Blockverschlüsselung und AES

Größe: px
Ab Seite anzeigen:

Download "Blockverschlüsselung und AES"

Transkript

1 Blockverschlüsselung und AES Proseminar/Seminar Kryptographie und Datensicherheit SoSe 2009 Universität Potsdam ein Vortrag von Linda Tschepe

2 Übersicht Allgemeines SPNs (Substitutions- Permutations- Netzwerke) Lineare Kryptoanalyse Differentielle Kryptoanalyse DES (der Data Encryption Standard) AES (der Advanced Encryption Standard) Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 2

3 Allgemeines - Blockchiffre Was ist eine Blockchiffre? Bei der Blockverschlüsselung werden immer Blöcke einer festen Länge verschlüsselt. Moderne Blockchiffren sind meist Produktchiffren, welche Substitutions- und Permutationschiffren kombinieren. Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 3

4 Allgemeines eine typische iterierte Chiffre w0 x w1 g(w0,k1) w2 g(w1,k2) : : wn-1 g(wn-2,kn-1) wn g(wn-2,kn) y wn N Anzahl der Runden K binärer Schlüssel (K 1,...,K N ) Liste der Rundenschlüssel w r Zustand des Textes w0 Klartext (x) wn Chiffretext (y) g Rundenfunktion : g(w r-1, K r ) = w r Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 4

5 Allgemeines eine typische iterierte Chiffre wn y wn-1 g-1(wn,kn) : : w0 g-1(w1,k1) x w0 g muss injektiv sein!!! N Anzahl der Runden K binärer Schlüssel (K 1,...,K N ) Liste der Rundenschlüssel w r Zustand des Textes w0 Klartext (x) wn Chiffretext (y) g Rundenfunktion : g(w r-1, K r ) = w r Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 5

6 Substitutions-Permutations-Netzwerke K i+1 + S-Boxen Permutation w N-1 w i + K N x x Klartext (Länge l*m) y Chiffretext (Länge l*m) S-Boxen N Anzahl der Runden π S : {0,1} l {0,1} l π P : {1,...,l*m} {1,...,l*m} y + K N+1 Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 6

7 SPN - Beispiel п S : A B C D E F E 4 D 1 2 F B 8 3 A 6 C п P : K 1 : K 2 : K 3 : K 4 : K 5 : Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 7

8 Lineare Kryptoanalyse 1993 von Mitsuru Matsui publiziert kann prinzipiell auf jede iterierte Chiffre angewandt werden fällt unter die Kategorie Known-Plaintext-Attacke Lineare Chiffren sind relativ leicht zu entziffern Umgehen der nicht-linearen S-Boxen Idee: Approximation der Chiffrierfunktion durch eine lineare Abbildung Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 8

9 Lineare Kryptoanalyse Piling-up Lemma Seien X 1,...,X n unabhängige Zufallsvariablen, welche Werte der Menge {0,1} annehmen, und є 1,..., є n die zugehörigen Bias-Werte, so gilt: P(X 1 xor... xor X n = 0) = ½ + 2 n-1 є i n i = 1 P(X i =0) = p i P(X i =1) = 1-p i є i = p i ½ P(X i =0) = ½ + є i P(X i =1) = ½ - є i Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 9

10 Lineare Kryptoanalyse 1. Teil Approximieren der S-Boxen durch eine lineare Abbildung: 4 Eingangsvariablen: X 1, X 2, X 3, X 4 4 Ausgangsvariablen: Y 1, Y 2, Y 3, Y 4 Untersuchen aller Abbildungen der Form (a i,b i є {0,1}): a 1 X 1 xor a 2 X 2 xor a 3 X 3 xor a 4 X 4 = b 1 Y 1 xor b 2 Y 2 xor b 3 Y 3 xor b 4 Y 4 a 1 a 2 a 3 a 4 in Hexadezimaldarstellung = Inputsumme (u) b 1 b 2 b 3 b 4 in Hexadezimaldarstellung = Outputsumme (v) Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 10

11 Lineare Kryptoanalyse 1. Teil Lineare Approximations-Tabelle: A B C D E F A B C D E F Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 11

12 Lineare Kryptoanalyse 1. Teil Die lineare Approximations-Tabelle zeigt die Anzahl der möglichen Kombinationen für X 1 X 2 X 3 X 4, für die die entsprechende Gleichung wahr ist. z.b: Inputsumme: B, Outputsumme: 1 -> 12 є(b1) = (12 8)/16 = ¼ P(B1) = ½ + є(b1) = ¾ Je größer є(xy) ist desto, besser ist die Approximation zu verwenden. (Bei є(xy) = ½ ist eine perfekte Repräsentation gefunden.) Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 12

13 Lineare Kryptoanalyse 2. Teil Zusammensetzen der einzelnen Approximationen zu einem Ganzen: Input S-Box S i,j = U i,k (k є {1,..., 16}) Output S-Box S i,j = V i,k (k є{1,...,16}) Approximation S 1,2 : (Wahrscheinlichkeit ¾) U 1,5 xor U 1,7 xor U 1,8 = V 1,6 X 5 xor X 7 xor X 8 xor K 1,5 xor K 1,7 xor K 1,8 = V 1,6 K1 S11 S12 S13 S14 K2 S21 S22 S23 S24 K3 S31 S32 S33 S34 K4 S41 S42 S43 S44 K5 Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 13

14 Lineare Kryptoanalyse 2. Teil Approximation S 2,2 : (Wahrscheinlichkeit ¼) U 2,6 = V 2,6 xor V 2,8 K1 S11 S12 S13 S14 K2 U 2,6 = V 1,6 xor K 2,6 X 5 xor X 7 xor X 8 xor K 1,5 xor K 1,7 xor K 1,8 xor K 2,6 = V 2,6 xor V 2,8 (mit Wahrscheinlichkeit: ½ + 2(¾ ½) (¼ ½) = 3/8) (Piling-Up Lemma) S21 S22 S23 S24 K3 S31 S32 S33 S34 K4 S41 S42 S43 S44 K5 Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 14

15 Lineare Kryptoanalyse 2. Teil Approximation S 3,2 : (Wahrscheinlichkeit ¼) U 3,6 = V 3,6 xor V 3,8 Approximation S 3,4 : (Wahrscheinlichkeit ¼) U 3,14 = V 3,14 xor V 3,16 U 3,6 = V 2,6 xor K 3,6, U 3,14 = V 2,8 xor K 3,14 X 5 xor X 7 xor X 8 xor K 1,5 xor K 1,7 xor K 1,8 xor K 2,6 xor K 3,6 xor K 3,14 = V 3,6 xor V 3,8 xor V 3,14 xor V 3,16 (Wahrscheinlichkeit:15/32) K1 S11 S12 S13 S14 K2 S21 S22 S23 S24 K3 S31 S32 S33 S34 K4 S41 S42 S43 S44 K5 Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 15

16 Lineare Kryptoanalyse 2. Teil X 5 xor X 7 xor X 8 xor K 1,5 xor K 1,7 xor K 1,8 xor K 2,6 xor K 3,6 xor K 3,14 xor K 4,6 xor K 4,8 xor k 4,14 xor K 4,16 = U 4,6 xor U 4,8 xor U 4,14 xor U 4,16 (K 1,5 xor K 1,7 xor K 1,8 xor K 2,6 xor K 3,6 xor K 3,14 xor K 4,6 xor K 4,8 xor k 4,14 xor K 4,16 ) hat festen Wert 1 oder 0 X 5 xor X 7 xor X 8 xor U 4,6 xor U 4,8 xor U 4,14 xor U 4,16 = 0 oder 1 K1 S11 S12 S13 S14 K2 S21 S22 S23 S24 K3 S31 S32 S33 S34 K4 S41 S42 S43 S44 K5 Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 16

17 Lineare Kryptoanalyse 3. Teil Berechnen einzelner Bits des letzten Teilschlüssels: y xor K 5 Rückwärts durch S-Box Wiederholen für jedes Klar-, Chiffretextpaar (Werte Zählen) Der Wert dessen Zähler am weitesten entfernt von (Anzahl Paare)/2 ist, also den größten Bias-Wert hat, ist wahrscheinlich der richtige K1 S11 S12 S13 S14 K2 S21 S22 S23 S24 K3 S31 S32 S33 S34 K4 S41 S42 S43 S44 K5 Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 17

18 Differentielle Kryptoanalyse 1990 von Biham & Shamir publiziert Fällt in Kategorie Chosen-Plaintext-Attacke Ist der linearen Kryptoanalyse recht ähnlich Hauptunterschied: die differentielle Kryptoanalyse vergleicht den Xor-Wert zweier Inputs mit dem der zugehörigen Outputs Also den Unterschied der Eingabe ΔX = X' xor X'' mit dem Unterschied der Ausgabe ΔY = Y' xor Y'' Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 18

19 Differentielle Kryptoanalyse ΔX = X' xor X'', ΔY = Y' xor Y'' Bei einer ideal zufällig erscheinenden Chiffre ist die Wahrscheinlichkeit, dass auf ein ΔX ein bestimmtes ΔY folgt ½^(n) (n- Anzahl der Bits von X) Der Angreifer sucht nach einem ΔX, für welches ein ΔY mit hoher Wahrscheinlichkeit erscheint Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 19

20 Differentielle Kryptoanalyse Differentielle Charakteristiken sind Sequenzen von Einund Ausgabedifferenzen von Runden, wobei die Ausgabedifferenz der einen Runde der Eingabedifferenz der nächsten entspricht Suche noch möglichst wahrscheinlichen differentiellen Charakteristiken bis in die letzte Runde Rückschlüsse auf einzelne Bits des letzten Teilschlüssels Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 20

21 Data Encryption Standard Vorgängersystem: Lucifer (IBM) Entwickelt von IBM mit Hilfe der NSA (National Security Agency) 1977 in den USA als Standard festgelegt 2000 durch AES abgelöst Modifizierte Feistel - Chiffre Iterierte Blockchiffre Rundenanzahl: 16 Blocklänge: 64 Bit Schlüssellänge: 64 Bit (56 Bit + 8 Paritätsbits) Schlüsselraum: 2 56 Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 21

22 DES Berechnen der Rundenschlüssel 64 Bit Schlüssel PC: Permuted Choice - Entfernt Paritätsbits - Teilt in 2 28 Bit Blöcke PC-1 C-0 D-0 LS LS C-i D-i 16 Runden PC-2 LS: Left Shift - jede Runde um 2 Bit - in Runden 1, 2, 9 und 16 nur je ein Bit K i 48 Bit Rundenschlüssel Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 22

23 DES - Verschlüsselung 1. Unterteilung des Chiffretextes in 2 Blöcke gleicher Länge (L 0,R 0 ) 2. Rundenfunktion: g(li-1,ri-1,ki) = (Li,Ri) L i-1 R i-1 f K i L i = Ri-1 + R i = Li-1 xor f(ri-1,ki) 3. Vertauschen der Blöcke L i R i Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 23

24 DES Entschlüsselung 1. Zerteilen des Chiffretextes und Vertauschen der Hälften K i f L i R i 2. Rundenfunktion: R i-1 = L i + L i-1 = R i xor f(l i,k i ) L i-1 R i-1 Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 24

25 DES die Verschlüsselungsfunktion f Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 25

26 DES die Verschlüsselungsfunktion f R i-1 wird durch eine feste Expansionsfunktion E auf 48 Bit erweitert E: Von den 32 Bits werden 16 verdoppelt Anschließend: Permutation Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 26

27 DES die Verschlüsselungsfunktion f Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 27

28 DES die Verschlüsselungsfunktion f E (Ri-1) xor Ki Das Ergebnis dann schon unterteilt in 8 6-Bit-Strings geschrieben Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 28

29 DES die Verschlüsselungsfunktion f Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 29

30 DES die Verschlüsselungsfunktion f 8 S-Boxen mit S i : {0,1} 6 {0,1} 4 In 16 * 4 Tabelle gespeichert 1. und letztes Bit = Zeilennummer Die 4 mittleren Bit = Spaltennummer S Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 30

31 DES die Verschlüsselungsfunktion f Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 31

32 DES die Verschlüsselungsfunktion f Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 32

33 DES die Verschlüsselungsfunktion f Zusammensetzen zu 32 Bit Permutation P Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 33

34 DES - Kryptoanalyse Das Größte Sicherheitsrisiko des DES ist wohl der relativ kleine Schlüsselraum von nur 2 56 möglichen Schlüsseln. Schon 1999 wurden zum knacken eines 88 Byte langen Chiffretextes nur 22 Stunden und 15 Minuten benötigt (Das Durchsuchen des gesamten Raumes ca. 82 Std.) S-Boxen wurden zufällig zusammengestellt Gerüchte NSA hätte Hintertüren eingebaut (keine Seite nachgewiesen) Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 34

35 Advanced Encryption Standard 1997 Ausschreibung des AES AES Kandidaten Konferenz: 15 der 21 Kryptosysteme als Kandidaten zugelassen AES Kandidatenkonferenz: 5 Finalisten ausgewählt: MARS, RC6, Rijndael, Serpent, Twofish AES Kandidaten Konferenz: Rijndael = AES Blocklänge: 128 Bit Schlüssellänge: 128, 192, oder 256 Bits Rundenanzahl: 10, 12, oder 14 (abhängig von Schlüssellänge) Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 35

36 AES - Verschlüsselung AddRoundKey x y AddRoundKey ShiftRows SubBytes SubBytes ShiftRows MixColumns AddRoundKey 1. Umwandeln des Klartextes in einen State anschließend AddRoundKey 2. N-1 mal: SubBytes, ShiftRows, MixColumns, AddRoundKey 3. SubBytes, ShiftRows, AddRoundKey 4. Umwandeln von State in Chiffretext Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 36

37 AES - Verschlüsselung AddRoundKey x y AddRoundKey ShiftRows SubBytes SubBytes ShiftRows MixColumns AddRoundKey Alle Operationen in Rijndael sind byteorientiert Unterteilung des Klartextes in 16 1-Byte Blöcke Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 37

38 AES - Verschlüsselung AddRoundKey x y AddRoundKey ShiftRows SubBytes SubBytes ShiftRows MixColumns AddRoundKey Rundenschlüssel hat gleiche Anzahl von Byes wie State Byteweises Xor-Verknüpfen der beiden Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 38

39 AES - Verschlüsselung AddRoundKey x y AddRoundKey ShiftRows SubBytes SubBytes ShiftRows MixColumns AddRoundKey S-Box π S :{0,1} 8 {0,1} 8 Meist als 16 x 16 Array gespeichert Diese S-Box ist im Gegensatz zu denen vom DES algebraisch definiert Basiert auf Operationen des endlichen Körpers GF(28 ) Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 39

40 AES - Verschlüsselung AddRoundKey x y AddRoundKey ShiftRows SubBytes SubBytes ShiftRows MixColumns AddRoundKey Z 2 ist der Restklassenring modulo 2 Da 2 eine Primzahl ist, ist Z 2 auch ein Körper π S operiert auf dem Polynomring in x über Z 2 : Z 2 [x] Jedoch nur auf Polynomen vom Grad 7 oder kleiner Bilden von Restklassen modulo eines irreduziblen Polynoms 8. Grades Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 40

41 AES - Verschlüsselung AddRoundKey x y AddRoundKey ShiftRows SubBytes SubBytes ShiftRows MixColumns AddRoundKey Welches irreduzible Polynom 8. Grades ist egal AES nutzt: x8 + x4 + x3 + x + 1 GF(28) = Z2[x]/( x8 + x4 + x3 + x + 1) Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 41

42 AES - Verschlüsselung AddRoundKey x y AddRoundKey ShiftRows SubBytes SubBytes ShiftRows MixColumns AddRoundKey 1. Byte in Polynom umwandeln 2. Falls Polynom!= 0, berechne das Multiplikativ Inverse M= 3. Polynom in Byte umwandeln 4. Multipliziere mit Matrix M 5. Xor mit a= Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 42

43 AES - Verschlüsselung Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 43

44 AES - Verschlüsselung AddRoundKey x y AddRoundKey ShiftRows SubBytes SubBytes ShiftRows MixColumns AddRoundKey Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 44

45 AES - Verschlüsselung AddRoundKey x y AddRoundKey ShiftRows SubBytes SubBytes ShiftRows MixColumns AddRoundKey Die Spalten von State werden als Polynome aufgefasst Multiplikation mit Matrix A (Multiplikation in GF(28 )) A = Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 45

46 AES Schlüsselerzeugung (128 Bit Schlüssel) Die Schlüsselerzeugung ist wortbasiert (1 Wort = 4 Bytes) Ein Rundenschlüssel besteht aus 4 Wörtern 128 Bit-Schlüssel 10 Runden 11 Rundenschlüssel Festes Array Rcon bestehend aus 10 Wörtern Teilfunktionen: RotWord: rotiert die Bytes eines Wortes um eine Stelle nach links SubWord: nutzt für jedes Byte die S-Box aus SubBytes Xor Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 46

47 AES Schlüsselerzeugung (128 Bit Schlüssel) RCon (in Hexadezimaldarstellung): B Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 47

48 AES Schlüsselerzeugung (128 Bit Schlüssel) RW RW SW + SW + Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 48

49 AES - Entschlüsselung Die Reihenfolge der Operationen ist umgekehrt Dabei werden anstelle von ShiftRows, SubBytes und MixColumns ihre inversen Funktionen genutzt Außerdem werden die Rundenschlüssel in umgekehrter Reihenfolge verwendet Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 49

50 AES - Kryptoanalyse Die Entwickler des Algorithmus selber, wiesen schon nach, dass Rijndael gegen lineare und differentielle Kryptoanalyse resistent Bis heute keine effektiven Angriffe auf Rijndael bekannt Die effektivsten Varianten lehnen sich an eine Chiffre mit einer reduzierten Rundenzahl an Doch selbst diese sind kaum besser als einfache Suche Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 50

51 Referenzen Douglas R. Stinson: Cryptography: Theory and Practice. 3nd Edition, Chapman & Hall/CRC 2006 Andreas Pfitzmann: Sicherheit in Rechnernetzen: Mehrseitige Sicherheit in verteilten und durch verteilte Systeme (http://www.inf.tu-dresden.de/index.php? node_id=510&ln=de) Albrecht Beutelspacher, Heike B. Neumann, Thomas Schwarzpaul: Kryptografie in Theorie und Praxis: mathematische Grundlagen für elektronisches Geld, Internetsicherheit und Mobilfunk Vieweg+Teubner Verlag, 2005 Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 51

52 Referenzen Howard M.Heys: A tutorial on linear and differential cryptanalysis (Faculty of Engineering and Applied Science - Memorial University of Newfoundland) Kryptographie und Datensicherheit: Blockverschlüsselung und AES Folie 52

53

AES. Jens Kubieziel jens@kubieziel.de. 07. Dezember 2009. Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik

AES. Jens Kubieziel jens@kubieziel.de. 07. Dezember 2009. Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik Angriffe gegen Jens Kubieziel jens@kubieziel.de Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 07. Dezember 2009 Angriffe gegen Outline 1 Zur Geschichte 2 3 Angriffe gegen

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 5: Blockchiffren. 5: Blockchiffren. (n bit) (n bit) VERschlüsseln ENTschlüsseln

Stefan Lucks Krypto und Mediensicherheit (2009) 5: Blockchiffren. 5: Blockchiffren. (n bit) (n bit) VERschlüsseln ENTschlüsseln 5: Blockchiffren Klartexte 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 Chiffretexte (n bit) (n bit) VERschlüsseln ENTschlüsseln 74 5.1: Abstrakte Blockchiffren Familie

Mehr

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0

Advanced Encryption Standard. Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Advanced Encryption Standard Copyright Stefan Dahler 20. Februar 2010 Version 2.0 Vorwort Diese Präsentation erläutert den Algorithmus AES auf einfachste Art. Mit Hilfe des Wissenschaftlichen Rechners

Mehr

DES der vergangene Standard für Bitblock-Chiffren

DES der vergangene Standard für Bitblock-Chiffren DES der vergangene Standard für Bitblock-Chiffren Klaus Pommerening Fachbereich Mathematik der Johannes-Gutenberg-Universität Saarstraße 1 D-55099 Mainz Vorlesung Kryptologie 1. März 1991, letzte Änderung:

Mehr

Methoden der Kryptographie

Methoden der Kryptographie Methoden der Kryptographie!!Geheime Schlüssel sind die sgrundlage Folien und Inhalte aus II - Der Algorithmus ist bekannt 6. Die - Computer Networking: A Top außer bei security by obscurity Down Approach

Mehr

IT-Sicherheit - Sicherheit vernetzter Systeme -

IT-Sicherheit - Sicherheit vernetzter Systeme - IT-Sicherheit - Sicherheit vernetzter Systeme - Kapitel 5: Symmetrische Kryptosysteme Helmut Reiser, LRZ, WS 09/10 IT-Sicherheit 1 Inhalt Symmetrische Kryptosysteme Data Encryption Standard (DES) Advanced

Mehr

Der Advanced Encryption Standard (AES)

Der Advanced Encryption Standard (AES) Der Advanced Encryption Standard (AES) Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Geschichte des AES Die Struktur des AES Angriffe auf den AES Aktuelle Ergebnisse DerAdvanced Encryption Standard

Mehr

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid

Mehr

Symmetrische Verschlüsselung. Blockchiffren, DES, IDEA, Stromchiffren und andere Verfahren

Symmetrische Verschlüsselung. Blockchiffren, DES, IDEA, Stromchiffren und andere Verfahren Symmetrische Verschlüsselung Blockchiffren, DES, IDEA, Stromchiffren und andere Verfahren Symmetrische Verfahren Sender und Empfänger haben sich auf einen gemeinsamen Schlüssel geeinigt (geheim!!). Sender

Mehr

Sommersemester 2002 Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit (KVBK)

Sommersemester 2002 Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit (KVBK) Sommersemester 2002 Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit (KVBK) Vortrag zum Thema: Symmetrische Verschlüsselung (DES, 3DES, AES) und Schlüsselaustausch (Diffie-Hellman) Referent:

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Kryptographische Verschlüsselung mithilfe des DES-Verfahrens und die Übersetzung eines Textes durch ein selbstgeschriebenes Delphi-Programm

Kryptographische Verschlüsselung mithilfe des DES-Verfahrens und die Übersetzung eines Textes durch ein selbstgeschriebenes Delphi-Programm Kryptographische Verschlüsselung mithilfe des DES-Verfahrens und die Übersetzung eines Textes durch ein selbstgeschriebenes Delphi-Programm Andre Pawlowski, Gymnasium Holthausen, LK Mathematik, 2004/2005

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

Wireless Security. IT Security Workshop 2006. Moritz Grauel grauel@informatik.hu-berlin.de Matthias Naber naber@informatik.hu-berlin.

Wireless Security. IT Security Workshop 2006. Moritz Grauel grauel@informatik.hu-berlin.de Matthias Naber naber@informatik.hu-berlin. Wireless Security IT Security Workshop 2006 Moritz Grauel grauel@informatik.hu-berlin.de Matthias Naber naber@informatik.hu-berlin.de HU-Berlin - Institut für Informatik 29.09.2006 (HU-Berlin - Institut

Mehr

Hochschule Wismar Fachbereich Wirtschaft

Hochschule Wismar Fachbereich Wirtschaft Hochschule Wismar Fachbereich Wirtschaft Projektarbeit Kryptographie: Moderne Blockchiffren Wahlpflichtfach Kryptographie 2004 eingereicht von: Betreuer: Christian Andersch geboren am 17. August 1977 in

Mehr

Symmetrische und asymmetrische Verfahren der Kryptographie

Symmetrische und asymmetrische Verfahren der Kryptographie Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Seminar Algebra Symmetrische und asymmetrische Verfahren der Kryptographie Jens Kubieziel Die vorliegende

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

Rijndael Nachfolger des DES

Rijndael Nachfolger des DES Schwerpunkt Rijndael Nachfolger des DES Der zukünftige Advanced Encryption Standard Michael Welschenbach Der symmetrische Blockverschlüsselungs-Algorithmus Rijndael von Joan Daemen und Vincent Rijmen wurde

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

MAC Message Authentication Codes

MAC Message Authentication Codes Seminar Kryptographie SoSe 2005 MAC Message Authentication Codes Andrea Schminck, Carolin Lunemann Inhaltsverzeichnis (1) MAC (2) CBC-MAC (3) Nested MAC (4) HMAC (5) Unconditionally secure MAC (6) Strongly

Mehr

IT-Security Neuere Konzepte II

IT-Security Neuere Konzepte II IT-Security Neuere Konzepte II Vorschau Folien www.kuketz-blog.de [Kapitel XY] Sommersemester 2015 WWI12B1 1 3. Herausforderungen für die IT-Sicherheit Internet of Things, Clouds und Industrie 4.0 2 2

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Einführung in die moderne Kryptographie

Einführung in die moderne Kryptographie c by Rolf Haenni (2006) Seite 1 Von der Caesar-Verschlüsselung zum Online-Banking: Einführung in die moderne Kryptographie Prof. Rolf Haenni Reasoning under UNcertainty Group Institute of Computer Science

Mehr

SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY. Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr.

SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY. Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr. SICHERE DATENHALTUNG IN DER CLOUD VIA HANDY 1 Tuba Yapinti Abschlussvortrag der Bachelorarbeit Betreuer: Prof. Reinhardt, Dr. Bernd Borchert GLIEDERUNG 1. Motivation Gründe für die Entwicklung Ideen für

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Wintersemester 2014/15 Christoph Kreitz kreitz cs.uni-potsdam.de http://cs.uni-potsdam.de/krypto-ws1415 1. Wozu Kryptographie? 2. Einfache Verschlüsselungsverfahren 3. Anforderungen

Mehr

Kapitel 2 Kryptographische Grundlagen

Kapitel 2 Kryptographische Grundlagen Kapitel 2 Kryptographische Grundlagen 2.1 Kryptographische Verfahren Ziel: Grundlagen zu Krypto-Verfahren, Für Vertiefung: Kryptographie-Vorlesung Kryptographie: Lehre von den Methoden zur Ver- und Entschlüsselung

Mehr

8. Von den Grundbausteinen zu sicheren Systemen

8. Von den Grundbausteinen zu sicheren Systemen Stefan Lucks 8. Grundb. sich. Syst. 211 orlesung Kryptographie (SS06) 8. Von den Grundbausteinen zu sicheren Systemen Vorlesung bisher: Bausteine für Kryptosysteme. Dieses Kapitel: Naiver Einsatz der Bausteine

Mehr

Kapitel 4: Flusschiffren

Kapitel 4: Flusschiffren Stefan Lucks 4: Flusschiffren 52 orlesung Kryptographie (SS06) Kapitel 4: Flusschiffren Als Basis-Baustein zur Verschlüsselung von Daten dienen Fluss- und Blockchiffren. Der Unterschied: Flusschiffren

Mehr

1. WAS IST SSL. 1.1. Protokollaufbau: Stefan Peer 2001-04-17

1. WAS IST SSL. 1.1. Protokollaufbau: Stefan Peer 2001-04-17 1. WAS IST SSL SSL (Secure Socket Layer) ist ein Übertragungsprotokoll, das verschlüsselte Verbindungen über Transportprotokolle wie zum Beispiel TCP/IP ermöglicht. Der Vorteil von SSL liegt vor allem

Mehr

WEP and WPA: Lessons learned in WLAN-Security Vortrag im Rahmen des Seminars Kryptographie und Sicherheit am 31. Mai 2006 Von Tina Scherer Gliederung WEP WPA Aufbau Schwächen Cracking WEP Angriffe Behobene

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Proseminar : Allgegenwärtiges Rechnen. Vortrag über Sicherheit. Christian Fricke cfricke@rz.uni-potsdam.de

Proseminar : Allgegenwärtiges Rechnen. Vortrag über Sicherheit. Christian Fricke cfricke@rz.uni-potsdam.de Proseminar : Allgegenwärtiges Rechnen Vortrag über Sicherheit Christian Fricke cfricke@rz.uni-potsdam.de 1 I. Einleitung : Sicherheitseigenschaften und Angriffsarten Definition 1: Unter Funktionssicherheit

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013.

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013. Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Übungsblatt 2 Aufgabe 1. Wir wissen,

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Algorithmische Anwendungen

Algorithmische Anwendungen Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach Algorithmische Anwendungen Symmetrische Verschlüsselung mit Blowfish-Algorithmus von Andrej Doumack MatrikelNr: 11032929 Gruppe:

Mehr

Datensicherheit durch Kryptographie

Datensicherheit durch Kryptographie Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems Michael.Hortmann@gmx.de 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

Vorlesung Kryptographie

Vorlesung Kryptographie Vorlesung Kryptographie Teil 2 Dr. Jan Vorbrüggen Übersicht Teil 1 (Nicht-) Ziele Steganographie vs. Kryptographie Historie Annahmen Diffie-Hellman Angriffe Teil 2 Symmetrische Verfahren Asymmetrische

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Teil II SYMMETRISCHE KRYPTOGRAPHIE

Teil II SYMMETRISCHE KRYPTOGRAPHIE Teil II SYMMETRISCHE KRYPTOGRAPHIE KAPITEL 4 EINFÜHRUNG In der Geschichte der Kryptographie gab es bis zur Entdeckung von Public-Key-Verfahren in den 1970er Jahren ausschliesslich symmetrische Verfahren.

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

7 Sicherheit und Kryptographie

7 Sicherheit und Kryptographie 48 Codierung und Sicherheit, UzL WS 2007/08 7 Sicherheit und Kryptographie 7.1 Fragestellungen der Kryptologie Kryptologie = Kryptographie + Kryptoanalyse (griechisch: kryptos verborgen, logos Wort) Die

Mehr

Betriebsarten für Blockchiffren

Betriebsarten für Blockchiffren Betriebsarten für Blockchiffren Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Betriebsarten für Blockchiffren Was ist eine Betriebsart (engl. Mode of Operation )? Blockchiffre wird genutzt, um

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

Einführung in Computer Microsystems

Einführung in Computer Microsystems Einführung in Computer Microsystems Kapitel 9 Entwurf eines eingebetteten Systems für Anwendungen in der IT-Sicherheit Prof. Dr.-Ing. Sorin A. Huss Fachbereich Informatik Integrierte Schaltungen und Systeme

Mehr

Verteilte Systeme: KE 4

Verteilte Systeme: KE 4 Verteilte Systeme: KE 4 Sicherheit und Verschlüsselung Ziele der Kryptographie Verschiebechiffre Substitutionschiffre Vigenere Permutationschiffre Stromchiffren DES RSA Sichere Kanäle, digitale Signaturen

Mehr

Kurze Einführung in kryptographische Grundlagen.

Kurze Einführung in kryptographische Grundlagen. Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC Benjamin.Kellermann@gmx.de GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone

Mehr

Diplomarbeit. Rada Kancheva Betreuer: Dr. B. Borchert Prof. K. Reinhardt

Diplomarbeit. Rada Kancheva Betreuer: Dr. B. Borchert Prof. K. Reinhardt Diplomarbeit Trojanersichere Fenster: Verschlüsselung und Entschlüsselung Rada Kancheva Betreuer: Dr. B. Borchert Prof. K. Reinhardt Theoretische Informatik Wilhelm-Schickard-Institut für Informatik Eberhard

Mehr

13. Vorlesung Netzwerke

13. Vorlesung Netzwerke Dr. Christian Baun 13. Vorlesung Netzwerke Hochschule Darmstadt SS2012 1/81 13. Vorlesung Netzwerke Dr. Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de Dr. Christian Baun

Mehr

Advanced Encryption Standard

Advanced Encryption Standard Fakultät für Mathematik und Informatik (Fakultät ) Institut für Diskrete Mathematik und Algebra Lehrstuhl für Algebra Seminararbeit Advanced Encryption Standard Michael von Wenckstern Angewandte Mathematik

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Skript zur Stammvorlesung. Sicherheit. Karlsruher Institut für Technologie. Fakultät für Informatik

Skript zur Stammvorlesung. Sicherheit. Karlsruher Institut für Technologie. Fakultät für Informatik Skript zur Stammvorlesung Sicherheit Karlsruher Institut für Technologie Fakultät für Informatik Institut für Theoretische Informatik Arbeitsgruppe für Kryptographie und Sicherheit Die aktuelle Version

Mehr

ESecuremail Die einfache Email verschlüsselung

ESecuremail Die einfache Email verschlüsselung Wie Sie derzeit den Medien entnehmen können, erfassen und speichern die Geheimdienste aller Länder Emails ab, egal ob Sie verdächtig sind oder nicht. Die Inhalte von EMails werden dabei an Knotenpunkten

Mehr

ProSeminar Kryptografie Prof. Dr. Ulrike Baumann. RSA-Verschlüsselung Francesco Kriegel

ProSeminar Kryptografie Prof. Dr. Ulrike Baumann. RSA-Verschlüsselung Francesco Kriegel ProSeminar Kryptografie Prof. Dr. Ulrike Baumann WS 2006/2007 RSA-Verschlüsselung Francesco Kriegel 14. 12. 2006 Inhaltsverzeichnis 1 Public-Key-Verfahren 2 1.1 Idee......................................................................

Mehr

Kryptographie Laborautomation WS 02/03 Patrick Gleichmann

Kryptographie Laborautomation WS 02/03 Patrick Gleichmann Kryptographie Laborautomation WS 02/03 Patrick Gleichmann 1 0. Was ist Sicherheit? Verstecken!= Verschlüsseln Was ist Sicherheit überhaupt? Dazu folgendes Beispiel: Wenn man etwas in einen Safe steckt,

Mehr

Physikalische Angriffe auf Blockchiffren am Beispiel der NESSIE Kandidaten

Physikalische Angriffe auf Blockchiffren am Beispiel der NESSIE Kandidaten Physikalische Angriffe auf Blockchiffren am Beispiel der NESSIE Kandidaten Diplomarbeit Ludwig Seitz Fakultät für Informatik Universität Karlsruhe Betreuer: Prof. Dr. Thomas Beth Betreuender Mitarbeiter:

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

Seminar Kryptographie

Seminar Kryptographie Seminar Kryptographie Christian Wilkin Seminararbeit WS 24/25 Dezember 24 Betreuung: Prof. Dr. Alfred Sheerhorn Fahbereih Design und Informatik Fahhohshule Trier University of Applied Sienes FACHHOCHSCHULE

Mehr

Visuelle Kryptographie

Visuelle Kryptographie Visuelle Kryptographie 14. April 2013 Visuelle Kryptographie 14. April 2013 1 / 21 1 Motivation 2 Grundlagen 3 Beispiele 4 Schlußbemerkungen 5 Lizenz Visuelle Kryptographie 14. April 2013 2 / 21 Einordnung

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

MMS Übung 1. Caesar Chiffre im Hinblick auf Robustheit. 17.05.13 Multimedia Sicherheit Übung 1 1

MMS Übung 1. Caesar Chiffre im Hinblick auf Robustheit. 17.05.13 Multimedia Sicherheit Übung 1 1 MMS Übung 1 Caesar Chiffre im Hinblick auf Robustheit 17.05.13 Multimedia Sicherheit Übung 1 1 Caesar Chiffre Wurde nach dem römischen Feldherrn Gaius Julius Caesar benannt Benutzt für die geheime Kommunikation

Mehr

Grundlagen der Sicherheit in Netzen und verteilten Systemen

Grundlagen der Sicherheit in Netzen und verteilten Systemen Grundlagen der Sicherheit in Netzen und verteilten Systemen Stefan Ransom + Jürgen Koslowski 2014-10-31 Kapitel 2 Grundbegriffe der Cryptologie und klassische Verfahren Überblick Einführung und historische

Mehr

Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen

Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen Digital Rights Management 4FriendsOnly.com Internet Technologies AG Vorlesung im Sommersemester an der Technischen Universität Ilmenau

Mehr

Verschlüsselung im Internet

Verschlüsselung im Internet Verschlüsselung im Internet Christian Bockermann Verschlüsselung September 2006 1 Überblick Kryptographie Was ist das? Warum braucht man das? Wie funktioniert das? Beispiele (Rucksäcke,RSA) Anwendungen

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Kryptologie. 2. Sicherstellung, dass eine Nachricht unverfälscht beim Empfänger ankommt: Integrität.

Kryptologie. 2. Sicherstellung, dass eine Nachricht unverfälscht beim Empfänger ankommt: Integrität. Kryptologie Zur Terminologie Die Begriffe KRYPTOLOGIE und KRYPTOGRAPHIE entstammen den griechischen Wörtern kryptos (geheim), logos (Wort, Sinn) und graphein (schreiben). Kryptographie ist die Lehre vom

Mehr

Inhalt. Grundlegendes zu Bankkarten. Moduliertes Merkmal. PIN-Sicherheit. Seitenkanalangriffe

Inhalt. Grundlegendes zu Bankkarten. Moduliertes Merkmal. PIN-Sicherheit. Seitenkanalangriffe Inhalt Grundlegendes zu Bankkarten Moduliertes Merkmal PIN-Sicherheit Seitenkanalangriffe Harald Baier Ausgewählte Themen der IT-Sicherheit h_da SS 10 24 PIN-Erzeugung bei Debitkarten 1. Variante: Kartendaten

Mehr

Post-quantum cryptography

Post-quantum cryptography Post-quantum cryptography Post-quantum cryptography 1. Komplexität & Quantencomputer 2. Kryptografie in Gittern 3. FHE Eine Revolution im Datenschutz? WIESO? KOMPLEXITÄT Public-Key-Kryptografie Grafiken:

Mehr

Sicherheit in Kommunikationsnetzen

Sicherheit in Kommunikationsnetzen Sicherheit in Kommunikationsnetzen Skript zur Vorlesung an der RWTH-Aachen Lehrstuhl für Informatik IV Prof.Dr.O.Spaniol Mesut Güneş! 14. Juli 2000 ii Vorwort Die Sicherheit in der Kommunikation meint

Mehr

Datenschutz und Privatheit in vernetzten Informationssystemen

Datenschutz und Privatheit in vernetzten Informationssystemen Datenschutz und Privatheit in vernetzten Informationssystemen Kapitel 4: Kryptographische Verfahren Erik Buchmann (buchmann@kit.edu) IPD, Systeme der Informationsverwaltung, Nachwuchsgruppe Privacy Awareness

Mehr

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Agenda 1. Kerckhoff sches Prinzip 2. Kommunikationsszenario 3. Wichtige Begriffe 4. Sicherheitsmechanismen 1. Symmetrische Verschlüsselung

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Verschlüsselung und Signatur

Verschlüsselung und Signatur Verschlüsselung und Signatur 1 Inhalt Warum Verschlüsseln Anforderungen und Lösungen Grundlagen zum Verschlüsseln Beispiele Fragwürdiges rund um das Verschlüsseln Fazit Warum verschlüsseln? Sichere Nachrichtenübertragung

Mehr

Einführung in kryptographische Verfahren

Einführung in kryptographische Verfahren Symmetrische Verfahren Kontinuierliche Chiffre Block-Produkt-Chiffren Asymmetrische Verfahren RSA-Algorithmus Einwegfunktionen Hybridverfahren Kryptoanalyse Einführung in kryptographische Verfahren "security

Mehr

Probabilistische Primzahlensuche. Marco Berger

Probabilistische Primzahlensuche. Marco Berger Probabilistische Primzahlensuche Marco Berger April 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 4 1.1 Definition Primzahl................................ 4 1.2 Primzahltest...................................

Mehr

Geheimnisvolle Codes

Geheimnisvolle Codes Geheimnisvolle Codes 1 vorgelegt bei: Mathematisches Seminar für LAK Univ.-Prof. Karin Baur WS 2014/15 von: Julia Hager 0910838 j.hager@edu.uni-graz.at 1 Quelle: http://www.austromath.at/medienvielfalt/materialien/krypto/krypt.png

Mehr

Grundlagen. Murat Zabun. Seminar. Sicherheit im Internet. Universität Dortmund WS 02/03

Grundlagen. Murat Zabun. Seminar. Sicherheit im Internet. Universität Dortmund WS 02/03 Grundlagen Murat Zabun Seminar Sicherheit im Internet Universität Dortmund WS 02/03 1 Inhaltsverzeichnis INHALTSVERZEICHNIS 1.Einleitung 1.1 Grundlagen der Kryptographie 1.2 Verfahren der Kryptographie

Mehr

Entschlüsselung geheimer Botschaften am Computer Anleitung

Entschlüsselung geheimer Botschaften am Computer Anleitung Anleitung Allgemeines: Dieser Workshop wurde im Schülerseminar in 90 Minuten durchgeführt. Die Zeit hat gut gereicht. Da nur 90 Minuten zur Verfügung standen, habe ich viel auf die Arbeitsblätter geschrieben,

Mehr

CrypTool im Überblick

CrypTool im Überblick CrypTool im Überblick Martin Schütte 3. Juni 2012 Inhaltsverzeichnis I. Erste Schritte 2 1. Programm-Aufbau 2 2. Symmetrische Verschlüsselungen 2 3. Asymmetrische Verfahren 3 4. Hashfunktionen 3 5. Tools

Mehr

Diplomarbeit. Prototypische Implementierung eines netzwerkprozessorbasierten VPN-Gateways

Diplomarbeit. Prototypische Implementierung eines netzwerkprozessorbasierten VPN-Gateways TU Dresden Lehrstuhl Rechnernetze Diplomarbeit Prototypische Implementierung eines netzwerkprozessorbasierten VPN-Gateways vorgelegt von Maik Hampel geb. am 03.02.1979 in Mittweida Eingereicht am: 15.04.2005

Mehr

Kapitel 3: Schutzkonzepte und deren Umsetzung

Kapitel 3: Schutzkonzepte und deren Umsetzung Kapitel 3: Schutzkonzepte und deren Umsetzung Brandenburg an der Havel, den 7. Dezember 2004 1 Gliederung 1. Firewalls 2. Kryptologie 3. Authentifizierung 4. Sicherheitsprotokolle

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Digital Signature and Public Key Infrastructure

Digital Signature and Public Key Infrastructure E-Governement-Seminar am Institut für Informatik an der Universität Freiburg (CH) Unter der Leitung von Prof. Dr. Andreas Meier Digital Signature and Public Key Infrastructure Von Düdingen, im Januar 2004

Mehr

Kryptographie praktisch erlebt

Kryptographie praktisch erlebt Kryptographie praktisch erlebt Dr. G. Weck INFODAS GmbH Köln Inhalt Klassische Kryptographie Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Digitale Signaturen Erzeugung gemeinsamer Schlüssel

Mehr

Hochschule Wismar. Fachbereich Wirtschaft. Studienarbeit Kyprographie

Hochschule Wismar. Fachbereich Wirtschaft. Studienarbeit Kyprographie Hochschule Wismar Fachbereich Wirtschaft Studienarbeit Kyprographie Untersuchung/Analyse der Sicherheit der NTFS(EFS)-Dateiverschlüsselung unter Windows 2000/XP eingereicht von: Betreuer: Wismar, den 11.

Mehr

Inhaltsverzeichnis. I Vorbemerkung 1. II Kryptologie 2. 1 Inhalt 1 1.1 Kryptologie... 1 1.2 Codierungstheorie... 1 1.3 Literatur...

Inhaltsverzeichnis. I Vorbemerkung 1. II Kryptologie 2. 1 Inhalt 1 1.1 Kryptologie... 1 1.2 Codierungstheorie... 1 1.3 Literatur... Inhaltsverzeichnis I Vorbemerkung Inhalt. Kryptologie.........................................2 Codierungstheorie.....................................3 Literatur.........................................

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Exkurs Kryptographie

Exkurs Kryptographie Exkurs Kryptographie Am Anfang Konventionelle Krytographie Julius Cäsar mißtraute seinen Boten Ersetzen der Buchstaben einer Nachricht durch den dritten folgenden im Alphabet z. B. ABCDEFGHIJKLMNOPQRSTUVWXYZ

Mehr

Vortrag Keysigning Party

Vortrag Keysigning Party Vortrag Keysigning Party Benjamin Bratkus Fingerprint: 3F67 365D EA64 7774 EA09 245B 53E8 534B 0BEA 0A13 (Certifcation Key) Fingerprint: A7C3 5294 E25B B860 DD3A B65A DE85 E555 101F 5FB6 (Working Key)

Mehr

Was ist Kryptographie

Was ist Kryptographie Was ist Kryptographie Kryptographie Die Wissenschaft, mit mathematischen Methoden Informationen zu verschlüsseln und zu entschlüsseln. Eine Methode des sicheren Senden von Informationen über unsichere

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Denn es geht um ihr Geld:

Denn es geht um ihr Geld: Denn es geht um ihr Geld: [A]symmetrische Verschlüsselung, Hashing, Zertifikate, SSL/TLS Warum Verschlüsselung? Austausch sensibler Daten über das Netz: Adressen, Passwörter, Bankdaten, PINs,... Gefahr

Mehr

Grundlagen und Verfahren der starken Kryptographie

Grundlagen und Verfahren der starken Kryptographie Grundlagen und Verfahren der starken Kryptographie Seminararbeit im Seminar Neue Technologien in Internet und WWW Wintersemester 2003/04 Universität Jena vorgelegt von Eike Kettner Januar 2004 Abstract

Mehr

Diplomarbeit. Parallelisierbarkeit kryptographischer Algorithmen

Diplomarbeit. Parallelisierbarkeit kryptographischer Algorithmen Parallelisierbarkeit kryptographischer Algorithmen Diplomarbeit Hochschule Merseburg (FH) Fachbereich Informatik und Angewandte Naturwissenschaften Studiengang: Informatik eingereicht von Steffen Pankratz

Mehr

Kryptologie von einer Geheimwissenschaft zu einer Wissenschaft von den Geheimnissen

Kryptologie von einer Geheimwissenschaft zu einer Wissenschaft von den Geheimnissen Kryptologie von einer Geheimwissenschaft zu einer Wissenschaft von den Geheimnissen Dr. Jörg Vogel WS 2006/07 Vorwort Dieses Dokument wurde als Skript für die auf der Titelseite genannte Vorlesung erstellt

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 12

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Grundbegriffe der Kryptographie

Grundbegriffe der Kryptographie Grundbegriffe der Kryptographie Vorlesungsskript von Eike Best April 2004 - Mai 2005 Oldenburg, Mai 2005 E. Best Das Skript wird ständig gepflegt. Wenn Ihnen beim Lesen Fehler auffallen, schicken Sie bitte

Mehr