausbreiten. Trifft der trahl auf ein Hindernis, kann er gebrochen, reflektiert oder absorbiert werden. Die Brechung an einer sphärischen (Bi)konvexlinse führt dazu, dass parallele Lichtstrahlen in einem Brennpunkt gebündelt werden wie in Abbildung 1 gezeigt. Der Abstand dieses Brennpunktes von der Linse wird als Brennweite f bezeichnet. Aus dieser Eigenschaft lässt sich, wie in Abbildung 2 gezeigt, die Abbildung eines Gegenstandes an einer Linse konstruieren: Der obere der beiden eingezeichneten trahlen verläuft parallel zur optischen Achse, schneidet diese also im Brennpunkt. Der Mittelstrahl wird nicht abgelenkt. Um ein vergrößertes Bild zu erreichen, muss der Gegenstand also zwischen ein und zwei Brennweiten von der Linse entfernt stehen. Im Prinzip lässt sich mit einer einzelnen Linse eine beliebig hohe Vergrößerung erreichen. Allerdings werden die Abmessungen eines solchen Aufbaus beliebig groß und das Bild lichtschwach, da sich das vom Gegenstand ausgehende Licht auf ein großes Bild verteilt. Diese Probleme können durch die Kombinationen von Linsen in Mikroskop oder Teleskop weitgehend vermieden werden. Allerdings ist die Auflösung dieser Instrumente grundsätzlich durch die Welleneigenschaften des verwendeten Lichts begrenzt, wie im folgenden Abschnitt dargestellt wird. a) b) f optische Achse f Abbildung 1: a) Brechung paralleler Lichstrahlen an einer Linse. b) Umkehrbarkeit des trahlengangs in der Optik.

2 2 Versuchsvorbereitung a) -f f b) -f f c) -2f -f f d) -2f -f f Gegenstand Bild Abbildung 2: Abbildung durch eine Linse: Entsteht bei a) ein Bild? Welche optische Instrumente verwenden (Objektiv-)Linsen in der Anordnung a), c) bzw. d)? 2.2 Wellenoptik Licht ist eine elektromagnetische Welle, seine Frequenz f bestimmt u. a. den Farbeindruck, den wir von Gegenständen haben. Die Wellenlänge λ ergibt sich aus der Beziehung c = λ f (Welcher Wellenlängenbereich ist für Menschen sichtbar? Woran erkennt man, dass die Frequenz und nicht die Wellenlänge für den Farbeindruck enscheidend ist?) Um Intensitätsverteilungen auf sub-mikrometerskala zu beschreiben, müssen Welleneigenschaften berücksichtigt werden. Betrachten wir zwei Objekte im Abstand g, z. B. die beiden palte in Abbildung 3, die von einem Mikroskop getrennt aufgelöst werden sollen: Wenn die Ausdehnung der Objekten von der Größenordnung der Wellenlänge ist, wird ihre truktur nicht aufgelöst und sie streuen Licht annähernd isotrop in alle Richtungen. Hinter den beiden Objekten bildet sich das dargestellte Wellenmuster aus. Hinter den beiden palten ergeben sich Beugunsmaxima und -minima. Diese sind die Folge der Überlagerung der Wellen, die von den beiden palten ausgehen. Je nach Gangunterschied x können sich diese gegenseitig verstärken (konstruktive Interferenz) oder abschwächen (destruktive Interferenz), wie in Abbildung 4 gezeigt. Im Falle konstruktiver Interferenz treten Intensitätsmaxima auf, also dann, wenn ein Maximum eines Wellenzuges auf ein Maximum des anderen Wellenzuges trifft. Der Gangunterschied, der zwischen den Wellen aus dem Doppelspalt auftritt, ist in Abbildung 5 dargestellt. Aus Vergleich zwischen Abbildung 4 und Abbildung 5 lässt sich die Bedingung für das Auftreten eines Intensitätsmaximums hinter dem Doppelspalt bzw. Gitter ablesen: tan sin = m λ g (1) Dabei sind der Beugungswinkel, m die Beugungsordnung, λ die Wellenlänge und g die Gitterkonstante Beugungsordnung Lampe Linse Doppelspalt bzw. Gitter Abbildung 3: Beugung an Doppelspalt bzw. Gitter im Huygensschen Modell

3 3 a) b) x = n x = (n+ ) 1 2 Abbildung 4: a) konstruktive und b) destruktive Interferenz zweier Wellenzüge G g x x = g sin( ) chirm Abbildung 5: Gangunterschied x zwischen den Wellenfronten aus den beiden Öffnungen eines Doppelspaltes bzw. zwischen benachbarten palten eines Gitters 2.3 Auflösungsvermögen des Mikroskops Nach Abbé stimmen Bild und Objekt nur dann genau überein, wenn alle Beugungsordnungen in das Mikroskop gelangen, d.h. von der Obejektivlinse erfaßt werden. Ein palt zwischen Gitter und der Objektivlinse gestattet im Experiment, Beugungsordnungen auszublenden. Normalerweise ist dieser palt durch die Fassung der Linse gegeben. Je enger das Gitter wird, desto weiter liegen die Beugungsmaxima auseinander. Es gibt einen kleinsten Abstand g der Gitterstriche, bei dem gerade noch zwei Beugungsbilder ins Mikroskop, d.h. den Bereich der Linse L2, der von der Blende nicht abgedeckt wird, gelangen. Die Gitterstruktur ist dann gerade Beugungsmaxima in Linsenebene Lampe und Linse zur Ausleuchtung α m= 3 m= 2 m= 1 m=-1 m=-2 m=-3 Objektivlinse m. Blende (palt) Bild des Gitters (Zwischenbild im Mikroskop) Abbildung 6: trahlengang zur Beobachtung des Gitters mit einem Mikroskop und Erklärung der Abbé schen Theorie

4 4 Versuchsdurchführung noch erkennbar. Damit ist die Auflösungsgrenze des Mikroskops erreicht. Im Nimmt man an, dass keine Lochblende sondern eine paltblende an der Linsenfassung vorliegt, dann gilt für g: g = λ n sin α (2) g = kleinster Abstand zweier Objektpunkte P und Q, deren Bilder P und Q noch getrennt erscheinen (hier Gitterkonstante) λ = Wellenlänge des zur Abbildung benutzten Lichtes im Vakuum λ/n = Wellenlänge des Lichtes im benutzten Medium (z.b. Immersionsöl) n = Brechzahl im Raum zwischen Objekt und Objektiv 2α = Winkel, unter dem ein Gitterpunkt die Objektivfassung sieht (α = Öffnungswinkel) n sin α = numerische Apertur des Objektivs 3 Versuchsdurchführung Versuchsmaterialien Optikbank, Optikreiter, chirm, Farbfilter FL: Fadenlampe mit Irisblende inkl. Netzteil (Betriebsspannung: 12 V) Hg: Quecksilberdampflampe inkl. Netzteil : palt (Durchmesser und Orientierung verstellbar) L: Linse (Brennweite 50mm) MO: Mikroskopobjektiv mit Millimeterskala G: Gitter (engmaschig) G : Gitter (weitmaschig) 3.1 Beugung am palt Achtung: Verwenden ie für diesen Versuchsteil aussschließlich die Fadenlampe! Die Hg-Lampe emittiert intensive, für das Auge schädliche UV-trahlung. chauen ie niemals direkt in die Hg-Lampe! Betrachten ie die Lampe durch den palt. Verringern ie die paltbreite so weit, bis ie ein Beugungsbild beobachten können. Welche Bedingung muss die paltbreite hierfür erfüllen? Erscheint langwelliges Licht (rot) oder kurzwelliges Licht (blau) unter einem größeren Beugungswinkel? Wird der Beugungswinkel größer oder kleiner, wenn ie die paltbreite geringfügig verringern? Notieren ie die Beobachtungen und Antworten im Protokollheft! 3.2 Bestimmung der Gitterkonstanten der Beugungsgitter Bilden ie den Glühfaden der Fadenlampe mit Hilfe der Linse stark vergrößert auf den chirm ab. Wie verläuft der trahlengang, insbesondere zwischen Linse und chirm? Bringen ie zuerst das weitmaschige Gitter G direkt nach der Linse in den trahlengang. Bringen ie nach dem Gitter das Mikroskopobjektiv in den trahlengang. Bilden ie durch Variation der Position des chirms und des Mikroskopobjektivs das Gitter auf den chirm ab. Bestimmen ie mithilfe der kala des Mikroskopobjektivs Gitterkonstante und Linienzahl des Gitters G sowie im Anschluss die des feinmaschigen Gitters G. Geben ie die Gitterkonstante in µm an. Eine Einheit auf der kala des Objektivs FL Abbildung 7: Aufbau zur Beobachtung des Beugungsmusters eines Einfachspalts

5 5 FL L G (G ) MO chirm Abbildung 8: Aufbau zur Bestimmung der Gitterkonstanten von G und G entspricht einem Millimeter. Notieren ie die Abstände zwischen Mikroskopobjektiv und Gitter bzw. chirm. ollten ie bei der Bestimmung der Gitterkonstante des feinmaschigen Gitters Probleme haben, wechseln ie die Lampe gegen die Hg-Lampe aus, setzen sie gleich den palt mit ein, den sie für den nächsten Versuch benötigen und bilden sie den palt scharf auf den chirm ab. Dazu vorübergehend Gitter und Mikroskop aus dem trahlengang entfernen.) 3.3 Bestimmung der charakteristischen Linien der Hg-Lampe Bringen ie den palt direkt vor der Hg-Lampe in den trahlengang. Bilden ie nun den palt mit Hilfe der Linse stark vergrößert auf den chirm ab. Achten ie unbedingt darauf, dass der palt nicht verbogen abgebildet wird! (palt, Lampe gerade stellen, Höhe der Linse über dem Tisch justieren!) Wie verläuft der trahlengang zwischen Linse und chirm? Bringen ie nun das Gitter G direkt nach der Linse in den trahlengang ein. Variieren ie die paltbreite bis das Beugungsbild des Gitters erkennbar ist. kizzieren ie trahlengang und Beugungsbild! Wie ändert sich das Beugungsbild, wenn ie das Gitter entlang der optischen Achse verschieben? Bestimmen ie aus der gemessenen Gitterkonstante und dem Beugungswinkel, unter dem die jeweilige Linie beobachtet wird, die Wellenlänge der gelben, grünen und blauen pektrallinie von Quecksilber: tan sin = m λ g Dabei sind der Beugungswinkel, m die Beugungsordnung, λ die Wellenlänge und g die Gitterkonstante. Messen ie dazu die Abstände der jeweiligen Linie im m = ±1 und m = ±2 Beugungsmaximum von der Position der nullten Beugungsordnung zu beiden eiten. Bestimmen ie aus den Messungen zum ersten Maximum einen mittleren Abstand und daraus die Wellenlänge, danach aus den Messungen des zweiten Maximums. Überlegen ie sich, wie genau ie die Position der Linien und den Abstand zwischen Gitter und chirm bestimmen konnten und schätzen ie so den jeweiligen Fehler in der Wellenlänge ab. Vergleichen ie ihre Messwerte mit den Messwerten der anderen Gruppen und den tatsächlichen Werten (Betreuer(in)) und notieren ie, ob die Fehlerabschätzung die tatsächliche Abweichung der einzelnen Messwerte erklärt. 3.4 Auflösungsvermögen des Mikroskops Bringen ie nun direkt hinter dem Gitter G einen weiteren palt in den trahlengang ein. Achten ie darauf, dass dieser zum ersten palt parallel steht. Justieren ie den 2. palt so, dass ie auf seiner geschlossenen Fläche die Beugungsmaxima sehen können und sicher sind dass beim Öffnen des paltes als erstes das nullte Maximum durch den palt geht. Fügen ie nun nach dem vollständig geöffneten 2. palt das Mikroskopobjektiv in den trahlengang ein und bilden ie das Gitter - analog zu Abschnitt 3.2 (3) Hg L G chirm Abbildung 9: Aufbau zur Vermessung der pektrallinien von Quecksilber (Hg)

6 6 Versuchsdurchführung Hg L G MO chirm Abbildung 10: Aufbau zur Bestimmung des Auflösungsvermögens - auf den chirm ab. Für die Justage können ie sich an den in Abschnitt 3.2 bestimmten Abständen orientieren und ggf. das weitmaschige Gitter G (anstelle von G) verwenden, für die weitere Durchführung des Versuchs benötigen ie aber das engmaschige Gitter G. Verringern ie nun die Breite des neu eingebrachten paltes und beobachten ie, wie sich die Abbildung der Gitterlinien verhält. Versichern ie sich, dass das Gitter nur dann abgebildet wird, wenn mindestens zwei Beugungsordnungen den palt passieren. Notieren ie in Ihrem Versuchsheft die Antworten auf die folgenden Fragen: Was muss ein Mikroskopobjektiv leisten, um eine möglichst hohe Auflösung zu ermöglichen? Welche Kenngröße des Objektivs beschreibt, wie viele Beugungsordnungen abgebildet werden können? Wie eng muss dass Gitter sein, damit es - unabhängig von der verwendeten Linse - mit sichtbarem Licht nicht mehr abgebildet werden kann?

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O2 Beugung des Lichtes Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Versuch 22 Mikroskop

Versuch 22 Mikroskop Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN...

GRUNDLAGEN (O1 UND O3)... 2 STRAHLENGÄNGE AN LUPE UND MIKROSKOP:... 4 MIKROSKOP: INSTRUMENTELLE GRÖßEN, EXPERIMENTELLE METHODEN... E-Mail: Homepage: info@schroeder-doms.de schroeder-doms.de München den 19. Mai 2009 O2 - Mikroskop GRUNDLAGEN (O1 UND O3)... 2 Bildkonstruktion und Abbildungsgleichung einer Linse:... 2 Brennweite eines

Mehr

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum Protokoll Mikroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster (ludwig.schuster@fu-berlin.de) Florian

Mehr

Versuch 17: Geometrische Optik/ Mikroskop

Versuch 17: Geometrische Optik/ Mikroskop Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

O2 PhysikalischesGrundpraktikum

O2 PhysikalischesGrundpraktikum O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 11.Januar 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Abbésche Theorie - 1 Ziel: Verständnis der Bildentstehung beim Mikroskop und dem Zusammenhang zwischen

Mehr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr 426 Das Auge n = 1.3 adaptive Linse: Brennweite der Linse durch Muskeln veränderbar hoher dynamischer Nachweisbereich

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

Auflösungsvermögen. Interferenz

Auflösungsvermögen. Interferenz Auflösungsvermögen Das Auflösungsvermögen ist der kleinste Linear- oder Winkelabstand in dem zwei Punkte gerade noch als zwei einzelne Punkte unterscheidbar/auflösbar sind. Das Auflösungsvermögen des menschlichen

Mehr

08 Aufgaben zur Wellenoptik

08 Aufgaben zur Wellenoptik 1Profilkurs Physik ÜA 08 Aufgaben zur Wellenoptik 2011 Seite 1 A Überlagerung zweier Kreiswellen Aufgabe A 1 08 Aufgaben zur Wellenoptik Zwei Lautsprecher schwingen mit f = 15 khz und befinden sich im

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Emissionsspektren, Methoden der spektralen Zerlegung von Licht, Wellenoptik, Spektralapparate, qualitative Spektralanalyse

Emissionsspektren, Methoden der spektralen Zerlegung von Licht, Wellenoptik, Spektralapparate, qualitative Spektralanalyse O2 Spektroskopie Stoffgebiet: Emissionsspektren, Methoden der spektralen Zerlegung von Licht, Wellenoptik, Spektralapparate, qualitative Spektralanalyse Versuchsziel: Durch Untersuchung der Beugung am

Mehr

Versuch 18 Das Mikroskop

Versuch 18 Das Mikroskop Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 18 Das Mikroskop Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@zimmer209.eu Durchgeführt am: 08.03.2013 Abgabe:

Mehr

Versuch Nr. 18 BEUGUNG

Versuch Nr. 18 BEUGUNG Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

Optik II (Beugungsphänomene)

Optik II (Beugungsphänomene) Optik II (Beugungsphänomene) 1 Wellenoptik 2 1 Interferenz von Wellen, Interferenzversuche 3 Überlagerung von Wellen 4 2 Konstruktive und destruktive Interferenz 5 Beugungsphänomene 6 Bei der Interferenz

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt

Eine solche Anordnung wird auch Fabry-Pérot Interferometer genannt Interferenz in dünnen Schichten Interferieren die an dünnen Schichten reflektierten Wellen miteinander, so können diese sich je nach Dicke der Schicht und Winkel des Einfalls auslöschen oder verstärken

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

22 Optische Spektroskopie; elektromagnetisches Spektrum

22 Optische Spektroskopie; elektromagnetisches Spektrum 22 Optische Spektroskopie; elektromagnetisches Spektrum Messung der Wellenlänge von Licht mithilfedes optischen Gitters Versuch: Um das Spektrum einer Lichtquelle, hier einer Kohlenbogenlampe, aufzunehmen

Mehr

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung

Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Praktikum Klassische Physik I Versuchsvorbereitung: P1-42, 44: Lichtgeschwindigkeitsmessung Christian Buntin Gruppe Mo-11 Karlsruhe, 30. November 2009 Inhaltsverzeichnis 1 Drehspiegelmethode 2 1.1 Vorbereitung...............................

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Physik - Optik. Physik. Graz, 2012. Sonja Draxler

Physik - Optik. Physik. Graz, 2012. Sonja Draxler Wir unterscheiden: Geometrische Optik: Licht folgt dem geometrischen Strahlengang! Brechung, Spiegel, Brechung, Regenbogen, Dispersion, Linsen, Brillen, optische Geräte Wellenoptik: Beugung, Interferenz,

Mehr

Auswertung P2-10 Auflösungsvermögen

Auswertung P2-10 Auflösungsvermögen Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen

Mehr

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen )

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) Geometrische Optik Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) k - Vektoren zeigen zu Wellenfronten für Ausdehnung D von Strukturen, die zu geometrischer Eingrenzung führen

Mehr

13.1 Bestimmung der Lichtgeschwindigkeit

13.1 Bestimmung der Lichtgeschwindigkeit 13 Ausbreitung des Lichts Hofer 1 13.1 Bestimmung der Lichtgeschwindigkeit 13.1.1 Bestimmung durch astronomische Beobachtung Olaf Römer führte 1676 die erste Berechung zur Bestimmung der Lichtgeschwindigkeit

Mehr

Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer

Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Licht + Licht = Dunkelheit? Das Mach-Zehnderund das Michelson-Interferometer Inhalt 1. Grundlagen 1.1 Interferenz 1.2 Das Mach-Zehnder- und das Michelson-Interferometer 1.3 Lichtgeschwindigkeit und Brechzahl

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #24 02/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Frage des Tages wie kann man CD von DVD unterscheiden? λ=532 nm (grüner Laser) 633 nm (roter Laser)

Mehr

Einführung in die Gitterbeugung

Einführung in die Gitterbeugung Einführung in die Gitterbeugung Methoden der Physik SS2006 Prof. Szymanski Seibold Elisabeth Leitner Andreas Krieger Tobias EINLEITUNG 3 DAS HUYGENSSCHE PRINZIP 3 DIE BEUGUNG 3 BEUGUNG AM EINZELSPALT 3

Mehr

Brennweite und Abbildungsfehler von Linsen

Brennweite und Abbildungsfehler von Linsen c Doris Samm 2015 1 Brennweite und Abbildungsfehler von Linsen 1 Der Versuch im Überblick Wir sehen mit unseren Augen. Manchmal funktioniert das gut: Wir sehen alles gestochen scharf. Manchmal erscheinen

Mehr

Mikroskopie. Kleines betrachten

Mikroskopie. Kleines betrachten Mikroskopie griechisch μικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Carl Zeiss Center for Microscopy / Jörg Steinbach -1- Mikroskoptypen Durchlicht Aufrechte Mikroskope Stereomikroskope

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

Auflösungsvermögen bei dunkelen Objekten

Auflösungsvermögen bei dunkelen Objekten Version: 27. Juli 2004 Auflösungsvermögen bei dunkelen Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

Mikroskopie (MIK) Praktikumsskript

Mikroskopie (MIK) Praktikumsskript Mikroskopie (MIK) Praktikumsskript Grundpraktikum Berlin, 15. Dezember 2011 Freie Universität Berlin Fachbereich Physik Ziel dieses Versuchs ist die Einführung in den Umgang mit optischen Komponenten an

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de In welcher Entfernung s befindet sich ein Objekt bezüglich der gegenstandseitigen Brennweite f des Objektivs bei Arbeit mit einem Mikroskop? s < f s = f 2f > s > f s = 2f s > 2f In welcher Entfernung s

Mehr

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: --- Einführung: Der fünfte Versuchstag

Mehr

Astro Stammtisch Peine

Astro Stammtisch Peine Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)

Mehr

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung! Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Beugung am Spalt und Gitter

Beugung am Spalt und Gitter Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6

Das Mikroskop. Physikalisches Grundpraktikum. tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de. Danny Schwarzbach 6 Physikalisches Grundpraktikum Versuch 18 Das Mikroskop Praktikant: Tobias Wegener Christian Gass Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de christian.gass@stud.uni-goettingen.de

Mehr

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt

Seminarunterlagen Optik. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt Seminarunterlagen Optik Versuchsanleitungen von BG/BRG Lerchenfeld Klagenfurt Kernschatten, Halbschatten Die Begriffe Kernschatten und Halbschatten sollen erarbeitet werden und die Unterschiede zwischen

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (6 Punkte) a)

Mehr

O10 PhysikalischesGrundpraktikum

O10 PhysikalischesGrundpraktikum O10 PhysikalischesGrundpraktikum Abteilung Optik Michelson-Interferometer 1 Lernziele Aufbau und Funktionsweise von Interferometern, Räumliche und zeitliche Kohärenz, Kohärenzeigenschaften verschiedener

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die

5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die 5. Optik 5.1. Wellenoptik d 2 E/dx 2 = m 0 e 0 d 2 E/dt 2 Die Welle hat eine Geschwindigkeit von 1/(m 0 e 0 ) 1/2 = 3*10 8 m/s Das ist die Lichtgeschwindigkeit! In Materie ergibt sich eine andere Geschwindikeit

Mehr

Unternehmen Sie unter keinen Umständen einen eigenen Reinigungsversuch!

Unternehmen Sie unter keinen Umständen einen eigenen Reinigungsversuch! FACHHOCHSCHULE BINGEN PHYSIKLABOR Energie- und Prozesstechnik/Biotechnik Gruppennummer Anwesenheit Name / Datum V 2.4 Wellenoptik / LASER Version 17.9.2012 Testat WICHTIG: Vor der Versuchsdurchführung

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Optische Instrumente

Optische Instrumente Klassische Physik-Versuch 21 KLP-21-1 Optische Instrumente 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche 20 23 1.2 Auflösungsvermögen eines Mikroskops Lit.: Anhang 3.1 und 3.2 1.3 Entstehung

Mehr

MODELOPTIC Best.- Nr. MD02973

MODELOPTIC Best.- Nr. MD02973 MODELOPTIC Best.- Nr. MD02973 1. Beschreibung Bei MODELOPTIC handelt es sich um eine optische Bank mit deren Hilfe Sie die Funktionsweise der folgenden 3 Geräte demonstrieren können: Mikroskop, Fernrohr,

Mehr

Laborversuche zur Physik 2 II - 6. Versuche zu den Abbe'schen Ideen der Bildentstehung beim Mikroskop

Laborversuche zur Physik 2 II - 6. Versuche zu den Abbe'schen Ideen der Bildentstehung beim Mikroskop FB Physik Laborversuche zur Physik 2 II - 6 Auflösung beim Mikroskop Reyher, 23.07.12 Ziele Versuche zu den Abbe'schen Ideen der Bildentstehung beim Mikroskop Experimentelle Überprüfung einiger Aussagen

Mehr

Schulbiologiezentrum Hannover. Mit einer CD die Wellenlängen des Lichts messen

Schulbiologiezentrum Hannover. Mit einer CD die Wellenlängen des Lichts messen Schulbiologiezentrum Hannover Vinnhorster Weg 2, 30419 Hannover Tel: 0511-16847665/7 Fax: 0511-16847352 email: schulbiologiezentrum@hannover-stadt.de Unterrichtsprojekte Natur und Technik 19.68 Zum Selbstbau

Mehr

Mikroskopie: Einen Blick ins Mikrokosmos

Mikroskopie: Einen Blick ins Mikrokosmos Mikroskopie Stand: WS09/10 (MIK) Seite 1 Mikroskopie: Einen Blick ins Mikrokosmos Stichworte: Geometrische Optik, Dünne Linse, konvex, konkav, Brechung, Brennebene, Fokus, Brennweite, optische Achse, Zwischenbild,

Mehr

Physikalisches Praktikum O 3 Interferenz

Physikalisches Praktikum O 3 Interferenz Physikalisches Praktikum O 3 Interferenz Versuchsziel Untersuchung von Interferenzerscheinungen. Literatur /1/ E. Hecht Optik /2/ Bergmann/Schäfer Band 3, Optik /3/ P. Tipler/G. Mosca Physik /4/ LD Didactic

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Institut f. Experimentalphysik Technische Universität raz Petersgasse 16, A-8010 raz Laborübungen: Elektrizität und Optik 21. Mai 2010 Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Stichworte

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.2: Wellenlängenbestimmung mit dem Gitter- und Prismenspektrometer Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1

Mehr

Physikalisches Praktikum 3. Abbésche Theorie

Physikalisches Praktikum 3. Abbésche Theorie Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen

Mehr

Anfängerpraktikum III Interferometer / Beugung am Gitter

Anfängerpraktikum III Interferometer / Beugung am Gitter Anfängerpraktikum III Interferometer / Beugung am Gitter Praktikumsbericht René Sedlak, Simon Hönl Tutor: Alexander Frey Durchgeführt am 7.1./14.1.2013 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung

Mehr

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt -II.1- Geometrische Optik Optik: Teilgebiet der, das sich mit der Untersuchung des Lichtes beschäftigt 1 Ausbreitung des Lichtes Das sich ausbreitende Licht stellt einen Transport von Energie dar. Man

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2 SC Saccharimetrie Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes Licht.................

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

Inhaltsverzeichnis. Vorwort. Gliederung des Gesamtwerkes

Inhaltsverzeichnis. Vorwort. Gliederung des Gesamtwerkes V Vorwort X Gliederung des Gesamtwerkes XII Historische Aspekte zur Lichtausbreitung 1 Das Heron sche Prinzip Reflexion an ebenen und gekrümmten Flächen 1 2 Ansätze von Descartes, Anwendungen auf Brechung

Mehr

3.16. Diffraktive Optik

3.16. Diffraktive Optik 3.16 Diffraktive Optik 421 3.16. Diffraktive Optik SICHERHEITSHINWEIS: Während der Versuchsdauer darf das Lasermodul nur bestimmungsgemäß im Experiment verwendet werden. Vor Versuchsbeginn sind reflektierende

Mehr

Versuch P2: Optische Abbildungen und Mikroskop

Versuch P2: Optische Abbildungen und Mikroskop Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden

Mehr

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Email: Markus@prieske-goch.de; Uschakow@gmx.de Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Linsentypen.......................................

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O07 Michelson-Interferometer (Pr_PhII_O07_Michelson_7, 5.10.015) 1.. Name Matr. Nr. Gruppe

Mehr

Michelson - Interferometer

Michelson - Interferometer Michelson - Interferometer Matthias Lütgens 9. April 2005 Partner: Christoph Mahnke Betreuer: Dr. Enenkel Datum der Versuchsdurchführung: 5. April 2005 0.1 Ziel Experimentelle Nutzung des Michelson-Interferometers

Mehr

1.6 Michelson-Interferometer und Newtonsche Ringe

1.6 Michelson-Interferometer und Newtonsche Ringe Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.6 Michelson-Interferometer und Newtonsche Ringe 1 Michelson-Interferometer Interferometer dienen zur Messung von Längen oder Längendifferenzen

Mehr

Beugung von Mikrowellen an Spalt und Steg. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung.

Beugung von Mikrowellen an Spalt und Steg. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung. Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung. Prinzip Treffen elektromagnetische Wellen auf die Kante eines Objekts (beispielsweise Spalt und Steg),

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Optische Abbildung (OPA)

Optische Abbildung (OPA) Seite 1 Themengebiet: Optik Autor: unbekannt geändert: M. Saß (30.03.06) 1 Stichworte Geometrische Optik, Lichtstrahl, dünne und dicke Linsen, Linsensysteme, Abbildungsgleichung, Bildkonstruktion 2 Literatur

Mehr

Thema 6: Mikroskop. 1 Einleitung. Version vom 26. April 2015

Thema 6: Mikroskop. 1 Einleitung. Version vom 26. April 2015 Version vom 26. April 2015 Thema 6: Mikroskop Abbildung 6.1: Das im Versuch zu benutzende binokulare Mikroskop Abbildung 6.2: Die Messlupen-Vorrichtung zur Bestimmung der Spaltbreite: Im Vordergrund die

Mehr