Klapptest Lineare Gleichungen I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Klapptest Lineare Gleichungen I"

Transkript

1 Klapptest Lineare Gleichungen I (Lösungen als ganze Zahlen) 1. 6(x + 2)(x - 7) = x(6x + 6) x = (x + 3)(x + 1) = x(-7x - 2) x = (x - 7)(x + 7) = x(4x - 8) x = (x + 1)(x - 4) = x(-4x - 4) 4. x = (x + 6)(x - 8) = x(-9x - 8) 5. x = -3

2 Klapptest Lineare Gleichungen II (Lösungen als ganze Zahlen) 1. -6(x + 2)(x - 3) = 32 + x(-6x + 4) 1. x = (x + 6)(x + 4) = x(9x + 3) 2. x = (x + 6)(x - 5) = 84 + x(-3x - 5) 3. x = (x - 3)(x - 1) = 14 + x(2x - 6) 4. x = (x + 4)(x + 9) = x(-8x + 9) x = 8

3 Klapptest Lineare Gleichungen III (Lösungen als ganze Zahlen) 1. 4(x - 3)(x + 8) = x(4x - 7) x = (x - 9)(x - 6) = x(3x + 4) 2. x = 1 3. (x - 5)(x + 1) = x(x - 4) x = (x + 1)(x + 3) = 16 + x(-2x + 3) 4. x = (x + 5)(x + 8) = x(3x + 8) x = -4

4 Klapptest Lineare Gleichungen IV (Lösungen als ganze Zahlen) 1. -5(x + 8)(x - 7) = x(-5x + 9) 1. x = (x + 8)(x - 2) = x(x + 7) x = (x - 1)(x + 5) = 73 + x(7x + 1) 3. x = (x - 3)(x + 5) = x(5x + 3) x = (x - 2)(x - 6) = 57 + x(x - 3) 5. x = -9

5 Klapptest Textaufgaben I (lineare Gleichungen, Lösungen als ganze Zahlen) 1. Die Summe aus 51 und dem 7-fachen einer Zahl ergibt x = 3 + (-x) die Summe aus 3 und der Gegenzahl zu x. x = Multipliziert man eine Zahl mit 7 und addiert 67, 2. 7 x + 67 = 43 - x so erhält man die Differenz aus 43 und x. x = Addiert man das 5-fache einer Zahl zu 71, so erhält 3. 5 x + 71 = 29 - x man dasselbe wie bei Verminderung der Zahl 29 um x. x = Die Summe aus 23 und dem 4-fachen einer Zahl ergibt x = (-x) die Summe aus -17 und der Gegenzahl zu x. x = Multipliziert man eine Zahl mit dem Faktor 9 und addiert 5. 9 x + 56 = x 56, so erhält an die Differenz aus -24 und x. x = -8

6 Klapptest Textaufgaben II (lineare Gleichungen, Lösungen als ganze Zahlen) 1. Vermehrt man das 3-fache einer Zahl um 110, so erhält 1. 3 x = 10 - x man dasselbe wie bei Verminderung der Zahl 10 um x. x = Die Summe aus 64 und dem 4-fachen einer Zahl ergibt x = (-x) die Summe aus -41 und der Gegenzahl zu x. x = Multipliziert man eine Zahl mit dem Faktor 2 und addiert 3. 2 x + 85 = 16 x 85, so erhält man sich die Differenz aus 16 und x. x = Vermehrt man das 8-fache einer Zahl um 96, so erhält 4. 8 x + 96 = x man dasselbe wie bei Verminderung der Zahl -66 um x. x = -18 Die Summe aus 161 und dem 5-fachen einer Zahl ergibt x = 59 + (-x) als Wert die Summe aus 59 und der Gegenzahl zu x. x = -17

7 Klapptest Textaufgaben III (lineare Gleichungen, Lösungen als ganze Zahlen) folgende Aufgaben. und die Anzahl der Punkte notiert. 1. Multipliziert man eine Zahl mit dem Faktor 10 und addiert x + 64 = x 64, so erhält man die Differenz aus -123 und x. x = Vermehrt man das 10-fache einer Zahl um 188, so erhält x = x man eine Verminderung der Zahl -76 um x. x = Die Summe aus 66 und dem 9-fachen einer Zahl ergibt x = (-x) die Summe aus -194 und der Gegenzahl zu x. x = Multipliziert man eine Zahl mit 10 und addiert 137, x = x so ergibt sich die Differenz aus -94 und x. x = Vermehrt man das 9-fache einer Zahl um 124, so erhält 5. 9 x = -6 - x man dasselbe wie bei Verminderung der Zahl -6 um x. x = -13

8 Klapptest Textaufgaben IV (lineare Gleichungen, Lösungen als ganze Zahlen) folgende Aufgaben. und die Anzahl der Punkte notiert. 1. Vermehrt man das 4-fache einer Zahl um 65, so bekommt 1. 4 x + 65 = x man die Differenz aus der Zahl -55 und x. x = Addiert man 77 und das 9-fachen einer Zahl, dann x = (-x) erhält man die Summe aus -63 und der Gegenzahl zu x. x = Multipliziert man eine Zahl 5 und addiert 79, so ergibt 3. 5 x + 79 = x das als Wert die Differenz aus -17 und x. x = Addiert man das 9-fache einer Zahl zu 54, so erhält 4. 9 x + 54 = x man dasselbe als wenn man x von -196 subtrahiert. x = Es ergibt die Summe aus 173 und dem 8-fachen einer x = (-x) Zahl die Summe -43 und der Gegenzahl zu x. x = -24

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104

1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 1) Mit welcher Zahl muss 18 multipliziert werden, um 234 zu erhalten? Kontrolliere! 2) Finde die Zahl, mit der 171 multipliziert werden muss, um 4104 zu erhalten? Probe! 3) Von zwei Zahlen ist die eine

Mehr

Kapitel 7: Gleichungen

Kapitel 7: Gleichungen 1. Allgemeines Gleichungen Setzt man zwischen zwei Terme T 1 und T 2 ein Gleichheitszeichen (=), so entsteht eine Gleichung! Ungleichung Setzt man zwischen zwei Terme T 1 und T 2 ein Ungleichheitszeichen

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen

Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen Mathematik -Intensivierung * Jahrgangsstufe Lösung von Gleichungen durch Äquivalenzumformungen Musterbeispiel: 5 ( x - ) + x = ( 5 - x ) (Vereinfachen!) 5 x - 0 + x = 0-6 x (Vereinfachen!) 8 x - 0 = 0-6

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

Potenzen mit ganzzahligen Exponenten: Rechenregeln

Potenzen mit ganzzahligen Exponenten: Rechenregeln Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

Einige grundsätzliche Überlegungen:

Einige grundsätzliche Überlegungen: Einige grundsätzliche Überlegungen: 1) Die Wahl der Unbekannten, x, y, z, oder a, b, c oder α, β, γ oder m, n, o. etc. richten sich nach den Beispielen und sind so zu wählen, dass sie am besten zu jenen

Mehr

Lösen linearer Gleichungssysteme

Lösen linearer Gleichungssysteme Lösen linearer Gleichungssysteme W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Die beschriebenen Verfahren 2 2 Einsetzungsverfahren 3 3 Additions-/Subtraktionsverfahren 5 4 Gleichsetzungsverfahren 8

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

MATHEMATIK Grundkurs 11m3 2010

MATHEMATIK Grundkurs 11m3 2010 MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Schüler/innen-Arbeitsheft Seite 1

Schüler/innen-Arbeitsheft Seite 1 Schüler/innen-Arbeitsheft Seite 1 M 1 Zum Lesen Mathematische Stenographie In der Mathematik werden die Grundrechenarten häufig benutzt, um Vorgänge (wie das Einzahlen oder Abheben von Geld auf ein Konto)

Mehr

Rationale Zahlen Kurzfragen. 26. Juni 2012

Rationale Zahlen Kurzfragen. 26. Juni 2012 Rationale Zahlen Kurzfragen 26. Juni 2012 Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... ) in einer Menge M abgeschlossen? Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... )

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

Gleichungen, Ungleichungen, Beträge

Gleichungen, Ungleichungen, Beträge KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

DOWNLOAD. Terme und Gleichungen 5./6. Klasse. Mathetraining in 3 Kompetenzstufen

DOWNLOAD. Terme und Gleichungen 5./6. Klasse. Mathetraining in 3 Kompetenzstufen DOWNLOAD Brigitte Penzenstadler Terme und Gleichungen 5./6. Klasse Mathetraining in 3 Kompetenzstufen Brigitte Penzenstadler Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: Mathetraining

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

F u n k t i o n e n Gleichungssysteme

F u n k t i o n e n Gleichungssysteme F u n k t i o n e n Gleichungssysteme Diese Skizze ist aus Leonardo da Vincis Tagebuch aus dem Jahre 149 und zeigt wie sehr sich Leonardo für Proportionen am Menschen interessierte. Ob er den Text von

Mehr

Kopfrechnen (Dezember 2010)

Kopfrechnen (Dezember 2010) Kopfrechnen (Dezember 2010) Folgend sind einige Tipps und Tricks für ein sicheres, schnelles Kopfrechnen zusammengestellt. Neben den aufgeführten Tricks existieren aber noch viele weitere Methoden. Sollte

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Gleichungen - Textaufgaben

Gleichungen - Textaufgaben DX1684_Lineare_Gleichungen_Textaufgaben.wxmx 1 / 20 Gleichungen - Textaufgaben Dokumentnummer: DX1684 Fachgebiet: Lineare Gleichungen Einsatz: 2HAK (erstes Lernjahr) Quelle: Internetseite von Jutta Gut

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Nullserie zur Prüfungsvorbereitung

Nullserie zur Prüfungsvorbereitung Nullserie zur Prüfungsvorbereitung Die folgenden Hilfsmittel und Bedingungen sind an der Prüfung zu beachten. Erlaubte Hilfsmittel Beliebiger Taschenrechner (Der Einsatz von Lösungs- und Hilfsprogrammen

Mehr

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf * Rechnen und Mathematik Crash kurs Ein Übungsbuch für Ausbildung und Beruf Duden Crashkurs Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf Dudenverlag Mannheim Leipzig Wien Zürich Bibliografische

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1

Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1 Interne Links auf dieser Seite: Abbildungsverzeichnis Inhaltsverzeichnis Linearfaktorenzerlegung und Polynomdivision 1 Aufgabe 1 Man löse die Gleichung x 3 2x 2 112 = 0 Dies ist eine kubische Gleichung.

Mehr

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : =

Anhang 5. Eingangstest I. 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3 und Wie groß ist die Summe von Berechnen Sie: : = Anhang 5 Eingangstest I 1. Berechnen Sie: 63,568 1000 = 2. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 3. Wie groß ist die Summe von 4 3 und 6 5? 8 4 4. Berechnen Sie: : = 35 15 5. Berechnen Sie:

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 3. Semester ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN ARBEITSBLATT 8 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN AUFGABEN ZU ZAHLEN Prinzipiell kennen wir die Vorgangsweise beim Lösen von Textaufgaben bereits. Neu ist hingegen, dass wir nun immer zwei Variable

Mehr

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6 Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (

Mehr

Vorbereitung auf die 1. Schularbeit: MATHEMATIK KL.: M3/I. - S.1 L E R N Z I E L H I L F E N

Vorbereitung auf die 1. Schularbeit: MATHEMATIK KL.: M3/I. - S.1 L E R N Z I E L H I L F E N . Schularbeit: MTHEMTIK KL.: M/I. - S. Kommen in einer Rechnung mehrere Rechnungsarten bzw. Klammern vor, so muss folgende Reihenfolge eingehalten werden: ) Rechne zuerst den Wert einer Klammer aus! )

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

Terme und Aussagen und

Terme und Aussagen und 1 Grundlagen Dieses einführende Kapitel besteht aus den beiden Abschnitten Terme und Aussagen und Bruchrechnung. Die Erfahrung zeigt, dass diese Dinge zwar in der Schule gelehrt und gelernt werden, dass

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Mathe-Übersicht INHALTSVERZEICHNIS

Mathe-Übersicht INHALTSVERZEICHNIS S. 1/13 Mathe-Übersicht V. 1.1 2004-2012 by Klaus-G. Coracino, Nachhilfe in Berlin, www.coracino.de Hallo, Mathe-Übersicht Diese Datei enthält verschiedene Themen, deren Überschriften im INHALTSVERZEICHNIS

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Bruchrechnen in Kurzform

Bruchrechnen in Kurzform Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75)

1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) Lineare Gleichungs und Ungleichungssysteme 1 1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) 2. Ergänzen Sie die fehlende Zahl, sodass sich eine Lösung

Mehr

Teil I.2 Lösen von Bestimmungsgleichungen

Teil I.2 Lösen von Bestimmungsgleichungen Brückenkurs Mathematik Teil I.2 Lösen von Bestimmungsgleichungen Staatliche Studienakademie Leipzig Studienrichtung Informatik Dr. Susanne Schneider 12. September 2011 Bestimmungsgleichungen 1 Reelle Zahlen

Mehr

Leseprobe aus Pisa-Training Bruchrechnen, Bestell-Nr , Mildenberger Verlag

Leseprobe aus Pisa-Training Bruchrechnen, Bestell-Nr , Mildenberger Verlag Leseprobe aus Pisa-Training Bruchrechnen, Bestell-Nr. 50-0, Mildenberger Verlag Vorwort In diesem Buch werden Schülerinnen und Schüler (im Folgenden Schüler genannt) übliche Aufgabenserien zur Bruchrechnung

Mehr

2a +2b = a +2b = 38 a +b = 3 2 2a +2b = 6. 4b = 44 b = 11 und a = 8. DF: Arithmetisches Mittel angegeben (FNr 6)

2a +2b = a +2b = 38 a +b = 3 2 2a +2b = 6. 4b = 44 b = 11 und a = 8. DF: Arithmetisches Mittel angegeben (FNr 6) Blatt Nr 05.05 Mathematik Online - Übungen Blatt 5 Textaufgabe lineare Gleichungssysteme Nummer: 36 0 009010017 Kl: 8X Grad: 10 Zeit: 0 Quelle: SP 8 W Aufgabe 5.1.1: Ein Rechteck hat einen Umfang von 38

Mehr

Aufgaben zu Lineare Gleichungen mit einer Variablen. Einfache Gleichungen, Gleichungen mit Klammern und Binomen. a) x + 17 = 21.

Aufgaben zu Lineare Gleichungen mit einer Variablen. Einfache Gleichungen, Gleichungen mit Klammern und Binomen. a) x + 17 = 21. Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Lineare Gleichungen mit einer Variablen

Mehr

Mathematik elementare Algebra Grundwissen und Übungen

Mathematik elementare Algebra Grundwissen und Übungen Mathematik elementare Algebra Grundwissen und von Stefan Gärtner (Gr) Stefan Gärtner 1999 unter Benutzung von Unterrichtsmaterial von Gärtner / Clausing / Schröder Gr Mathematik elementare Algebra Seite

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

x x

x x Gleichungen und Ungleichungen 10 10 15 10 10 x x 0 10 5 10 10 5,5,5 55 60 10 + 10 + 15 + 10 + 10 + x + x = 0 + 10 + 5 + 10 + 10 + 5 Gleichung, die sich im Gleichgewicht befin det! 55 + x = 60 55 + x =

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

DOWNLOAD. Freiarbeit: Günther Koch. Materialien für die 7. Klasse in zwei Differenzierungsstufen. Downloadauszug aus dem Originaltitel: AOL-Verlag

DOWNLOAD. Freiarbeit: Günther Koch. Materialien für die 7. Klasse in zwei Differenzierungsstufen. Downloadauszug aus dem Originaltitel: AOL-Verlag DOWNLOAD Günther Koch Freiarbeit: Materialien für die 7. Klasse in zwei Differenzierungsstufen Downloadauszug aus dem Originaltitel: 1 Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [

Mehr

Lernzirkel: Addieren, Subtrahieren und Verschieben von Funktionen

Lernzirkel: Addieren, Subtrahieren und Verschieben von Funktionen Station 1: Funktionen entlang der y-achse verschieben An dieser Station sollt Ihr euch mit Hilfe des ClassPad 300 eine Vorstellung erarbeiten, wie man eine Funktion entlang der y-achse verschieben kann.

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Gleichungssysteme ersten Grades lösen

Gleichungssysteme ersten Grades lösen Gleichungssysteme ersten Grades lösen Zwei Gleichungen mit zwei Unbekannten Einsetzungsmethode 18=10a + b 2=0a + b Durch Isolieren von b in der ersten Gleichung ergibt sich b =18 10a. b wird nun in der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Dr. H. Macholdt 7. September 2005 1 Motivation Viele Probleme aus dem Bereich der Technik und der Naturwissenschaften stellen uns vor die Aufgabe mehrere unbekannte Gröÿen gleichzeitig

Mehr

DEMO für www.mathe-cd.de

DEMO für www.mathe-cd.de (1) Rechnen mit Paaren und Tripeln () Eine Gleichung mit oder 3 Unbekannten (3) Zwei Gleichungen mit 3 Unbekannten Datei Nr. 61 011 Stand 19. Oktober 010 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Rechnen mit Bruchzahlen

Rechnen mit Bruchzahlen Addition und Subtraktion von Brüchen Aufgabe: Rechnen mit Bruchzahlen In einem Gefäß befinden sich Liter Orangensaft. a.) Jemand trinkt b.) Jemand gießt c.) Jemand gießt Liter davon. Wie viel Saft befindet

Mehr

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1

Statistik, Wahrscheinlichkeits- und Prozentrechnung Seite 1 Seite 1 1 W ü r f e l e x p e r i m e n t 1 (Partnerarbeit) a) Würfele mehrmals mit einigen Spielwürfeln und notiere in einer Strichliste, welche Augenzahl wie oft gefallen ist. Wie oft wurde welche Augenzahl

Mehr

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8 Inhaltsverzeichnis 1 Flächen Klammern auflösen 4 3 Prozentrechnung 6 4 Zinsrechnung 7 5 Funktionen 8 1 Flächen Quadrat Alle Seiten sind gleich lang und alle Winkel sind rechte Winkel. - 4 Symmentriachsen

Mehr

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 100. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 100. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Rechen-Craps Addition, Konzentration 2 Sechser-Würfel, 1 Spielvorlage

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt: 1. Negative Zahlen............................................... 2. Natürliche, ganze und rationale Zahlen................................. Addition und Subtraktion rationaler Zahlen.............................

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus

Mehr

Kreuzzahlrätsel. Senkrecht. A C die Hälfte von 1516 F der 8. Teil von 200. H Zahl mit der Quersumme

Kreuzzahlrätsel. Senkrecht. A C die Hälfte von 1516 F der 8. Teil von 200. H Zahl mit der Quersumme Kreuzzahlrätsel Die Zeichen bedeuten für jede einzelne Aufgabe: mehrstellige natürliche Zahl Rechenoperationszeichen Ziffer 0,, 2,... oder 9 In das Kreuzzahlrätsel ist immer das Ergebnis der Aufgabe einzutragen.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

3 heißt 1. Faktor und 4 heißt 2. Faktor. 12 heißt Wert des Produkts. Beispiele : a) 4 5 = = 20. b) 3 12 = = 36

3 heißt 1. Faktor und 4 heißt 2. Faktor. 12 heißt Wert des Produkts. Beispiele : a) 4 5 = = 20. b) 3 12 = = 36 VI. Die Multiplikation und Division natürlicher Zahlen ================================================================= 6.1 Die Multiplikation 3 4 Wir schreiben 4 + 4 + 4 = 3 4 und damit ist 3 4 = 12.

Mehr

8.1.1 Real : Arithmetik Zahlenräume

8.1.1 Real : Arithmetik Zahlenräume 8.1.1 Real : Arithmetik Zahlenräume P8: Mathematik 8 A1: komb.büchlein W89: Wahlfach 8/9.Prim Zeitraum Wochen Inhalte Kernstoff Zusatzstoff Erledigt am: Natürliche Zahlen (N) P8: 1, 2,,,, 6, 8, 11 TR,

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Eingangstest lineare Gleichungssysteme

Eingangstest lineare Gleichungssysteme Eingangstest lineare Gleichungsssteme Lineare Gleichung mit einer Variablen Löse die Gleichung. 7 + = 0 ( + 9) = 5 8 c) ( 7) = ( + 8) = = = 5 Stelle zu den Sachproblemen geeignete Gleichungen auf und löse

Mehr

Lineare Gleichungssysteme: Ein Beispiel aus der Elektrotechnik

Lineare Gleichungssysteme: Ein Beispiel aus der Elektrotechnik Lineare Gleichungssysteme: Ein Beispiel aus der Elektrotechnik Ekkehard Batzies www.hs-furtwangen.de/ batzies 28. März 2008 Unser Beispiel: mit 4 Knoten. R 0,1 := Widerstand zwischen Knoten 0 und Knoten

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 20. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken

DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 20. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen

Mehr

Thema Bru che addieren und subtrahieren:

Thema Bru che addieren und subtrahieren: Thema Bru che addieren und subtrahieren: Die Frage lautet: Wie addiere und subtrahiere ich Brüche, bzw. wie sieht das Endergebnis aus? Die Antwort lautet: Es kommt darauf an, was wir für Brüche gegeben

Mehr

Lösen linearer Gleichungssysteme

Lösen linearer Gleichungssysteme Lösen linearer Gleichungssysteme Eine Aufgabe aus einem alten chinesischen Rechenbuch (600 v. Chr.) In einem Käfig sind Hasen und Hühner eingesperrt. Die Tiere haben zusammen 5 Köpfe und 94 Füße. Wie viele

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Terme, Gleichungen, Ungleichungen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Terme, Gleichungen, Ungleichungen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus Kopiervorlagen Terme, Gleichungen, Ungleichungen Das komplette Material finden Sie hier School-Scout.de Autoren Kristina Hilgarth Dr.

Mehr

Aufgabe: Stelle die Lösungsmenge des folgenden Ungleichungssystems dar:

Aufgabe: Stelle die Lösungsmenge des folgenden Ungleichungssystems dar: Lineare Optimierung. Lineare Ungleichungsssteme Unter der Lösung einer linearen Ungleichung in den Variablen und versteht man die reellen Zahlenpaare (, ), welche die Ungleichung erfüllen. Stellt man diese

Mehr