Approximations-Algorithmen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Approximations-Algorithmen"

Transkript

1 Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme wie z.b. Routenplanung, Zeiteinteilung und Packungsprobleme können nicht effizient exakt gelöst werden. Gute Näherungsmethoden, das heißt Approximations-Algorithmen, werden gesucht. Aber was ist gut? Beispiel: Bin Packing gegeben: n Pakete mit unterschiedl. Gewichten und Container (bins) mit fester Kapazität. gesucht: Zuordnung der Pakete in möglichst wenige Container. Analyse: Wie gut oder wie schlecht sind einfache und kompliziertere Näherungsverfahren?

2 Zeit: drei Blöcke zu je drei Tagen: , , Mittwoch, Donnerstag 15:00-18:00 Freitag 13:00-16:00 Ort: Seminarraum 186, Favoritenstr. 9, 5.Stock Sprechstunde: Während der drei Blöcke bin ich am Institut erreichbar. Kontakt in Graz: Tel.: Ablauf: Die VU besteht aus Vorlesung und Übungen, die aber zeitlich flexibel integriert abgehalten werden. Zur Vorlesung gibt es teilweise ein Folienskriptum im WWW: Voraussetzungen: Algorithmen und Datenstrukturen 1 Freude an der Analyse von Algorithmen Beurteilung: aktive Mitarbeit Bearbeitung von Übungsbeispielen (Übungsblätter) Mündliche Abschlußprüfung (vorgesehener Termin: 23.4., weitere Termin nach Vereinbarung) Vortragender: a.o.univ.-prof. Dr. Ulrich Pferschy Universität Graz Institut für Statistik und Operations Research

3 Inhalt: Welche Probleme? kombinatorische Optimierung TSP, scheduling, bin-packing, vertex covering, Wie mißt man die Qualität der Approximation? Definitionen der Approximationsgüte Wie gut sind einfache Heuristiken? Worst-case Analyse von intuitiven Algorithmen Vorgabe der Abweichung vom Optimum? ε - Approximationsschemata Literatur: D.S. Hochbaum, Approximation algorithms for NP-hard problems, PWS Publishing Company, V.V. Vazirani, Approximation Algorithms, Springer, G. Ausiello et al., Complexity & Approximation, Springer, J. Hromkovic, Algorithmics for hard problems, Springer, Lecture Notes aus dem Internet von R. Motwani (Standford University) D.P. Williamson (IBM Almaden Research Center) M.X. Goemans (MIT)

4 Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: ( ) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max f(x) P ε(x) < ε x [a,b] Numerische Mathematik: Numerical Recipes in C++

5 Approximationsalgorithmen Ulrich Pferschy 2 Approximation von diskreten, kombinatorischen Problemen: Betrachtung einzelner Objekte, Identitäten oder abstrakter Elemente mit ganzzahligen Daten Motiviert aus praktischen Problemstellungen Klassische Probleme der diskreten Optimierung: Scheduling Graph-Probleme (Überdeckung, Färbung, Partition) Netzwerkprobleme Routen- und Tourenplanung TSP Packungs- und Zuschnittprobleme...

6 Approximationsalgorithmen Einleitung 3 Multi-Prozessor Scheduling: n jobs/aufträge, jeder mit Bearbeitungszeit p i, m Maschinen Ordne jeden job einer Maschine zu, sodaß der Gesamt-Fertigstellungszeitpunkt minimal ist. Bin Packing Problem (BP): n Objekte, jedes mit Gewicht a i (0, 1], beliebig viele Container/bins mit Kapazität 1 Packe alle Objekte in minimale Anzahl von bins

7 Approximationsalgorithmen Einleitung 4 Rucksackproblem / Knapsack Problem (KP): n Objekte, jedes mit Profit p i und Gewicht w i, ein Rucksack/Container/bin mit Kapazität c Wähle eine Teilmenge von Objekten mit maximalem Profit und Gewicht c. Subset Sum Problem (SSP): Spezialfall des Rucksackproblems n Objekte, jedes mit Gewicht w i, ein Rucksack/Container/bin mit Kapazität c Wähle eine Teilmenge von Objekten mit maximalem Gewicht c.

8 Approximationsalgorithmen Einleitung 5 Maximum Cut Problem (Max Cut): Graph (V, E) mit Kantengewichten w ij für jede Kante (i, j) E. Finde eine Knotenmenge S V mit maximalem i S,j S w ij (Kanten zwischen S und V \ S). Minimal spannender Baum / Minimum Spanning Tree (MST): Graph (V, E) mit Kantengewichten d ij = d ji für jede Kante (i, j) E. Finde einen Baum, der alle Knoten enthält mit minimalem Gesamtgewicht.

9 Approximationsalgorithmen Einleitung 6 (Symmetrisches) Rundreiseproblem / Traveling Salesperson Problem (TSP): n Städte mit allen (symmetrischen) Entfernungen. Finde die kürzeste Rundreise, die alle n Städte besucht. Variante: Minimaler Hamiltonscher Kreis: Graph (V, E) mit Kantengewichten d ij = d ji für jede Kante (i, j) E. Finde einen Hamiltonschen Kreis mit minimalem Gesamtgewicht.

10 Approximationsalgorithmen Einleitung 7 Set Covering Problem (SC): Grundmenge M, Familie von Teilmengen {S 1,..., S m }, S i M, Bewertung w i für jede Menge S i. Finde eine Auswahl der Teilmengen mit minimalem Gesamtgewicht, sodaß jedes Element aus M in einer der ausgewählten Teilmengen enthalten ist. Vertex Cover (VC): Graph (V, E) Finde eine minimale Knotenmenge C V, sodaß für jede Kante (i, j) entweder i C oder j C.

11 Approximationsalgorithmen Einleitung 8 Knotenfärbung von Graphen/Graph Colouring: Graph (V, E), beliebig viele Farben. Ordne jedem Knoten eine Farbe zu, sodaß Knoten, die durch eine Kante verbunden sind, verschiedene Farben haben und eine minimale Gesamtzahl von Farben verwendet werden. Kantenfärbung von Graphen: Graph (V, E), beliebig viele Farben. Ordne jeder Kante eine Farbe zu, sodaß Kanten mit gemeinsamen Endknoten verschiedene Farben haben und eine minimale Gesamtzahl von Farben verwendet werden.

12 Approximationsalgorithmen Einleitung 9 Erwünscht: Optimale Lösung N P-Vollständigkeit: = Bei fast allen interessanten Problemen gibt es kein effizientes optimales Lösungsverfahren, d.h. keinen Algorithmus mit polynomialer Laufzeit 1. Optimale Lösung durch intelligente Enumeration Branch & Bound IP-Formulierung, Branch & Cut Dynamisches Programmieren Verzicht auf Optimalität = Approximation Bestimmt wird eine zulässige Lösung. Qualität der Lösung ist i.a. unbekannt. Unterscheide: Suchverfahren (local search, Metaheuristiken, etc.) konstruktive Verfahren

13 Approximationsalgorithmen Bewertung 10 Bewertung von Approximationsalgorithmen 1. empirische Tests 2. average-case Analyse 3. worst-case Analyse

14 Approximationsalgorithmen Bewertung 11 Güte eines Algorithmus A für ein Optimierungsproblem: Unterscheide: Problem vs. Problem-Instanz I (Näherungs-)Algorithmus A liefert Lösungswert A(I) (unbekannte) Optimallösung wäre Opt(I) Definition: Algorithmus A ist ein Approximationsalgorithmus wenn A für jede Instanz I eine zulässige Lösung liefert. Definition: Ein Approximationsalgorithmus A hat eine absolute Gütegarantie k, (k > 0), wenn für jede Instanz I gilt: Opt(I) A(I) k Bemerkung: Def. gilt für Maximierungs- und Minimierungsprobleme.

15 Approximationsalgorithmen Bewertung 12 Graph Colouring (Knoten): Von besonderem Interesse ist die Färbung von planaren Graphen. Satz: (Four Colour Theorem: Appel, Haken, Koch 1977) Jeder planare Graph ist 4-färbbar. Satz: Ein planarer Graph ist genau dann 2-färbbar, wenn er bipartit ist. Satz: Das Entscheidungsproblem Ist ein gegebener planarer Graph 3-färbbar ist N P-vollständig. Eine 5-Färbung eines planaren Graphen ist relativ einfach zu bestimmen. Auch die 4-Färbung ist in O(n 2 ) möglich (Robertson et al. 1996), aber sehr aufwendig. = Färbung von planaren Graphen kann mit einer absoluten Gütegarantie 2 approximiert werden.

16 Approximationsalgorithmen Bewertung 13 Graph Colouring (Kanten): Sei (G) der maximale Grad eines Knoten in G. Satz von Vizing: Jeder Graph G ist kantenfärbbar mit (G) oder (G) + 1 Farben. = Kantenfärbung von beliebigen Graphen kann mit einer absoluten Gütegarantie von 1 approximiert werden. = Ist die absolute Gütegarantie das perfekte Konzept?? Negatives Resultat: Satz: Es gibt keinen polynomiellen Algorithmus für das Rucksackproblem (KP) mit einer absoluten Gütegarantie k, für irgendein k > 0 (wenn P N P).

17 Approximationsalgorithmen Bewertung 14 Maximierung: Definition: Ein Approximationsalgorithmus A für ein Maximierungsproblem hat eine relative Gütegarantie k,(0 < k < 1), wenn für jede Instanz I gilt: A(I) k Opt(I) kurz: A ist ein k Approximationsalgorithmus. Betrachte die relative Abweichung: Opt(I) A(I) Opt(I) ε A(I) (1 ε)opt(i) Ein Approximationsalgorithmus A mit relativer Abweichung ε ist ein (1 ε) Approximationsalgorithmus.

18 Approximationsalgorithmen Bewertung 15 Minimierung: Definition: Ein Approximationsalgorithmus A für ein Minimierungsproblem hat eine relative Gütegarantie k, (k > 1), wenn für jede Instanz I gilt: A(I) k Opt(I) auch hier: A ist ein k Approximationsalgorithmus. wiederum die relative Abweichung: A(I) Opt(I) Opt(I) ε A(I) (1 + ε)opt(i) Ein Approximationsalgorithmus A mit relativer Abweichung ε ist ein (1 + ε) Approximationsalgorithmus. Zusatz: Eine relative/absolute Gütegarantie eines Algorithmus A ist scharf, wenn es eine Instanz I gibt, sodaß die entsprechende Ungleichung mit Gleichheit erfüllt ist. Oder wenn es eine Folge von Instanzen gibt, sodaß die Gleichheit im Grenzwert gilt.

19 Approximationsalgorithmen Bewertung 16 Definition: (Minimierung) Ein Approximationsalgorithmus A für ein Minimierungsproblem hat eine asymptotische Gütegarantie k, (k > 1), wenn es eine Konstante d gibt, sodaß für jede Instanz I gilt: A(I) k Opt(I) + d oder technischer: k = lim sup Opt(I) I A(I) Opt(I)

20 Approximationsalgorithmen Einfache Algorithmen 17 Multi-Prozessor Scheduling: n jobs/aufträge, jeder mit Bearbeitungszeit p i, m Maschinen Ordne jeden job einer Maschine zu, sodaß der Gesamt-Fertigstellungszeitpunkt minimal ist. Algorithmus List-Scheduling (Graham): l j := 0 Arbeitszeit von Maschine j = 1,.., m for i := 1 to n do j min := arg min{l j } ordne job i auf Maschine j min an. l jmin := l jmin + p i end for Gesamtzeit := max{l j } List-Scheduling hat eine scharfe Gütegarantie von 2 1 m. Verbesserung: (LPT) Longest-Processing Time List-Scheduling Sortiere die jobs in absteigender Reihenfolge. (LPT) hat eine scharfe Gütegarantie von m.

21 Approximationsalgorithmen Einfache Algorithmen 18 Bin Packing Problem (BP): n Objekte, jedes mit Gewicht a i (0, 1], beliebig viele bins mit Kapazität 1 Packe alle Objekte in minimale Anzahl von bins Naive Methode: Algorithmus Next Fit (NF): öffne das erste bin for i := 1 to n do wenn Objekt i in das offene bin paßt packe es dort hinein sonst schließe das offene bin öffne ein neues bin und packe Objekt i ein end for (NF) läuft in O(n) Zeit. (NF) hat eine scharfe asymptotische Gütegarantie von 2.

22 Approximationsalgorithmen Einfache Algorithmen 19 Algorithmus First Fit (FF) (Johnson et al.): öffne das erste bin for i := 1 to n do betrachte die offenen bins der Reihe nach packe Objekt i in das erste bin, wo es paßt wenn es nirgends paßt öffne ein neues bin und packe Objekt i ein end for (FF) läuft in O(n log n) Zeit. (FF) hat eine scharfe asymptotische Gütegarantie von 1.7. Verbesserung: First Fit Decreasing (FFD) (Johnson) Sortiere die Objekte in absteigender Reihenfolge. (FFD) hat eine scharfe asymptotische Gütegarantie von Varianten: Best Fit, Worst Fit, Any Fit,...

23 Approximationsalgorithmen Einfache Algorithmen 20 Allgemeines Rundreiseproblem (TSP): n Orte mit allen paarweisen Entfernungen. Finde die kürzeste Tour durch alle n Orte. Negatives Resultat: Satz: Es gibt keinen polynomiellen Algorithmus für das allgemeine TSP mit einer Gütegarantie k, für irgendein k > 0 (wenn P N P). Rundreiseproblem mit Dreicksungleichung ( -TSP): Zusatzbedingung: Für alle Tripel von Orten i, j, k gilt: d(i, j) + d(j, k) d(i, k) MST-Heuristik liefert Gütegarantie 2. Christofides-Heuristik liefert Gütegarantie 3/2.

24 Approximationsalgorithmen Einfache Algorithmen 21 -TSP Fortsetzung: Einfüge-Heuristik: (verwendbar auch ohne Dreiecksungleichung.) Algorithmus Insertion: ( ) repeat wähle einen Punkt k nicht auf der Tour suche Kante (i, j) der Tour mit minimalen Einfügekosten: d(i, k) + d(k, j) d(i, j) füge k zwischen i und j ein until alle Punkte eingefügt Auswahl von Punkt k: nearest insertion farthest insertion cheapest insertion random insertion

25 Approximationsalgorithmen Einfache Algorithmen 22 Approximations-Resultate für Insertion: Für jede Insertion-Regel gilt (Rosenkrantz et al. 77): A(I) (log n + 1) Opt(I) Es gibt Instanzen I und Insertion-Folgen mit A(I) log n log log n Opt(I). Nearest Insertion hat eine scharfe Gütegarantie von 2. Wenn nearest insertion mit der konvexen Hülle beginnt, verschlechtert sich die Gütegarantie auf 3 (Warburton 93). Farthest Insertion: In der Praxis besser, aber Gütegarantie 2.43 (Hurkens, 92), genaue Garantie unbekannt. Random Insertion: (Azar 94) Es gibt Instanzen I mit A(I) log log n log log log n Opt(I).

26 Approximationsalgorithmen Einfache Algorithmen 23 Verbesserungs-Verfahren: Algorithmus 2-Opt: starte mit irgendeiner Tour repeat wähle 2 Kanten der Tour und entferne sie füge die Teilstücke zu neuer Tour zusammen Tour := min{neue Tour, alte Tour} until keine Verbesserung möglich Viele Varianten zur systematischen Durchführung. Jede 2-optimale Tour ist kreuzungsfrei. Für jede 2-optimale Tour T gilt (Chandra et al. 94): T log n Opt Es gibt 2-optimale Touren T mit T log n log log n Opt. Euklidsches Rundreiseproblem: Orte sind Punkte im R 2 : Beliebig gute Approximation in polynomieller Zeit möglich.

27 Approximationsalgorithmen Einfache Algorithmen 24 Rucksackproblem/Knapsack Problem (KP): n items, jedes mit Profit p i und Gewicht w i, ein Rucksack/bin mit Kapazität c Wähle eine Teilmenge von items mit maximalem Profit und Gewicht c. Algorithmus einfacher Greedy: Sortiere die items nach Effizienz: p 1 w 1 p 2 w 2... p n w n for i := 1 to n do if item i paßt in den Rucksack pack es ein end for Einfacher Greedy kann unbeschränkt schlecht werden. Verbesserter Algorithmus Greedy: Sei z E... der Wert des Rucksacks nach einfacher Greedy. z G := max{z E, max{p i i = 1,..., n}} Greedy hat eine scharfe Gütegarantie von 1/2.

28 Approximationsalgorithmen Einfache Algorithmen 25 Beachte: ein einziges großes item hat Haupteinfluß. Verbesserung: Rate das item mit größtem Profit in der Optimallösung. = alle items durchprobieren. Algorithmus G 2/3 : for i := 1 to n do packe item i in den leeren Rucksack wende Greedy auf das Restproblem mit Kapazität c w i an end for z A := Maximum der n Rucksack-Lösungen G 2/3 hat eine scharfe Gütegarantie von 2/3. Verallgemeinerung: Rate die 2 items mit größtem Profit in der Optimallösung. = alle Paare von items durchprobieren. = scharfe Gütegarantie von 3/4.

29 Approximationsalgorithmen Einfache Algorithmen 26 Weitere Verallgemeinerung: Rate die l items mit größtem Profit in der Optimallösung. = alle l-tupel von items durchprobieren. = scharfe Gütegarantie von l+1 l+2. Laufzeit: ) Tupel = O(n l ) viele Greedy Iterationen = O(n l+1 ) ( n l Verbesserung auf O(n l ) möglich.

Approximation im Sinne der Analysis:

Approximation im Sinne der Analysis: 1 Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max x [a,b] f(x) P ε(x) < ε Numerische

Mehr

Approximationsalgorithmen. Approximation im Sinne der Analysis:

Approximationsalgorithmen. Approximation im Sinne der Analysis: Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem

Mehr

Approximationsalgorithmen VU

Approximationsalgorithmen VU 1 Approximationsalgorithmen VU Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.102 Sommersemester 2011, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen 1. Vorlesung Joachim Spoerhase Alexander Wolff Lehrstuhl für Informatik I Wintersemester 2017/18 Bücher zur Vorlesung Vijay V. Vazirani Approximation Algorithms Springer-Verlag

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Approximation in Batch and Multiprocessor Scheduling

Approximation in Batch and Multiprocessor Scheduling Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Polynomialzeit- Approximationsschema

Polynomialzeit- Approximationsschema Polynomialzeit- Approximationsschema 27.01.2012 Elisabeth Sommerauer, Nicholas Höllermeier Inhalt 1.NP-Vollständigkeit Was ist NP-Vollständigkeit? Die Klassen P und NP Entscheidungsproblem vs. Optimierungsproblem

Mehr

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!

Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck

Mehr

Approximationsalgorithmen. 19. Dezember / 28

Approximationsalgorithmen. 19. Dezember / 28 Approximationsalgorithmen 19. Dezember 2017 1 / 28 Optimierungsprobleme Das Ziel: Bearbeite schwierige Optimierungsprobleme der Form opt y f (x, y) so dass L(x, y). Die Zielfunktion f (x, y) ist zu minimieren

Mehr

Approximationsklassen für Optimierungsprobleme

Approximationsklassen für Optimierungsprobleme Approximationsklassen für Optimierungsprobleme Matthias Erbar 19. September 2007 Inhaltsverzeichnis 1 Einleitung 1 2 Approximationsalgorithmen mit garantierter Güte 2 2.1 Terminologie......................................

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Alles zu seiner Zeit Projektplanung heute

Alles zu seiner Zeit Projektplanung heute Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?

Mehr

Einführung in das Seminar Algorithmentechnik

Einführung in das Seminar Algorithmentechnik Einführung in das Seminar Algorithmentechnik 10. Mai 2012 Henning Meyerhenke, Roland Glantz 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Roland undglantz: nationales Einführung Forschungszentrum

Mehr

Heuristiken im Kontext von Scheduling

Heuristiken im Kontext von Scheduling Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Approximation mit relativer Gütegarantie Überblick und einführende Beispiele

Approximation mit relativer Gütegarantie Überblick und einführende Beispiele Approximation mit relativer Gütegarantie Überblick und einführende Beispiele Marvin Schiller 4. Oktober 2007. Einführung In diesem Essay geben wir einen Überblick über eine Auswahl von algorithmischen

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Der Approximationsalgorithmus von Christofides

Der Approximationsalgorithmus von Christofides Der Approximationsalgorithms on Christofides Problem: Traeling Salesman Inpt: Ein Graph G = (V, E) mit einer Distanzfnktion d : E Q 0. Afgabe: Finde eine Tor, die alle Knoten des Graphen G gena einmal

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Randomisierte und Approximative Algorithmen. Prof. Dr. Heiko Röglin Institut für Informatik Universität Bonn

Randomisierte und Approximative Algorithmen. Prof. Dr. Heiko Röglin Institut für Informatik Universität Bonn Randomisierte und Approximative Algorithmen Prof. Dr. Heiko Röglin Institut für Informatik Universität Bonn 22. Januar 2018 Inhaltsverzeichnis 1 Einleitung 4 2 Greedy-Algorithmen 6 2.1 Vertex Cover................................

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Algorithmen 2. Kapitel: Approximationsalgorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie

Algorithmen 2. Kapitel: Approximationsalgorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie Algorithmen 2 Algorithmen 2 Kapitel: Approximationsalgorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2017/2018 1 / 40 Einleitung Überblick Einleitung

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Heuristische Verfahren

Heuristische Verfahren Heuristische Verfahren Bei heuristischen Verfahren geht es darum in polynomieller Zeit eine Näherungslösung zu bekommen. Diese kann sehr gut oder sogar optimal sein, jedoch gibt es keine Garantie dafür.

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Kompaktkurs Diskrete Optimierung

Kompaktkurs Diskrete Optimierung Technische Universität Braunschweig SS 08 Institut für Betriebssysteme und Rechnerverbund Postfach 339 D-3803 Braunschweig Notizen Kompaktkurs Diskrete Optimierung Henrik Peters Bearbeitungsstand: 17.

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

Das Lastverteilungsproblem

Das Lastverteilungsproblem Das Lastverteilungsproblem Approximationsalgorithmen Referent Franz Brauße Veranstaltung Proseminar Theoretische Informatik Universität Trier, FB IV Dozent Prof. Dr. Henning Fernau 23.02.2012 Übersicht

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Der Branching-Operator B

Der Branching-Operator B Branching 1 / 17 Der Branching-Operator B Unser Ziel: Löse das allgemeine Minimierungsproblem minimiere f (x), so dass Lösung(x). B zerlegt eine Menge von Lösungen in disjunkte Teilmengen. Die wiederholte

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Jan Johannsen Vorlesung im Sommersemester 2007 Einordnung Algorithmik und Analyse von Algorithmen Komplexitätstheorie Analyse der Komplexität von Problemen Einteilung in Klassen ähnlicher Komplexität Untersuchung

Mehr

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013 Technische Universität Braunschweig Sommersemester 2013 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen

Mehr

2.6 Asymptotische Approximation: Min Binpacking

2.6 Asymptotische Approximation: Min Binpacking 2.6 Asymptotische Approximation: Min Binpacking In diesem Abschnitt geht es die Erscheinung, dass manche Optimierungsprobleme Approximationsalgorithmen haben, die nur für Inputs x mit groÿem Wert m (x)

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Komplexitätstheorie Einführung und Überblick (Wiederholung)

Komplexitätstheorie Einführung und Überblick (Wiederholung) Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 29. Januar 2013 Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Ressourceneinsatzplanung in der Fertigung

Ressourceneinsatzplanung in der Fertigung Fakultät Informatik, Institut für Angewandte Informatik, Professur Modellierung und Simulation Ressourceneinsatzplanung in der Fertigung Dr. Christoph Laroque Sommersemester 2012 Dresden, Ausblick: Ab

Mehr

Übungsblatt 5. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 5. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 5 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 20. Dezember 2017 Abgabe 16. Januar 2018, 11:00 Uhr

Mehr

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen

Mehr

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben...

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben... Vorwort v I Approximative Algorithmen 1 1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT).... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben..... 18 2 DieKomplexitätsklassen

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Komplexitatstheoretische Zwischenbetrachtungen: Klassen & eine Hierarchic

Komplexitatstheoretische Zwischenbetrachtungen: Klassen & eine Hierarchic Kapitel 5 Komplexitatstheoretische Zwischenbetrachtungen: Klassen & eine Hierarchic In den vorhergehenden Kapiteln sind wir einmal quer durch das Gebiet der Approximationsalgorithmen gelaufen. Wir haben

Mehr

Ergänzung zum Modulhandbuch

Ergänzung zum Modulhandbuch Ergänzung zum Modulhandbuch des Bachelor- und Masterstudiengangs Angewandte Informatik zu den Prüfungs- und Studienordnungen von 2007 und 2008 Institut für Informatik an der Universität Bayreuth (Version

Mehr

Die Theorie der Toleranzen und deren Anwendung auf das Traveling Salesman Problem

Die Theorie der Toleranzen und deren Anwendung auf das Traveling Salesman Problem Die Theorie der Toleranzen und deren Anwendung auf das Traveling Salesman Problem Gerold Jäger 4. Februar 2010 Gerold Jäger Theorie der Toleranzen 4. Februar 2010 1 / 35 Überblick 1 Theorie der Toleranzen

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Approximationsalgorithmen am Beispiel des Traveling Salesman Problem

Approximationsalgorithmen am Beispiel des Traveling Salesman Problem Approximationsalgorithmen am Beispiel des Traveling Salesman Problem Seminararbeit im Rahmen des Seminars Algorithmentechnik vorgelegt von Leonie Sautter Leiter des Seminars: Juniorprof. Dr. Henning Meyerhenke

Mehr

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

NP-vollständig - Was nun?

NP-vollständig - Was nun? Kapitel 4 NP-vollständig - Was nun? Wurde von einem Problem gezeigt, dass es NP-vollständig ist, ist das Problem damit nicht gelöst oder aus der Welt geschafft. In der Praxis muss es trotzdem gelöst werden.

Mehr

Das Multi Traveling Salesman Problem

Das Multi Traveling Salesman Problem Das Multi Traveling Salesman Problem Harald Voit Seminar Ganzzahlige Optimierung 19. bis 21. Januar 2007 Wallenfels Das Multi Traveling Salesman Problem p.1/26 Übersicht Vom TSP zum ATSP Das Multi Traveling

Mehr

Approximationsschemata

Approximationsschemata Effiziente Algorithmen Aproximationsalgorithmen 312 Definition Approximationsschemata Sei A(ǫ) ein Approximationsalgorithmus mit einem Parameter ǫ. 1. A(ǫ) ist ein PTAS (polynomial time approximation scheme),

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

Hamiltonsche Graphen

Hamiltonsche Graphen Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Approximationsalgorithmen. Wintersemester 2013/14 HERZLICH WILLKOMMEN!

Approximationsalgorithmen. Wintersemester 2013/14 HERZLICH WILLKOMMEN! Approximationsalgorithmen Wintersemester 2013/14 HERZLICH WILLKOMMEN! 1 / 39 Worum geht s? Eine Bemerkung von Vasek Chvatal In den kommunistischen Ländern des Ostblocks in den 60 er und 70 er Jahren war

Mehr

Formale Grundlagen der Informatik F3: Berechenbarkeit un

Formale Grundlagen der Informatik F3: Berechenbarkeit un Formale Grundlagen der Informatik F3: Berechenbarkeit und Komplexität Fachbereich Informatik AB Theoretische Grundlagen der Informatik (TGI) Universität Hamburg farwer@informatik.uni-hamburg.de 14. Dezember

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit

Mehr

Dank. Theoretische Informatik II. Teil VI. Vorlesung

Dank. Theoretische Informatik II. Teil VI. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Algorithmische Mathematik

Algorithmische Mathematik Algorithmische Mathematik Wintersemester 2013 Prof. Dr. Marc Alexander Schweitzer und Dr. Einar Smith Patrick Diehl und Daniel Wissel Übungsblatt 6. Abgabe am 02.12.2013. Aufgabe 1. (Netzwerke und Definitionen)

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Prof. Dr. Erika Ábrahám Datenstrukturen und Algorithmen 1/1 Datenstrukturen und Algorithmen Vorlesung 14: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08)

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) 1 Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) Kapitel 5: NP-schwierige Probleme Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 21. Dezember 2007) Rucksack Problem

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Logistik: Rundreisen und Touren

Logistik: Rundreisen und Touren Logistik: Rundreisen und Touren 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Von Universitätsprofessor Dr. Wolfgang

Mehr

Die dynamische Programmierung 1 / 51

Die dynamische Programmierung 1 / 51 Die dynamische Programmierung 1 / 51 Dynamische Programmierung - Das Ausgangsproblem P 0 wird in Teilprobleme P 1,..., P t aufgebrochen. - Die Teilprobleme werden dann, einer Schwierigkeitshierarchie entsprechend,

Mehr

Kap. 7.3 Enumerationsverfahren Kap. 7.4 Branch-and-Bound Kap. 7.5 Dynamische Programmierung

Kap. 7.3 Enumerationsverfahren Kap. 7.4 Branch-and-Bound Kap. 7.5 Dynamische Programmierung Kap. 7.3 Enumerationsverfahren Kap. 7.4 Branch-and-Bound Kap. 7.5 Dynamische Programmierung Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund ACHTUNG: Die VO

Mehr

Klausur Algorithmen und Datenstrukturen II 10. August 2015

Klausur Algorithmen und Datenstrukturen II 10. August 2015 Technische Universität Braunschweig Sommersemester 2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

Seminar im WS 2006/07 Zerlegen und Clustern von Graphen. Correlation Clustering Minimizing Disagreements on Arbitrary Weighted Graphs

Seminar im WS 2006/07 Zerlegen und Clustern von Graphen. Correlation Clustering Minimizing Disagreements on Arbitrary Weighted Graphs Seminar im WS 006/07 Zerlegen und Clustern von Graphen Correlation Clustering Minimizing Disagreements on Arbitrary Weighted Graphs Myriam Freidinger 18. April 007 1 Einleitung Ziel dieser Ausarbeitung

Mehr