Approximations-Algorithmen
|
|
|
- Heinz Stein
- vor 10 Jahren
- Abrufe
Transkript
1 Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme wie z.b. Routenplanung, Zeiteinteilung und Packungsprobleme können nicht effizient exakt gelöst werden. Gute Näherungsmethoden, das heißt Approximations-Algorithmen, werden gesucht. Aber was ist gut? Beispiel: Bin Packing gegeben: n Pakete mit unterschiedl. Gewichten und Container (bins) mit fester Kapazität. gesucht: Zuordnung der Pakete in möglichst wenige Container. Analyse: Wie gut oder wie schlecht sind einfache und kompliziertere Näherungsverfahren?
2 Zeit: drei Blöcke zu je drei Tagen: , , Mittwoch, Donnerstag 15:00-18:00 Freitag 13:00-16:00 Ort: Seminarraum 186, Favoritenstr. 9, 5.Stock Sprechstunde: Während der drei Blöcke bin ich am Institut erreichbar. Kontakt in Graz: Tel.: Ablauf: Die VU besteht aus Vorlesung und Übungen, die aber zeitlich flexibel integriert abgehalten werden. Zur Vorlesung gibt es teilweise ein Folienskriptum im WWW: Voraussetzungen: Algorithmen und Datenstrukturen 1 Freude an der Analyse von Algorithmen Beurteilung: aktive Mitarbeit Bearbeitung von Übungsbeispielen (Übungsblätter) Mündliche Abschlußprüfung (vorgesehener Termin: 23.4., weitere Termin nach Vereinbarung) Vortragender: a.o.univ.-prof. Dr. Ulrich Pferschy Universität Graz Institut für Statistik und Operations Research
3 Inhalt: Welche Probleme? kombinatorische Optimierung TSP, scheduling, bin-packing, vertex covering, Wie mißt man die Qualität der Approximation? Definitionen der Approximationsgüte Wie gut sind einfache Heuristiken? Worst-case Analyse von intuitiven Algorithmen Vorgabe der Abweichung vom Optimum? ε - Approximationsschemata Literatur: D.S. Hochbaum, Approximation algorithms for NP-hard problems, PWS Publishing Company, V.V. Vazirani, Approximation Algorithms, Springer, G. Ausiello et al., Complexity & Approximation, Springer, J. Hromkovic, Algorithmics for hard problems, Springer, Lecture Notes aus dem Internet von R. Motwani (Standford University) D.P. Williamson (IBM Almaden Research Center) M.X. Goemans (MIT)
4 Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: ( ) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max f(x) P ε(x) < ε x [a,b] Numerische Mathematik: Numerical Recipes in C++
5 Approximationsalgorithmen Ulrich Pferschy 2 Approximation von diskreten, kombinatorischen Problemen: Betrachtung einzelner Objekte, Identitäten oder abstrakter Elemente mit ganzzahligen Daten Motiviert aus praktischen Problemstellungen Klassische Probleme der diskreten Optimierung: Scheduling Graph-Probleme (Überdeckung, Färbung, Partition) Netzwerkprobleme Routen- und Tourenplanung TSP Packungs- und Zuschnittprobleme...
6 Approximationsalgorithmen Einleitung 3 Multi-Prozessor Scheduling: n jobs/aufträge, jeder mit Bearbeitungszeit p i, m Maschinen Ordne jeden job einer Maschine zu, sodaß der Gesamt-Fertigstellungszeitpunkt minimal ist. Bin Packing Problem (BP): n Objekte, jedes mit Gewicht a i (0, 1], beliebig viele Container/bins mit Kapazität 1 Packe alle Objekte in minimale Anzahl von bins
7 Approximationsalgorithmen Einleitung 4 Rucksackproblem / Knapsack Problem (KP): n Objekte, jedes mit Profit p i und Gewicht w i, ein Rucksack/Container/bin mit Kapazität c Wähle eine Teilmenge von Objekten mit maximalem Profit und Gewicht c. Subset Sum Problem (SSP): Spezialfall des Rucksackproblems n Objekte, jedes mit Gewicht w i, ein Rucksack/Container/bin mit Kapazität c Wähle eine Teilmenge von Objekten mit maximalem Gewicht c.
8 Approximationsalgorithmen Einleitung 5 Maximum Cut Problem (Max Cut): Graph (V, E) mit Kantengewichten w ij für jede Kante (i, j) E. Finde eine Knotenmenge S V mit maximalem i S,j S w ij (Kanten zwischen S und V \ S). Minimal spannender Baum / Minimum Spanning Tree (MST): Graph (V, E) mit Kantengewichten d ij = d ji für jede Kante (i, j) E. Finde einen Baum, der alle Knoten enthält mit minimalem Gesamtgewicht.
9 Approximationsalgorithmen Einleitung 6 (Symmetrisches) Rundreiseproblem / Traveling Salesperson Problem (TSP): n Städte mit allen (symmetrischen) Entfernungen. Finde die kürzeste Rundreise, die alle n Städte besucht. Variante: Minimaler Hamiltonscher Kreis: Graph (V, E) mit Kantengewichten d ij = d ji für jede Kante (i, j) E. Finde einen Hamiltonschen Kreis mit minimalem Gesamtgewicht.
10 Approximationsalgorithmen Einleitung 7 Set Covering Problem (SC): Grundmenge M, Familie von Teilmengen {S 1,..., S m }, S i M, Bewertung w i für jede Menge S i. Finde eine Auswahl der Teilmengen mit minimalem Gesamtgewicht, sodaß jedes Element aus M in einer der ausgewählten Teilmengen enthalten ist. Vertex Cover (VC): Graph (V, E) Finde eine minimale Knotenmenge C V, sodaß für jede Kante (i, j) entweder i C oder j C.
11 Approximationsalgorithmen Einleitung 8 Knotenfärbung von Graphen/Graph Colouring: Graph (V, E), beliebig viele Farben. Ordne jedem Knoten eine Farbe zu, sodaß Knoten, die durch eine Kante verbunden sind, verschiedene Farben haben und eine minimale Gesamtzahl von Farben verwendet werden. Kantenfärbung von Graphen: Graph (V, E), beliebig viele Farben. Ordne jeder Kante eine Farbe zu, sodaß Kanten mit gemeinsamen Endknoten verschiedene Farben haben und eine minimale Gesamtzahl von Farben verwendet werden.
12 Approximationsalgorithmen Einleitung 9 Erwünscht: Optimale Lösung N P-Vollständigkeit: = Bei fast allen interessanten Problemen gibt es kein effizientes optimales Lösungsverfahren, d.h. keinen Algorithmus mit polynomialer Laufzeit 1. Optimale Lösung durch intelligente Enumeration Branch & Bound IP-Formulierung, Branch & Cut Dynamisches Programmieren Verzicht auf Optimalität = Approximation Bestimmt wird eine zulässige Lösung. Qualität der Lösung ist i.a. unbekannt. Unterscheide: Suchverfahren (local search, Metaheuristiken, etc.) konstruktive Verfahren
13 Approximationsalgorithmen Bewertung 10 Bewertung von Approximationsalgorithmen 1. empirische Tests 2. average-case Analyse 3. worst-case Analyse
14 Approximationsalgorithmen Bewertung 11 Güte eines Algorithmus A für ein Optimierungsproblem: Unterscheide: Problem vs. Problem-Instanz I (Näherungs-)Algorithmus A liefert Lösungswert A(I) (unbekannte) Optimallösung wäre Opt(I) Definition: Algorithmus A ist ein Approximationsalgorithmus wenn A für jede Instanz I eine zulässige Lösung liefert. Definition: Ein Approximationsalgorithmus A hat eine absolute Gütegarantie k, (k > 0), wenn für jede Instanz I gilt: Opt(I) A(I) k Bemerkung: Def. gilt für Maximierungs- und Minimierungsprobleme.
15 Approximationsalgorithmen Bewertung 12 Graph Colouring (Knoten): Von besonderem Interesse ist die Färbung von planaren Graphen. Satz: (Four Colour Theorem: Appel, Haken, Koch 1977) Jeder planare Graph ist 4-färbbar. Satz: Ein planarer Graph ist genau dann 2-färbbar, wenn er bipartit ist. Satz: Das Entscheidungsproblem Ist ein gegebener planarer Graph 3-färbbar ist N P-vollständig. Eine 5-Färbung eines planaren Graphen ist relativ einfach zu bestimmen. Auch die 4-Färbung ist in O(n 2 ) möglich (Robertson et al. 1996), aber sehr aufwendig. = Färbung von planaren Graphen kann mit einer absoluten Gütegarantie 2 approximiert werden.
16 Approximationsalgorithmen Bewertung 13 Graph Colouring (Kanten): Sei (G) der maximale Grad eines Knoten in G. Satz von Vizing: Jeder Graph G ist kantenfärbbar mit (G) oder (G) + 1 Farben. = Kantenfärbung von beliebigen Graphen kann mit einer absoluten Gütegarantie von 1 approximiert werden. = Ist die absolute Gütegarantie das perfekte Konzept?? Negatives Resultat: Satz: Es gibt keinen polynomiellen Algorithmus für das Rucksackproblem (KP) mit einer absoluten Gütegarantie k, für irgendein k > 0 (wenn P N P).
17 Approximationsalgorithmen Bewertung 14 Maximierung: Definition: Ein Approximationsalgorithmus A für ein Maximierungsproblem hat eine relative Gütegarantie k,(0 < k < 1), wenn für jede Instanz I gilt: A(I) k Opt(I) kurz: A ist ein k Approximationsalgorithmus. Betrachte die relative Abweichung: Opt(I) A(I) Opt(I) ε A(I) (1 ε)opt(i) Ein Approximationsalgorithmus A mit relativer Abweichung ε ist ein (1 ε) Approximationsalgorithmus.
18 Approximationsalgorithmen Bewertung 15 Minimierung: Definition: Ein Approximationsalgorithmus A für ein Minimierungsproblem hat eine relative Gütegarantie k, (k > 1), wenn für jede Instanz I gilt: A(I) k Opt(I) auch hier: A ist ein k Approximationsalgorithmus. wiederum die relative Abweichung: A(I) Opt(I) Opt(I) ε A(I) (1 + ε)opt(i) Ein Approximationsalgorithmus A mit relativer Abweichung ε ist ein (1 + ε) Approximationsalgorithmus. Zusatz: Eine relative/absolute Gütegarantie eines Algorithmus A ist scharf, wenn es eine Instanz I gibt, sodaß die entsprechende Ungleichung mit Gleichheit erfüllt ist. Oder wenn es eine Folge von Instanzen gibt, sodaß die Gleichheit im Grenzwert gilt.
19 Approximationsalgorithmen Bewertung 16 Definition: (Minimierung) Ein Approximationsalgorithmus A für ein Minimierungsproblem hat eine asymptotische Gütegarantie k, (k > 1), wenn es eine Konstante d gibt, sodaß für jede Instanz I gilt: A(I) k Opt(I) + d oder technischer: k = lim sup Opt(I) I A(I) Opt(I)
20 Approximationsalgorithmen Einfache Algorithmen 17 Multi-Prozessor Scheduling: n jobs/aufträge, jeder mit Bearbeitungszeit p i, m Maschinen Ordne jeden job einer Maschine zu, sodaß der Gesamt-Fertigstellungszeitpunkt minimal ist. Algorithmus List-Scheduling (Graham): l j := 0 Arbeitszeit von Maschine j = 1,.., m for i := 1 to n do j min := arg min{l j } ordne job i auf Maschine j min an. l jmin := l jmin + p i end for Gesamtzeit := max{l j } List-Scheduling hat eine scharfe Gütegarantie von 2 1 m. Verbesserung: (LPT) Longest-Processing Time List-Scheduling Sortiere die jobs in absteigender Reihenfolge. (LPT) hat eine scharfe Gütegarantie von m.
21 Approximationsalgorithmen Einfache Algorithmen 18 Bin Packing Problem (BP): n Objekte, jedes mit Gewicht a i (0, 1], beliebig viele bins mit Kapazität 1 Packe alle Objekte in minimale Anzahl von bins Naive Methode: Algorithmus Next Fit (NF): öffne das erste bin for i := 1 to n do wenn Objekt i in das offene bin paßt packe es dort hinein sonst schließe das offene bin öffne ein neues bin und packe Objekt i ein end for (NF) läuft in O(n) Zeit. (NF) hat eine scharfe asymptotische Gütegarantie von 2.
22 Approximationsalgorithmen Einfache Algorithmen 19 Algorithmus First Fit (FF) (Johnson et al.): öffne das erste bin for i := 1 to n do betrachte die offenen bins der Reihe nach packe Objekt i in das erste bin, wo es paßt wenn es nirgends paßt öffne ein neues bin und packe Objekt i ein end for (FF) läuft in O(n log n) Zeit. (FF) hat eine scharfe asymptotische Gütegarantie von 1.7. Verbesserung: First Fit Decreasing (FFD) (Johnson) Sortiere die Objekte in absteigender Reihenfolge. (FFD) hat eine scharfe asymptotische Gütegarantie von Varianten: Best Fit, Worst Fit, Any Fit,...
23 Approximationsalgorithmen Einfache Algorithmen 20 Allgemeines Rundreiseproblem (TSP): n Orte mit allen paarweisen Entfernungen. Finde die kürzeste Tour durch alle n Orte. Negatives Resultat: Satz: Es gibt keinen polynomiellen Algorithmus für das allgemeine TSP mit einer Gütegarantie k, für irgendein k > 0 (wenn P N P). Rundreiseproblem mit Dreicksungleichung ( -TSP): Zusatzbedingung: Für alle Tripel von Orten i, j, k gilt: d(i, j) + d(j, k) d(i, k) MST-Heuristik liefert Gütegarantie 2. Christofides-Heuristik liefert Gütegarantie 3/2.
24 Approximationsalgorithmen Einfache Algorithmen 21 -TSP Fortsetzung: Einfüge-Heuristik: (verwendbar auch ohne Dreiecksungleichung.) Algorithmus Insertion: ( ) repeat wähle einen Punkt k nicht auf der Tour suche Kante (i, j) der Tour mit minimalen Einfügekosten: d(i, k) + d(k, j) d(i, j) füge k zwischen i und j ein until alle Punkte eingefügt Auswahl von Punkt k: nearest insertion farthest insertion cheapest insertion random insertion
25 Approximationsalgorithmen Einfache Algorithmen 22 Approximations-Resultate für Insertion: Für jede Insertion-Regel gilt (Rosenkrantz et al. 77): A(I) (log n + 1) Opt(I) Es gibt Instanzen I und Insertion-Folgen mit A(I) log n log log n Opt(I). Nearest Insertion hat eine scharfe Gütegarantie von 2. Wenn nearest insertion mit der konvexen Hülle beginnt, verschlechtert sich die Gütegarantie auf 3 (Warburton 93). Farthest Insertion: In der Praxis besser, aber Gütegarantie 2.43 (Hurkens, 92), genaue Garantie unbekannt. Random Insertion: (Azar 94) Es gibt Instanzen I mit A(I) log log n log log log n Opt(I).
26 Approximationsalgorithmen Einfache Algorithmen 23 Verbesserungs-Verfahren: Algorithmus 2-Opt: starte mit irgendeiner Tour repeat wähle 2 Kanten der Tour und entferne sie füge die Teilstücke zu neuer Tour zusammen Tour := min{neue Tour, alte Tour} until keine Verbesserung möglich Viele Varianten zur systematischen Durchführung. Jede 2-optimale Tour ist kreuzungsfrei. Für jede 2-optimale Tour T gilt (Chandra et al. 94): T log n Opt Es gibt 2-optimale Touren T mit T log n log log n Opt. Euklidsches Rundreiseproblem: Orte sind Punkte im R 2 : Beliebig gute Approximation in polynomieller Zeit möglich.
27 Approximationsalgorithmen Einfache Algorithmen 24 Rucksackproblem/Knapsack Problem (KP): n items, jedes mit Profit p i und Gewicht w i, ein Rucksack/bin mit Kapazität c Wähle eine Teilmenge von items mit maximalem Profit und Gewicht c. Algorithmus einfacher Greedy: Sortiere die items nach Effizienz: p 1 w 1 p 2 w 2... p n w n for i := 1 to n do if item i paßt in den Rucksack pack es ein end for Einfacher Greedy kann unbeschränkt schlecht werden. Verbesserter Algorithmus Greedy: Sei z E... der Wert des Rucksacks nach einfacher Greedy. z G := max{z E, max{p i i = 1,..., n}} Greedy hat eine scharfe Gütegarantie von 1/2.
28 Approximationsalgorithmen Einfache Algorithmen 25 Beachte: ein einziges großes item hat Haupteinfluß. Verbesserung: Rate das item mit größtem Profit in der Optimallösung. = alle items durchprobieren. Algorithmus G 2/3 : for i := 1 to n do packe item i in den leeren Rucksack wende Greedy auf das Restproblem mit Kapazität c w i an end for z A := Maximum der n Rucksack-Lösungen G 2/3 hat eine scharfe Gütegarantie von 2/3. Verallgemeinerung: Rate die 2 items mit größtem Profit in der Optimallösung. = alle Paare von items durchprobieren. = scharfe Gütegarantie von 3/4.
29 Approximationsalgorithmen Einfache Algorithmen 26 Weitere Verallgemeinerung: Rate die l items mit größtem Profit in der Optimallösung. = alle l-tupel von items durchprobieren. = scharfe Gütegarantie von l+1 l+2. Laufzeit: ) Tupel = O(n l ) viele Greedy Iterationen = O(n l+1 ) ( n l Verbesserung auf O(n l ) möglich.
Approximation im Sinne der Analysis:
1 Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max x [a,b] f(x) P ε(x) < ε Numerische
Approximationsalgorithmen. Approximation im Sinne der Analysis:
Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem
Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling
Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck
Approximationsalgorithmen
Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Alles zu seiner Zeit Projektplanung heute
Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
Approximationsalgorithmen
Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann [email protected] FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert
Algorithmische Mathematik
Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)
Die Verbindung von Linearer Programmierung und Graphentheorie
Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Datenstrukturen und Algorithmen SS07
Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage [email protected] belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen
Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206
Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische
Das Lastverteilungsproblem
Das Lastverteilungsproblem Approximationsalgorithmen Referent Franz Brauße Veranstaltung Proseminar Theoretische Informatik Universität Trier, FB IV Dozent Prof. Dr. Henning Fernau 23.02.2012 Übersicht
Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer
Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen
Approximationsalgorithmen
Approximationsalgorithmen 1. Vorlesung Joachim Spoerhase Alexander Wolff Lehrstuhl für Informatik I Wintersemester 2017/18 Bücher zur Vorlesung Vijay V. Vazirani Approximation Algorithms Springer-Verlag
Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege
Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 [email protected] Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo [email protected] xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des
Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau
Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:
Statistische Untersuchungen zu endlichen Funktionsgraphen
C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Erfahrungen mit Hartz IV- Empfängern
Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November
Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP
Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick
Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien
Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009
Stackelberg Scheduling Strategien
Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
Approximationsalgorithmen für NP-harte Optimierungsprobleme
Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration
Ressourceneinsatzplanung in der Fertigung
Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Ressourceneinsatzplanung in der Fertigung Dr. Christoph Laroque Sommersemester 2012 Dresden, Ausblick: Ab
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
Approximationsalgorithmen für NP-harte Optimierungsprobleme
Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung
( ) als den Punkt mit der gleichen x-koordinate wie A und der
ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der
Heuristiken im Kontext von Scheduling
Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29
1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian
S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J
Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung
Polynomialzeit- Approximationsschema
Polynomialzeit- Approximationsschema 27.01.2012 Elisabeth Sommerauer, Nicholas Höllermeier Inhalt 1.NP-Vollständigkeit Was ist NP-Vollständigkeit? Die Klassen P und NP Entscheidungsproblem vs. Optimierungsproblem
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
Approximationsalgorithmen. 19. Dezember / 28
Approximationsalgorithmen 19. Dezember 2017 1 / 28 Optimierungsprobleme Das Ziel: Bearbeite schwierige Optimierungsprobleme der Form opt y f (x, y) so dass L(x, y). Die Zielfunktion f (x, y) ist zu minimieren
Wasserfall-Ansätze zur Bildsegmentierung
Wasserfall-Ansätze zur Bildsegmentierung von Philipp Jester Seminar: Bildsegmentierung und Computer Vision 16.01.2006 Überblick 1. Problemstellung 2. Wiederholung: Wasserscheiden-Ansätze 3. Der Wasserfall-Ansatz
4. Dynamische Optimierung
4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger
Approximationsalgorithmen
Effiziente Algorithmen Lösen NP-vollständiger Probleme 320 Approximationsalgorithmen In polynomieller Zeit lässen sich nicht exakte Lösungen von NP-harten Problemen berechnen. Approximationsalgorithmen
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Kapitel 6: Graphalgorithmen Gliederung
Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Approximationsklassen für Optimierungsprobleme
Approximationsklassen für Optimierungsprobleme Matthias Erbar 19. September 2007 Inhaltsverzeichnis 1 Einleitung 1 2 Approximationsalgorithmen mit garantierter Güte 2 2.1 Terminologie......................................
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität
Maximizing the Spread of Influence through a Social Network
1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)
Rechnerische Komplexität
Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit
Ergänzung zum Modulhandbuch
Ergänzung zum Modulhandbuch des Bachelor- und Masterstudiengangs Angewandte Informatik zu den Prüfungs- und Studienordnungen von 2007 und 2008 Institut für Informatik an der Universität Bayreuth (Version
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)
Kap. 7 Optimierung. Überblick. Optimierung: Einführung. Motivation. Beispiele für Optimierungsprobleme. Rundreiseprobleme (TSP)
Kap. 7 Optimierung Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 22. VO 2. TEIL DAP2 SS 2009 9. Juli 2009 Überblick Einführung Einige klassische Optimierungsprobleme,
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298
Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations
Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht
Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni 2004-1- Beispiele wirtschaftsmathematischer Modellierung
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Algorithmen und Berechnungskomplexität I
Institut für Informatik I Wintersemester 2010/11 Organisatorisches Vorlesung Montags 11:15-12:45 Uhr (AVZ III / HS 1) Mittwochs 11:15-12:45 Uhr (AVZ III / HS 1) Dozent Professor für theoretische Informatik
NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)
NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP
Rundreiseproblem und Stabilität von Approximationsalg.
Das Rundreiseproblem und Stabilität von Approximationsalgorithmen Friedrich Alexander Universität Erlangen-Nürnberg Seminar Perlen der theoretischen Informatik, 2008-01-19 http://verplant.org/uni/perlen/
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS Oktober 2016
Technische Universität Wien Institut für Computergraphik und Algorithmen Algorithms and Complexity Group 186.815 Algorithmen und Datenstrukturen 2 VU 3.0 Nachtragstest SS 2016 5. Oktober 2016 Machen Sie
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den
Approximation durch Taylorpolynome
TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni
Expander Graphen und Ihre Anwendungen
Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006
Einführung in Scheduling
Einführung in Scheduling Dr. Julien Bidot Sommersemester 28 Institut für Künstliche Intelligenz Inhalt I. Definition und Formulierung des Scheduling- Problems II. Projektplanung III. Produktionsplanung
Einführung in die Programmierung
: Inhalt Einführung in die Programmierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund - mit / ohne Parameter - mit / ohne Rückgabewerte
Mining High-Speed Data Streams
Mining High-Speed Data Streams Pedro Domingos & Geoff Hulten Departement of Computer Science & Engineering University of Washington Datum : 212006 Seminar: Maschinelles Lernen und symbolische Ansätze Vortragender:
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
Klausur Mathematik 2
Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-
Künstliche Intelligenz Maschinelles Lernen
Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel
3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36
Lineare Programmierung
Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in
Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm [email protected]
Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm [email protected] Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische
Anleitung über den Umgang mit Schildern
Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)
1 Einleitung. 1.1 Motivation und Zielsetzung der Untersuchung
1 Einleitung 1.1 Motivation und Zielsetzung der Untersuchung Obgleich Tourenplanungsprobleme zu den am häufigsten untersuchten Problemstellungen des Operations Research zählen, konzentriert sich der Großteil
Erwin Grüner 09.02.2006
FB Psychologie Uni Marburg 09.02.2006 Themenübersicht Folgende Befehle stehen in R zur Verfügung: {}: Anweisungsblock if: Bedingte Anweisung switch: Fallunterscheidung repeat-schleife while-schleife for-schleife
PROSEMINAR ONLINE ALGORITHMEN
PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie
Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI
