Die vorliegenden Unterlagen wurden im Rahmen des

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die vorliegenden Unterlagen wurden im Rahmen des"

Transkript

1 Die vorliegenden Unterlagen wurden im Rahmen des Bund-Länder-Wettbewerbs Aufstieg durch Bildung: Offene Hochschulen 1. Wettbewerbsrunde als Teil des Vorhabens der Gottfried Wilhelm Leibniz Universität Hannover im Verbundprojekt Mobilitätswirtschaft: STUDIUM INITIALE Übergangsmanagement und Integration beruflich Qualifizierter in das Hochschulstudium erstellt. Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung und Forschung unter dem Förderkennzeichen 16OH12041 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor. Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung, und Forschung unter dem Förderkennzeichen [bitte FKZ einsetzen] gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor

2 Konzept für einen Vorbereitungskurs Grundlagen der Mathematik im Rahmen von STUDIUM INITIALE Dozent: Reinhard Foremny

3 Konzept für einen Vorbereitungskurs Grundlagen der Mathematik im Rahmen von STUDIUM INITIALE Dozent: Reinhard Foremny Konzept für eine EDV-gestützte Lernumgebung Ziel Entwicklung einer EDV-gestützten Lernumgebung. Diese wendet sich an Studieninteressierte mit Berufsausbildung und Personen, die ihre Mathematikkenntnisse wieder auffrischen wollen. Der Kurs stellt die Grundlagen der Mathematik vor und soll die Lernenden in die Lage versetzen, eigenverantwortlich den Stoff durchzuarbeiten. Um die Akzeptanz und die Motivation zu erhöhen wird der Inhalt in kurzen Videos vorgestellt werden, im Anschluss wird das Gelernte eigenverantwortlich geübt. In Präsenzphasen werden aufgetretene Fragen behandelt. Die Lernenden können so in ihrem eigenen Lerntempo den Stoff erarbeiten und ggf. einzelne Kapitel wiederholen. Vorgehensweise Angepasst an die Anforderungen, die an Studienanfänger gestellt werden, wurden die Inhalte festgelegt. Es wurden vom mir mehrere Kurse für Studienanfänger abgehalten. Es zeigte sich, dass teilweise große Defizite bei den grundlegenden mathematischen Verfahren und Vorgehensweisen bestehen. Die Gestaltung des Inhaltes berücksichtigt diesen Umstand. Ausgehend von den Grundrechenarten werden die Vorzeichenregeln und Klammerrechnung behandelt. Es folgen Bruchrechnung und binomische Formeln. Darauf aufbauend werden die Termumformung und die Potenzgesetze behandelt. Diese wiederum ist die Basis für die Behandlung der linearen und quadratischen Gleichungssysteme und deren Lösungsverfahren. Es folgt eine Einführung in Geometrie (Strecken, Kreis, Benennungen). Es wird der Begriff Steigung eingeführt, darauf aufbauend der Strahlensatz mit Anwendungen (Interpolation, Streckenteilung). Dreiecke werden am Bsp. des rechtwinkligen Dreiecks eingeführt (Flächenberechnung, Pythagoras, Thalessatz). Es folgen die Winkelfunktionen und deren Anwendung. Anschließend wird der Übergang zum allgemeinen Dreieck mit Sinussatz und Cosinussatz mit Anwendung behandelt. Abgeschlossen wird der Kurs mit den Funktionen; beginnend mit Begriffen, Darstellung und Definitionen werden lineare Funktionen, deren allgemeine Darstellung und Eigenschaften (Steigung, Schnittpunkte) behandelt. Ebenso werden die quadratischen Funktionen (Scheitelpunkte, Normalform und Eigenschaften), Nullstellen sowie die Schnittpunkte zwischen Funktionen besprochen. Gebrochen rationale Funktionen werden nur in der 1. Potenz behandelt.

4 Bei dieser Abfolge bauen die Schritte aufeinander auf; daraus ergibt sich die Möglichkeit, in den Videos die Zusammenhänge (z.b. Binomische Formel => standardisierte Form der Ausmultiplikation, Schnittpunkte von Funktionen => Lösung der Gleichungssysteme) deutlich zu machen. Lernumgebung Der Kurs wird auf einer Moodle-Plattform implementiert. Kapitelweise werden per Video die Inhalte erklärt, jedes Kapitel enthält Übungen mit Lösungen zum Selbststudium. Die Videos präsentieren den Inhalt optisch und akustisch, analog zu einem Vortrag an der Tafel. Zu sehen ist ein Blatt, auf dem der Inhalt, Formeln und Vorgehensweisen entwickelt werden. Der Lehrende tritt nicht in Erscheinung, die Aufmerksamkeit kann ganz auf den Inhalt gerichtet werden. Die verbalen Erklärungen ermöglichen es, Zusammenhänge zu erwähnen und den Teilnehmenden die Verbindung zu bereits Gehörtem/Gelerntem nahezubringen. Bei Bedarf können einzelne Passagen wiederholt werden. Zu Beginn ist eine Präsenzphase geplant, in der die Lernumgebung vorgestellt wird. Die Teilnehmenden müssen sich auf der Moodle-Plattform anmelden. Dafür werden in der ersten Präsenzphase Kennwörter vergeben und die Daten ( , Name etc.) der Personen aufgenommen. Anhand dieser Zuordnung wird im Verlauf des Kurses die Aktivität gemessen und für die Evaluation ausgewertet. In einer späteren Phase ist geplant, die Online-Übungen zu bewerten und je nach Fortschritt die weiteren Kapitel freizuschalten. Die Moodle-Plattform bietet die Möglichkeit, Aufgaben zu stellen und auf Korrektheit zu prüfen. Erste Untersuchungen ergaben, dass die Kontrolle von mathematischen Ausdrücken schwierig ist. Die möglichen Varianten in der Darstellung sind zu groß; ein Ausweg besteht darin, die Fragen in Multiple-Choice-Form zu stellen oder die Antwortmöglichkeiten einzuschränken (z.b. getrennte Eingabe von Zähler und Nenner). R. Foremny, März 2014

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Zugangsprüfung zum Erwerb der Studienberechtigung

Zugangsprüfung zum Erwerb der Studienberechtigung Informationen zur Zugangsprüfung zum Erwerb der Studienberechtigung an der Dresden International University - fachgebundene Zugangsberechtigung - Inhaltsverzeichnis 1 Organisatorisches... 2 2 Hinweise

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Schulinterner Lehrplan Mathematik Jahrgangsstufe 10

Schulinterner Lehrplan Mathematik Jahrgangsstufe 10 Themenbereich: Körperberechnungen Buch: Mathe heute 10 Seiten: 96-126 Zeitrahmen: 5 Wochen - Wiederholung der Körper Erfassen Würfel, Quader, Zylinder - Wiederholung des Satzes des Geometrie Konstruieren

Mehr

Systematisierungen mit Mindmaps

Systematisierungen mit Mindmaps Systematisierungen mit Mindmaps Neupärtl, A./Bruder, R. TUD 2005 Systematisieren ist für das Lernen von Mathematik von besonderer Bedeutung. In den Unterrichtssituationen der Zielorientierung/Motivierung,

Mehr

Selbsttest Mathematik des FB 14 der Universität Kassel

Selbsttest Mathematik des FB 14 der Universität Kassel Selbsttest Mathematik des F 1 der Universität Kassel Der folgende Selbsttest soll Ihnen helfen Ihre mathematischen Fähigkeiten besser einzuschätzen, um zu erkennen, ob Ihre Mathematikkenntnisse für einen

Mehr

MATHEMATIK Grundkurs 11m3 2010

MATHEMATIK Grundkurs 11m3 2010 MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

1 Wie man für die Prüfung lernen kann... I 2 Das Lösen einer mathematischen Aufgabe... III 3 Formelsammlung... IX

1 Wie man für die Prüfung lernen kann... I 2 Das Lösen einer mathematischen Aufgabe... III 3 Formelsammlung... IX Vorwort Hinweise zur Prüfung Hinweise und Tipps I 1 Wie man für die Prüfung lernen kann... I 2 Das Lösen einer mathematischen Aufgabe... III 3 Formelsammlung... IX Training Grundwissen 1 1 Wiederholung

Mehr

Fach Mathematik. Stundentafel. Bildungsziel

Fach Mathematik. Stundentafel. Bildungsziel Fach Mathematik Stundentafel Jahr 1. 2. 3. 4. Grundlagen 4 4 4 5 Bildungsziel Der Mathematikunterricht schult das exakte Denken, das folgerichtige Schliessen und Deduzieren, einen präzisen Sprachgebrauch

Mehr

Die berufsbildenden Schulen im Land Bremen. Handelsschule. Mathematik. Rahmenplan. Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft

Die berufsbildenden Schulen im Land Bremen. Handelsschule. Mathematik. Rahmenplan. Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft Die berufsbildenden Schulen im Land Bremen Handelsschule Mathematik Rahmenplan Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen 2 Handelsschule Rahmenplan Mathematik Herausgegeben von

Mehr

Die vorliegenden Unterlagen wurden im Rahmen des

Die vorliegenden Unterlagen wurden im Rahmen des Die vorliegenden Unterlagen wurden im Rahmen des Bund-Länder-Wettbewerbs Aufstieg durch Bildung: Offene Hochschulen 1. Wettbewerbsrunde 01.10.2011-31.03.2015 als Teil des Vorhabens der Gottfried Wilhelm

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

Bohner Ihlenburg Ott. Mathematik für Berufsfachschulen. Merkur. Verlag Rinteln

Bohner Ihlenburg Ott. Mathematik für Berufsfachschulen. Merkur. Verlag Rinteln Bohner Ihlenburg Ott Mathematik für Berufsfachschulen Merkur M Verlag Rinteln 3 Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap

Mehr

Heinz Rapp. Mathematik. Grundlagen für die Fachschule Technik. Mit über 500 Abbildungen 2., überarbeitete Auflage. vieweg

Heinz Rapp. Mathematik. Grundlagen für die Fachschule Technik. Mit über 500 Abbildungen 2., überarbeitete Auflage. vieweg Heinz Rapp Mathematik Grundlagen für die Fachschule Technik Mit über 500 Abbildungen 2., überarbeitete Auflage 31 vieweg Inhaltsverzeichnis 1 Mathematische Begriffe und Schreibweisen 1 1.1 Zahlen 1 1.1.1

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Schulinterner Lehrplan Klasse 10

Schulinterner Lehrplan Klasse 10 Schulinterner Lehrplan Klasse 10 Unterrichtsvorhaben Klasse 10 (E- und G-Kurs) 1. Verpackungen (E-Kurs S. 41 S. 58; G-Kurs S. 19 S. 34) Oberfläche und Volumen von Pyramide und Kegel Projektarbeit Kugel:

Mehr

Collegium Josephinum Bonn Mathematik, Jg. 5

Collegium Josephinum Bonn Mathematik, Jg. 5 Collegium Josephinum Bonn Mathematik, Jg. 5 In der Jahrgangsstufe 5 wird Mathematik in 4 Wochenstunden unterrichtet. Im ersten Halbjahr wird der reguläre Unterricht durch eine Förderstunde ergänzt, um

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft. Handelsschule. Rahmenplan Sekundarstufe II. Berufliche Schulen.

Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft. Handelsschule. Rahmenplan Sekundarstufe II. Berufliche Schulen. 1 Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Handelsschule Rahmenplan Sekundarstufe II Berufliche Schulen 2 Lernfeld 1 Mathematische Grundlagen siehe Hinweise Die Schüler und Schülerinnen

Mehr

Mathematik Vorkurs WS 15/16 FB III

Mathematik Vorkurs WS 15/16 FB III M Mathematik Vorkurs WS 15/16 FB III Mathe Online Kurs Hier mit seinem Namen und seiner Normalen email Adresse registrieren Mathe Online Kurs Auf Nachfrage biete ich Termine an, an denen ich Probleme bzw.

Mehr

Mathematik - Klasse 8 -

Mathematik - Klasse 8 - Schuleigener Lehrplan Mathematik - Klasse 8 - 1. Terme und Gleichungen mit Klammern 1.1 Auflösen einer Klammer 1.2 Minuszeichen vor einer Klammer Subtrahieren einer Klammer 1.3 Ausklammern 1.4 Auflösen

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

antiproportionale Zuordnungen mit Anwendungen

antiproportionale Zuordnungen mit Anwendungen Chemie: Graphen zu -Versuchsreihen Thema: Proportionale und antiproportionale Zuordnungen mit Anwendungen Umfang: 12 Wochen Jahrgangsstufe 7 Proportionale und antiproportionale Zuordnungen Darstellen Zuordnungen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Studienvorbereitungskurs Mathematik/ Physik für beruflich Qualifizierte

Studienvorbereitungskurs Mathematik/ Physik für beruflich Qualifizierte Studienvorbereitungskurs Mathematik/ Physik für beruflich Qualifizierte Franziska Lorz Susann Vollstädt 1 Förderhinweis Das diesem Konzept zugrundeliegende Vorhaben Offene Hochschule Zwickau. Flexibel

Mehr

Inhalt. 1 Algebra-Wiederholung Funktionen Lineare Gleichungen, Ungleichungen und Gleichungssysteme... 23

Inhalt. 1 Algebra-Wiederholung Funktionen Lineare Gleichungen, Ungleichungen und Gleichungssysteme... 23 Inhalt Algebra-Wiederholung...................................... 5. Termumformungen: Rechengesetze... 6.2 Termumformungen: Ausmultiplizieren, binomische Formeln............ 8 Abschlusstest............................................

Mehr

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 3 pro (maximal 45 Minuten) Rechnen mit natürlichen Zahlen; Darstellung natürlicher Zahlen und einfacher Bruchteile; Rechnen mit Größen Maßstabsverhältnisse;

Mehr

Mathematik der Klassenstufe 8

Mathematik der Klassenstufe 8 Mathematik der Klassenstufe 8 Entwicklung eines Übungsplans Moderator: Michael Grün Datum: 10.11.2009 Unterrichtsreihen in der Klassenstufe 8 Der Lehrplan sieht vier (bzw. sechs beim naturwissenschaftlichem

Mehr

Prüfungen zum Ende der Jahrgangsstufe 10 Erste Hinweise für die Fachkonferenzen Deutsch und Mathematik

Prüfungen zum Ende der Jahrgangsstufe 10 Erste Hinweise für die Fachkonferenzen Deutsch und Mathematik PLIB, 14974 Ludwigsfelde-Struveshof An alle Ludwigsfelde, 15.08.2002 Schulleiterinnen und Schulleiter Bearbeitung: Herr Zöllner der Schulen in der Sek. I und Haus 15B Zimmer Fachkonferenzen Deutsch und

Mehr

Wirtschaftsschule: Mathematik 10 (zweistufige Wirtschaftsschule)

Wirtschaftsschule: Mathematik 10 (zweistufige Wirtschaftsschule) Fachlehrpläne Wirtschaftsschule: Mathematik 10 (zweistufige Wirtschaftsschule) M10 Lernbereich 1: Potenzen schreiben Produkte bestehend aus gleichen Faktoren als Potenz, um große und kleine Zahlen kürzer

Mehr

WÖCHENTLICHE ÜBUNGEN RAHMENBEDINGUNGEN UND ZIELVORSTELLUNGEN: THEMENBEREICHE 7-10:

WÖCHENTLICHE ÜBUNGEN RAHMENBEDINGUNGEN UND ZIELVORSTELLUNGEN: THEMENBEREICHE 7-10: WÖCHENTLICHE ÜBUNGEN Sagen wir der Bekanntheit wegen einfach tägliche Übung und kürzen ab mit TÜ RAHMENBEDINGUNGEN UND ZIELVORSTELLUNGEN: - 8 Fragen für etwa 10 Minuten - Wöchentliche Anwendung an einem

Mehr

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden Von den Rahmenvorgaben des Lehrplans zum Schulcurriculum Anregungen für Mathematik in Hauptschule und Regionaler Schule in Rheinland-Pfalz auf der Grundlage von Maßstab 10 Der Stoffverteilungsplan geht

Mehr

Die vorliegenden Unterlagen wurden im Rahmen des

Die vorliegenden Unterlagen wurden im Rahmen des Die vorliegenden Unterlagen wurden im Rahmen des Bund-Länder-Wettbewerbs Aufstieg durch Bildung: Offene Hochschulen 1. Wettbewerbsrunde 01.10.2011-30.09.2017 als Teil des Vorhabens der Gottfried Wilhelm

Mehr

Gleichungen und Gleichungssysteme 5. Klasse

Gleichungen und Gleichungssysteme 5. Klasse Gleichungen und Gleichungssysteme 5. Klasse Andrea Berger, Martina Graner, Nadine Pacher Inhaltlichen Grundlagen zur standardisierten schriftlichen Reifeprüfung Inhaltsbereich Algebra und Geometrie (AG)

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 7./8.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 7./8. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Fit in Test und Klassenarbeit - Mathe 7./8. Klasse Gymnasium Das komplette Material finden Sie hier: School-Scout.de Christine Kestler

Mehr

Bildungsziele und Stoffinhalte Mathematik. kaufm. Berufsmatura (M-Profil und BMS 2)

Bildungsziele und Stoffinhalte Mathematik. kaufm. Berufsmatura (M-Profil und BMS 2) Bildungsziele und Stoffinhalte kaufm. (M-Profil und BMS 2) M-Profil 3. Sem. 4. Sem. 5. Sem. 6. Sem. Total 40 L. 40 L. 40 L. 40 L. 160 L. BMS 2 1. Sem. 2. Sem. Total 100 L. 100 L. 200 L. Stoffplankatalog

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Matrizenrechnung am Beispiel linearer Gleichungssystemer. für GeoGebraCAS

Matrizenrechnung am Beispiel linearer Gleichungssystemer. für GeoGebraCAS Matrizenrechnung am Beispiel linearer Gleichungssystemer für GeoGebraCAS Letzte Änderung: 08/ April 2010 1 Überblick 1.1 Zusammenfassung Lösen von linearen Gleichungssystemen mit Hilfe der Matrizenrechnung.

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Unterrichtsinhalte Mathematik Klasse 5

Unterrichtsinhalte Mathematik Klasse 5 Schulinternes Curriculum Jahrgangsstufen 5-9 Mathematik Phoenix-Gymnasium Dortmund Fachschaft Mathematik Unterrichtsinhalte Mathematik Klasse 5 Ziel des Unterrichts ist es, die Mathematikkenntnisse aus

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de S 1 Dr. Beate Bathe-Peters, Berlin Käseteller Muffins backen Fotos im gesamten

Mehr

Mathematik. Merkur. Haarmann Wolpers. zur Erlangung der allgemeinen Hochschulreife Technische Fachrichtungen Band 1.

Mathematik. Merkur. Haarmann Wolpers. zur Erlangung der allgemeinen Hochschulreife Technische Fachrichtungen Band 1. Haarmann Wolpers Mathematik zur Erlangung der allgemeinen Hochschulreife Technische Fachrichtungen Band 1 Merkur Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von

Mehr

A.12 Nullstellen / Gleichungen lösen

A.12 Nullstellen / Gleichungen lösen A12 Nullstellen 1 A.12 Nullstellen / Gleichungen lösen Es gibt nur eine Hand voll Standardverfahren, nach denen man vorgehen kann, um Gleichungen zu lösen. Man sollte in der Gleichung keine Brüche haben.

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN Bleib fit im Umgang mit Bruchzahlen Zahl Algorithmus Klasse 6 1. Prozent- und Zinsrechnung 1.1 Absoluter und relativer Vergleich Anteile in Prozent 1.2 Grundaufgaben der Prozentrechnung Im Blickpunkt:

Mehr

Stoffverteilungsplan Mathematik Klasse 5 Schuljahr 2015/2016

Stoffverteilungsplan Mathematik Klasse 5 Schuljahr 2015/2016 Klasse 5 Schuljahr 2015/2016 Bereich 1 Strichlisten und Diagramme Zahlenstrahl und Anordnung Dezimalsystem Große Zahlen; Schätzen; Runden Große Einmaleins Bereich 2 Natürliche Zahlen Addition und Subtraktion

Mehr

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke. MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen

Mehr

Lehramt an Haupt- und Realschulen L2 und Förderschulen L5. Mathematik

Lehramt an Haupt- und Realschulen L2 und Förderschulen L5. Mathematik Lehramt an Haupt- und Realschulen L2 und Förderschulen L5 Mathematik Mathematik L2 / L5 Modul 1 bis 3: Mathematik Fachwissenschaft Modul 4 bis 6: Didaktik der Mathematik Schulpraktikum Modul 1 bis 3 Wissenschaftliche

Mehr

Zahlen. Bruchrechnung. Natürliche Zahlen

Zahlen. Bruchrechnung. Natürliche Zahlen Themenübersicht 1/5 Alle aktuell verfügbaren Themen (Klasse 4 10) Dieses Dokument bildet alle derzeit verfügbaren Themen ab. Die jeweils aktuellste Version des Dokuments können Sie auf der Startseite in

Mehr

Zentrale Abschlüsse Mathematik RSA

Zentrale Abschlüsse Mathematik RSA Zentrale Abschlüsse Mathematik RSA Kurzformaufgaben bis 40 Punkte, 45 min 4 Komplexaufgaben je 15 Punkte, restliche Zeit Bearbeitungszeit 135 min Der Prüfling Die Schülerinnen und Schüler bearbeiten die

Mehr

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Liebe Studierende, wenn Sie Mathematik an der Pädagogischen Hochschule Karlsruhe erfolgreich studieren möchten,

Mehr

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise. 4. Klasse. 1. Klasse. 3. Klasse. 5. Klasse. 2. Klasse

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise. 4. Klasse. 1. Klasse. 3. Klasse. 5. Klasse. 2. Klasse MATHEMATIK 1 Stundendotation 1. 2. 3. 4. 5. 6. Arithmetik und Algebra 4 3 Geometrie 2 3 Grundlagenfach 4 4 4 4 Schwerpunktfach Ergänzungsfach Weiteres Fach 2 Didaktische Hinweise Der Unterricht im Grundlagenfach

Mehr

Mathematik. Carl-von-Ossietzky-Gymnasium Bonn schulinternes Curriculum. Jahrgang 5. Jahrgang 6. Materialhinweise: Unterrichtsvorhaben:

Mathematik. Carl-von-Ossietzky-Gymnasium Bonn schulinternes Curriculum. Jahrgang 5. Jahrgang 6. Materialhinweise: Unterrichtsvorhaben: Jahrgang 6 Jahrgang 5 UV 1: Natürliche Zahlen und Größen UV 2: Geometrische Figuren UV 3: Rechnen mit natürlichen Zahlen UV 4: Flächen UV 5: Brüche und Anteile UV 6: Körper Fundamente der 5 (Cornelsen

Mehr

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise G1 G2 G3 G4 G5 G6

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise G1 G2 G3 G4 G5 G6 MATHEMATIK 1 Stundendotation G1 G2 G3 G4 G5 G6 Arithmetik und Algebra 4 3 Geometrie 2 3 Grundlagenfach 4 4 4 4 Schwerpunktfach Ergänzungsfach Weiteres Pflichtfach Weiteres Fach 2 Didaktische Hinweise Der

Mehr

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b Klammerrechnung Für das Rechnen mit Klammern gilt: Steht vor einer Klammer ein Minus, so drehen sich beim Auflösen der Klammern die Vorzeichen um. Distributivgesetz: Wird eine ganze Zahl mit einer eingeklammerten

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Die vorliegenden Unterlagen wurden im Rahmen des

Die vorliegenden Unterlagen wurden im Rahmen des Die vorliegenden Unterlagen wurden im Rahmen des Bund-Länder-Wettbewerbs Aufstieg durch Bildung: Offene Hochschulen 1. Wettbewerbsrunde 01.10.2011-31.03.2015 als Teil des Vorhabens der Gottfried Wilhelm

Mehr

Erftgymnasium der Stadt Bergheim Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe I

Erftgymnasium der Stadt Bergheim Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe I Erftgymnasium der Stadt Bergheim Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe I Klasse 5 Inhaltliches Fachwissen Fachmethodische Kompetenzen Formalia - Natürliche Zahlen (incl.

Mehr

Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium)

Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium) Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium) Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lehrbuchkapitel Elemente der Mathematik

Mehr

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Fachwissen verständlich erklärt Analysis [1] Kurvendiskussion Mitternachtsformel / pq-formel Polynomdivision Ableitung / Integration und mehr Kostenlose

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 5 Natürliche Zahlen und Ihre Darstellung (große Zahlen, Stellentafel, Vergleichen; Zahlenstrahl) Rechnen mit natürlichen Zahlen (Grundrechenarten mit Fachbezeichnungen, schriftliche

Mehr

Schulinternes Curriculum Mathematik 8

Schulinternes Curriculum Mathematik 8 Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Kapitel I Lineare Funktionen 1 Lineare Funktionen 2 Aufstellen von linearen Funktionsgleichungen

Mehr

Schulinternes Curriculum Mathematik 9 des Anne-Frank-Gymnasiums Werne auf der Grundlage

Schulinternes Curriculum Mathematik 9 des Anne-Frank-Gymnasiums Werne auf der Grundlage Verbalisieren Kommunizieren Erläutern mathematischer Zusammenhänge und Einsichten eigenen Worten und Präzisieren Überprüfung und Bewertung von Problembearbeitungen Vergleichen und Bewerten von Lösungswegen

Mehr

Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS

Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS Mathematik verstehen 1 JAHRESPLANUNG (5. Schulstufe) 1. Klasse AHS, NMS Monat Lehrstoff Lehrplan Inhaltsbereich Handlungsbereiche September Ein neuer Anfang 1 Natürliche Zahlen 1.1 Zählen und Zahlen 1.2

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

[Ganze] [ ] Zahlen in verschiedenen Formen deuten können, als Zustände gegenüber einem Nullpunkt, als Punkte auf einer Zahlengeraden

[Ganze] [ ] Zahlen in verschiedenen Formen deuten können, als Zustände gegenüber einem Nullpunkt, als Punkte auf einer Zahlengeraden September Es geht weiter... 1 Ganze Zahlen 1.1 Zahlen gegensätzlich deuten 1.2 Die Zahlengerade 1.3 Ganze Zahlen ordnen 1.4 Ganze Zahlen addieren und subtrahieren 1.5 Ganze Zahlen multiplizieren und dividieren

Mehr

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 %

A] 40 % + 25 % + 12,5 % B] 30 % + 50 % + 16,6 % 5 Prozentrechnen Übung 50 Der ganze Streifen entspricht 100 % = 1 000 = 1. Welche Prozent- und Promillesätze stellen die unterschiedlich getönten Flächen dar? Abb. 27 1. 2. 3. Übung 51 Der volle Winkel

Mehr

Inhaltsverzeichnis. Hinweise für den Benutzer Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)...

Inhaltsverzeichnis. Hinweise für den Benutzer Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)... Inhaltsverzeichnis Hinweise für den Benutzer... 6 1. Wiederholung 8. Klasse Kopfrechnen Grundwissen... 7 Brüche und Dezimalbrüche (1)... 9 Brüche und Dezimalbrüche (2)... 11 2. Prozent- und Zinsrechnung

Mehr

Wochenplanung Gleichungen und Gleichungssysteme

Wochenplanung Gleichungen und Gleichungssysteme Wochenplanung Gleichungen und Gleichungssysteme Diese Planung wäre für eine Idealklasse, die schnell und konzentriert arbeiten kann. Ablenkungen oder Irritationen seitens der SchülerInnen sind außer Acht

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Jahrgang: 8 Themenkreise 1/5. Operieren führen Rechnungen mit dem eingeführten Taschenrechner aus und bewerten die Ergebnisse

Jahrgang: 8 Themenkreise 1/5. Operieren führen Rechnungen mit dem eingeführten Taschenrechner aus und bewerten die Ergebnisse Terme und Auflösen einer Klammer Subtrahieren einer Klammer Ausklammern Binomische Formeln Faktorisieren Mischungsaufgaben mit Parametern Typ T 1 T 2 = 0 7 46 10 16 17 18 19 21 22 27 28 33 34 37 38 40

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr

Einführung 17. Teil I Am Anfang anfangen grundlegende Operationen 23. Kapitel 1 Zeichen bei Zahlen entschlüsseln 25

Einführung 17. Teil I Am Anfang anfangen grundlegende Operationen 23. Kapitel 1 Zeichen bei Zahlen entschlüsseln 25 Inhaltsverzeichnis Einführung 17 Über dieses Buch 17 Konventionen in diesem Buch 18 Törichte Annahmen über den Leser 18 Wie dieses Buch aufgebaut ist 19 Teil I: Grundlegende Elemente und Operationen 19

Mehr

MatheBuch. Was zeichnet MatheBuch aus? Leitfaden. Übersichtlicher Aufbau. Schülergerechte Sprache. Innere Differenzierung. Zeitgemäße Arbeitsformen

MatheBuch. Was zeichnet MatheBuch aus? Leitfaden. Übersichtlicher Aufbau. Schülergerechte Sprache. Innere Differenzierung. Zeitgemäße Arbeitsformen Was zeichnet MatheBuch aus? Übersichtlicher Aufbau Jedes Kapitel besteht aus einem Basis- und einem Übungsteil. Im Basisteil wird die Theorie an Hand von durchgerechneten Beispielen entwickelt. Die Theorie

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 9

Stoffverteilungsplan Mathematik im Jahrgang 9 Überprüfung und Bewertung von Problembearbeitungen Problemlösungsstrategien (Funktionsplotter) Arithmetik / Algebra Operieren Lösen einfacher quadratischer (z.b. durch Faktorisieren oder pq-formel) Verwendung

Mehr

2. Die Satzgruppe des Pythagoras

2. Die Satzgruppe des Pythagoras Grundwissen Mathematik 9. Klasse Seite von 17 1.4 Rechnen mit reellen Zahlen a) Multiplizieren und Dividieren von reellen Zahlen + Es gilt: a b = a b mit ab R, 0 Beispiele: 18 = 36 = 6 14 14 7 = = a a

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 8 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme

Mehr

Didaktik der Linearen Algebra Grundlagen aus der SekI

Didaktik der Linearen Algebra Grundlagen aus der SekI Didaktik der Linearen Algebra Grundlagen aus der SekI SS 2010 Oliver Passon o.passon@psiquadrat.de Material zur Veranstaltung unter: www.psiquadrat.de Prozess- und Inhaltskompetenzen Kommunizieren, Argumentieren

Mehr

Stoffverteilungsplan Mathematik Klasse 9

Stoffverteilungsplan Mathematik Klasse 9 Kapitel I Quadratische Funktionen und quadratische Gleichungen 1 Wiederholen Aufstellen von Funktionsgleichungen 2 Scheitelpunktbestimmung quadratische Ergänzung 3 Lösen einfacher quadratischer Gleichungen

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Lerninhalte 9 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Thema 1: Quadratische Funktionen und quadratische Gleichungen 1 Wiederholen Aufstellen von Funktionsgleichungen 2 Scheitelpunktsbestimmung

Mehr

Klasse 5-10: Lambacher-Schweizer Mathematik, Klett-Verlag

Klasse 5-10: Lambacher-Schweizer Mathematik, Klett-Verlag Ziele -1- Der Unterricht in der Sekundarstufe I soll mathematisches Denken als wichtigstes Mittel zur rationalen Erkenntnis und Gestaltung unserer Welt durch Erstellung und Nutzung entsprechender Modelle

Mehr

Helmholtz-Gymnasium Helmholtzstr. 18, Bonn Tel / FAX 0228 /

Helmholtz-Gymnasium Helmholtzstr. 18, Bonn Tel / FAX 0228 / Helmholtz-Gymnasium Helmholtzstr. 18, 53123 Bonn Tel. 0228 / 777250 - FAX 0228 / 777264 sekretariat@helmholtz-bonn.de Schulinternes Curriculum des Faches Mathematik für die Sekundarstufe I Das Curriculum

Mehr

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum

Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum Fach Mathematik und der Jahrgangsstufe 5 am Gymnasium Natürliche Zahlen und Größen Rechnen mit natürlichen Zahlen Körper und Figuren Flächen- und Rauminhalte Anteile - Brüche Stellentafel; Zweiersystem;

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Lernkontrolle Relationen, Funktionen, lineare Funktionen

Lernkontrolle Relationen, Funktionen, lineare Funktionen Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie

Mehr

Lehrplan für das Grundlagenfach Mathematik

Lehrplan für das Grundlagenfach Mathematik (August 2011) Lehrplan für das Grundlagenfach Mathematik Richtziele des schweizerischen Rahmenlehrplans Grundkenntnisse 1.1 Die mathematischen Grundbegriffe, Ergebnisse und Arbeitsmethoden der elementaren

Mehr

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25 Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge

Mehr

Lösungen Kapitel A: Wahrscheinlichkeiten

Lösungen Kapitel A: Wahrscheinlichkeiten Lösungen Kapitel A: Wahrscheinlichkeiten Arbeitsblatt 01: Kombinatorische Zählverfahren (1) Junge, Junge, Mädchen, Mädchen (2) Junge, Mädchen, Junge, Mädchen (3) Junge, Mädchen, Mädchen, Junge (4) Mädchen,

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 2008 Lehrbuch: Mathematik heute 9

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 2008 Lehrbuch: Mathematik heute 9 Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 9 Stand 008 Lehrbuch: Mathematik heute 9 Inhalte Seiten Kompetenzen gemäß Kerncurriculum Eigene Bemerkungen Lineare Gleichungssysteme Lineare

Mehr