Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9"

Transkript

1 Lösungen S. 167 Nr. 6 Schätzung: Es können ca Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch die Grundfläche eines durchschnittlichen Grundstücks und ist 20 m (!!!) hoch. Viele Einfamilienhäuser besitzen eine Höhe von ca.8-10 m. Rechnung: Volumen des zylindrischen Öltanks in m³: V =G h=π r 2 h=π(15) 2 20=4500 π 14137,2 Das Volumen von 1m³ entspricht einem Volumen von 1000 Liter. Also passen in den großen Öltank Liter oder genauer π Liter π =2250 π 7068, Antwort: Es können ungefähr 7069 Haushaltstanks gefüllt werden. Die Schätzung war also zu niedrig. S. 167 Nr. 8 a) Um das Problem ohne Rechnung zu lösen, könnte man 5 cm³ Flüssigkeit in den Messzylinder füllen und in Höhe der Oberfläche der Flüssigkeit eine Markierung anbringen. Die Höhe der Markierung befindet sich in der Höhe h. Die Flüssigkeit nimmt also die Form eines Zylinders mit dem Durchmesser 36 mm bzw. mit dem Radius 1,8 cm und der Höhe h an. Rechnung (alle Längen werden in cm angegeben!): Volumen in cm³: V =π r 2 h=π (1,8) 2 h=3,24π h. Das Volumen eines Zylinders mit der Höhe h ist also 3,24 π h. Falls h der Höhe der ersten Markierung entspricht ist das Volumen aber auch 5 cm³. Man kann also folgende Gleichung aufschreiben: 5=3,24 π h. Löst man diese Gleichung nach h auf, ergibt sich: h= 5 3,24 π 0,49. Antwort: Die erste Markierung ist in der Höhe von 0,49 cm anzubringen. Die zweite dann in der Höhe von 0,98 cm usw. b) Man kann sich vorstellen, dass der Messzylinder bis zur ersten Markierung gefüllt ist. Die Flüssigkeit nimmt dann die Form eines Zylinders an. Das Volumen ist V=2 cm³, die Höhe h = 0,4 cm. Gesucht ist der Durchmesser des Zylinders. Man kann zunächst den Radius berechnen. Es gilt: V =π r 2 h. Umgestellt nach r ergibt sich r= V π h. Durch Einsetzen der Werte ergibt sich: r= 2 π 0,4 1,26. Antwort: Der Radius ist also ca. 1,26 cm und der Durchmesser 2,52 cm groß. S.167 Nr.9 a) Berechnung der Mantelfläche: M =2 π r h (1) M 75,4 cm² (2) M 75,4 cm² (3) M 150,8 cm² (4) M 150,8 cm² Berechnung des Volumens: V =π r 2 h

2 (1) V 113,1 cm³ (2) V 75,4 cm³ (3) V 452,4 cm³ (4) V 301,6 cm³ b) Im Fall (3) ist der Radius doppelt so groß wie in Fall (1), in Fall (4) ist der Radius doppelt so groß wie in Fall (2). An der Formel für die Mantelfläche erkennt man, dass sich die Fläche verdoppelt, wenn sich der Radius verdoppelt (oder die Höhe). Somit verdoppeln sich die Flächen in den Fällen (3) und (4). ABER: Beim Volumen ist das nicht so! Wenn der Radius verdoppelt wird, vervierfacht sich das Volumen! S. 168 Nr. 15 Begründung der Formel für das Volumen eines Hohlzylinders Das Volumen des äußeren Zylinders: V 2 =π r 2 2 h Das Volumen des inneren Zylinders: V 1 =π r 1 2 h Das Volumen des Hohlzylinders ergibt sich als Differenz des äußeren und inneren Zylinders: V =V 2 V 1 =π r 2 2 h π r 1 2 h=π(r 2 2 r 1 2 )h Hinweis: Im letzten Term wurde π und h ausgeklammert. Formel für die Oberfläche des Hohlzylinders Die Oberfläche eines Hohlzylinders ergibt sich aus der äußeren Mantelfläche, aus der inneren Mantelfläche und aus zwei Kreisringen. O=M innen +M außen +2A Kreisring =2πr 1 h+2π r 2 h+2 π(r 2 2 r 1 2 )=2π(r 1 +r 2 )h+2π(r 2 2 r 1 2 ) Man kann nun noch 2π ausklammern: O=2 π((r 1 +r 2 )h+r 2 2 r 12 ) Beispiele für Hohlzylinder: Ring, Ohrring, Unterlegscheiben, Rohr, Strohhalm, Schornstein S.168 Nr. 6 a) Man erkennt an dem Plättchenturm, dass sich das Volumen nicht ändert, wenn der Turm schräg verformt wird. Natürlich besteht dieser Turm aus einzelnen Plättchen und entspricht nicht einem schrägen Zylinder. Allerdings kann man sich vorstellen, dass ein schräger Zylinder entsteht, wenn man immer flachere (=dünnere) und dafür mehr Plättchen nimmt. b) Wenn man die Mantelfläche bastelt (Z.B. in dem man aus einem Blatt Papier den Mantel eines Zylinders rollt und dann oben und unten mit einer Schere beschneidet, so dass der Mantel eines schrägen Zylinders entsteht) und anschließend den Mantel wieder ausrollt, erkennt man die entstandene Form. Der Flächeninhalt ergibt sich dann folgendermaßen: M =2 π r h 2 +a 2. In dieser Formel ist a der Versatz der Mittelpunkte der Kreise in horizontaler Richtung (Im Buch sieht man ja, dass sich der Mittelpunkt des oberen Kreises nicht oberhalb des untereren Kreises befindet, sondern horizontal, also nach rechts verschoben. Die Länge dieser Strecke wird in der Formel mit a bezeichnet. Die Kantenlänge, die schräg nach oben verläuft, die auch der Länge der Verbindungsstrecke der Mittelpunkte der Kreise entspricht, lässt sich mit Hilfe des Satz des Pythagoras berechnen. Die Kantenlänge ist dann h 2 +a 2. S.169 Nr.18 a) Volumen der kleinen Dose: V =π r 1 2 h 1 =π 3,6 2 10,5 427,5 Volumen der großen Dose: V =π r 2 2 h 2 =π 4,9 2 11,3 852,35 852,5 427,5 1,99. Die große Dose hat in etwa das doppelte Volumen im Vergleich zur kleinen Dose.

3 b) Oberfläche der kleinen Dose: O=2G+M =2π r π r 1 h 1 =2 π3,6 2 +2π 3,6 10,5 318,9 Oberfläche der großen Dose: O 498,8 498,8 318,9 1,56. Die große Dose besitzt also den 1,56-fache Oberflächeninhalt der kleinen Dose, besitzt aber doppelt so großes Volumen. Von daher ist es wirtschaftlicher eine große Dose zu benutzen. Verhältnis Durchmesser/Höhe Kleine Dose: Große Dose: 7,2 10,5 0,686 9,8 11,3 0,867 S.169 Nr. 19 Die optimale Dose a) Mögliche Kriterien: Minimaler Materialverbrauch bzw. minimale Produktionskosten / handgerecht (Die Dose von Coca Cola wurde vor ein paar Jahren im Durchmesser verkleinert, damit man sie besser halten kann) / große Mantelfläche, um viel Fläche für das Etikett zu haben / Standstabilität (flache Dose, um Umfallen zu verhindern) /Anpassung der Dose an die Form des Inhalts usw. b) benötigte Formel: Volumen V =π r 2 h, auf gelöst nach h : h= V π r 2 Oberfläche O=2 π r 2 +2 π r h Vorgehen: Für die Radien r=1cm...10cm wird jeweils die Höhe h und die Oberfläche O mit Hilfe der Formeln berechnet. Man erkennt aus der Tabelle, dass eine Dose mit dem Radius r =5cm eine Oberfläche von 497,1 cm² besitzt und damit den kleinsten Wert in der Tabelle. Es kann aber sein, dass ein paar Millimeter größerer bzw. kleinerer Radius eine noch kleinere Oberfläche bewirkt. Das muss dann genauer untersucht werden. r [cm] h[cm] V [cm³] O[cm²] 1 270, ,3 2 67, ,1 3 30, ,2 4 16, ,5 5 10, ,1 6 7, ,5 7 5, ,7 8 4, ,6 9 3, ,8 10 2, ,3 c) Berechnung der Oberfläche der großen Dose aus Aufgabe 18 O=2πr 2 +2π r h=2π4,9 2 +2π4,9 11,3 498,759.

4 498,759 Berechnung der prozentualen Abweichung: 497,1 1, Die große Dose aus Aufgabe 18 besitzt eine um 0,334 % größere Oberfläche als die Dose mit dem minimalsten Materialverbrauch bei einem Volumen von 850 cm³. Die Abweichung könnte daraus resultieren, dass bei der großen Dose noch die Falzungen mit eingerechnet wurden. Das Modell aus Aufgabenteil b) berücksichtigt diese ja gar nicht. Von daher kann es sein, dass die große Dose optimal ist. S.169 Nr. 20 Gute Schätzwerte gesucht a) Die Gesamtkosten sollen geschätzt werden. Dazu muss die Mantelfläche der Litfaßsäule geschätzt werden. Hinter der Litfaßsäule befindet sich ein Fahrrad. Angenommen, das Vorderrad ist ein 28 Rad. Der Durchmesser beträgt dann ungefähr 70 cm. Der Durchmesser der Litfaßsäule ist ca. 3 Mal so groß, also 210 cm bzw. 2,1 m. Die Höhe der Säule ist ca. 7 Mal so groß wie der Durchmesser des Rades, also ca. 4,9m. Also: r= 1,05, h=4,9. Die Werbefläche ist ca. 32 m² groß. M =2 π r h=2π 1,05 4,9 32,3 (Alle Längenangaben in Meter) Die Kosten für 6 Wochen: =43008 Die Kosten betragen ca Euro. (Hinweis: Nach Recherche im Internet erscheint der Preis von 32 Euro/Tag/m² viel zu hoch, es sei denn, es handelt sich um eine Litfaßsäule, die an besonderer Stelle mit sehr viel Publikumsverkehr steht!) b) Der Riesenbleistift hat in etwa die Form eines Hohlzylinders. Der Umfang beträgt 80cm. Berechnung des Radius: U =2π r. Umgestellt nach r : r= U 2 π = 80 2 π 12,73 Der Radius beträgt also ca. 12,73 cm. Schätzung der Höhe: Die rote Tür ist im Foto ca. 1 cm hoch. 1cm entspricht in dem Foto also ca. 2 m. Der Bleistift ist ca. 4cm lang, also in Wirklichkeit h=800 cm hoch. Berechnung des Volumens: Die Maße des Hohlzylinders lässt sich durch zwei Radien beschreiben. Der Radius des äußeren Kreises beträgt r 2 =12,73 cm. Da die Wandstärke des Rohres/Hohlzylinders 1,2 cm beträgt, ist der Radius des inneren Kreises ca. r 1 =11,53 cm groß. V =π(r 2 2 r 1 2 )h=π (12, ,53 2 ) ,4 Das Volumen beträgt also ca cm³ Berechnung der Masse: Um die Masse des Riesenbleistifts zu bestimmen, benötigt man die Dichte von Eisen. 1 cm³ Eisen besitzt eine Masse von 7,874 g. Also hat der Riesenbleistift eine Masse von ca g. Vergleich mit der Masse eines richtigen Bleistifts: Legt man einen richtigen Bleistift auf einen Küchenwaage, erhält man ein Gewicht von ca. 10g. Der Riesenbleistift ist also ca mal schwerer. c) Betrachtet man das Foto genau, so kann man vermuten, dass in der unteren Schicht 8 Heuballen liegen (jeweils zwei hintereinander) und in der oberen nur 3 Heuballen. Insgesamt liegen also 11 Heuballen auf dem Wagen. Berechnung des Volumens eines Ballens: V =π r 2 h=π Das Volumen eines Ballens beträgt also cm³. 11 Ballen besitzen dann ein Volumen von cm³. Berücksichtigt man die Dichte des Heus, so ergibt sich eine Last von ca. 3 bis 4,5 t.

5 S. 173 Nr.7 Erklärung der Bezeichnungen a: Seitenkante der quadratischen Grundfläche h: Höhe der Pyramide s: Seitenkante (Kante, die von der Spitze der Pyramide zu einer Ecke des quadratischen Grundfläche führt) V: Volumen der Pyramide M: Mantelfläche der Pyramide, die aus vier Dreiecken besteht. O: Oberfläche der Pyramide, bestehend aus Mantelfläche und Grundfläche. a) b) c) d) a 5 cm 11,413 cm 3 cm 6 cm h 6 cm 6 cm 18,85 cm 9,056 cm s 6,964 cm 10 cm 18,969 cm 10 cm V 50 cm³ 256,013 cm³ 56,55 cm³ 108,667 cm³ M 65 cm² 186,598 cm² 113,458 cm² 114,475 cm² O 90 cm² 314,604 cm² 122,458 cm² 150,475 cm² S.173 Nr.9 Einführung von Bezeichnungen: Die Höhe wird h genannt, der Radius der Grundfläche r. Volumen des gründen Kegels: V = 1 3 G h= 1 3 π r 2 h Volumen des orangenen Doppelkegels: V =2 1 3 G h 2 = 2 3 π r2 h 2 =1 3 π r 2 h Die Volumen der Kegel (Einfach- bzw. Doppelkegel) sind gleich! Vergleich der Mantelflächen Grüner Einfachkegel: M =π r s (s ist die Seitenkante!) s 2 =r 2 +h 2 bzw. s= r 2 +h 2. Also gilt M =π r r 2 +h 2 Doppelkegel: h 2 2) M =π r s bzw. s= r2 + h2 4 s 2 =r +( 2. Also gilt M =π r r2 + h2 4 Fazit: Die Mantelflächen von Einfach- und Doppelkegel sind unterschiedlich groß.

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Prismen und Zylinder: 1. Berechne den Inhalt der Oberfläche, das Volumen und die Länge der Raumdiagonalen eines Würfels mit der Kantenlänge s = 30cm.

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm

Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm Kreise und Kreisteile 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) r 2,45 m d 8,6 cm A 26,3 cm² U 149 cm 2. Aufgabe: Berechne bei den folgenden Kreisbögen die fehlenden

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Übungsserie 1: Würfel und Quader

Übungsserie 1: Würfel und Quader Kantonsschule Solothurn Stereometrie RYS Übungsserie 1: Würfel und Quader 1. Berechne die fehlenden Quadergrössen: a b c V O a) 7 cm 11 cm 3 cm b) 8 mm 12.5 cm 45 cm 3 c) 3 cm 4 cm 108 cm 2 d) 54 cm 16.4

Mehr

UE Extremwertaufgaben 01

UE Extremwertaufgaben 01 1. Ein Rechteck mit einem Umfang von 2m dreht sich um eine seiner Seiten. Wie müssen die Seiten des Rechtecks gewählt werden, damit (a) die Mantelfläche (b) das Volumen des entstehenden Drehzylinders möglichst

Mehr

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r.

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r. gerader Zylinder 1 Ein gerader Kreiszylinder hat die Höhe h und den Radius r (a) Erklären Sie, wie man die Formel M = rh2π für den Inhalt der Mantelfläche des Zylinders herleiten kann (b) Für den Inhalt

Mehr

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges an Stationen Übungsmaterial zu den Bildungsstandards Downloadauszug aus dem Originaltitel: an Stationen Übungsmaterial zu den Bildungsstandards Dieser Download ist ein

Mehr

Stationenlernen Raumgeometrie

Stationenlernen Raumgeometrie Lösung zu Station 1 a) Beantwortet die folgenden Fragen. Begründet jeweils eure Antwort. Frage 1: Hat jede Pyramide ebenso viele Ecken wie Flächen? Antwort: Ja Begründung: Eine Pyramide mit einer n-eckigen

Mehr

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die

Mehr

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Mathe an Stationen Klasse 9 Downloadauszug aus dem Originaltitel: Mathe an Stationen Klasse 9 Dieser Download ist ein Auszug aus dem Originaltitel Mathe an Stationen

Mehr

8 Gerundete Körper (angepasst an das Lehrmittel Mathematik 2)

8 Gerundete Körper (angepasst an das Lehrmittel Mathematik 2) Name: Geometrie-Dossier 8 Gerundete Körper (angepasst an das Lehrmittel Mathematik 2) Inhalt: Der Kreiszylinder: Definition Berechnung des Volumens von Zylindern Berechnung von Mantelfläche und Oberfläche

Mehr

Drei Kreise Was ist zu tun?

Drei Kreise Was ist zu tun? 1 Drei Kreise Der Radius der Kreise beträgt drei Zentimeter. Zeichnet die Abbildung nach, falls ihr einen Zirkel zur Hand habt. Ansonsten genügt auch eine Skizze. Bestimmt den Flächeninhalt der schraffierten

Mehr

Pyramide und Kegel 14

Pyramide und Kegel 14 1 6 1 Falls genau gearbeitet wurde, sollte der Steigungswinkel der Pyramidenseiten 5 betragen. Falls dem so ist, ist das Modell ähnlich zum Original und der Verkleinerungsmassstab kann eindeutig bestimmt

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

Raumgeometrie - Zylinder, Kegel

Raumgeometrie - Zylinder, Kegel Realschule / Gymnasium Raumgeometrie - Zylinder, Kegel 1. Ein Meßzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Meßzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

Planungsblatt Mathematik für die 4E

Planungsblatt Mathematik für die 4E Planungsblatt Mathematik für die 4E Woche 10 (von 03.11 bis 07.11) Hausaufgaben 1 Bis Dienstag 11.11: (i) Schreibe die Berechnungen zum Bastelauftrag gut übersichtlich auf (Kontrolle Anfang der Stunde),

Mehr

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes 2012 A 1e) Verschiedenes Schreiben Sie die Namen der drei Vierecke auf. 2011 A 1e) Verschiedenes Wie heißen diese geometrischen Objekte? Lösungen: Aufgabe Lösungsskizze BE 2012 A 1e) Rechteck Parallelogramm

Mehr

2.10. Aufgaben zu Körperberechnungen

2.10. Aufgaben zu Körperberechnungen Aufgabe Vervollständige die folgende Tabelle:.0. Aufgaben zu Körperberechnungen a, cm 7,8 cm 0,5 mm, dm b 5,5 m,5 cm,5 cm, cm 0, m cm c,5 dm,6 dm 6 dm V 5, cm,5 dm 6 dm cm 9,5 mm 6,6 dm 8 dm 0 cm Aufgabe

Mehr

! % Note: mit P. ! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2

! % Note: mit P. ! #$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2 ! % Note: mit P.! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '. 4+ Körperberechnung: Die Übungsarbeit dient der gezielten Vorbereitung auf die Arbeit. Die Übungsarbeit hat insgesamt 10 Aufgaben mit einigen

Mehr

Kreis Kreisabschnitt Kreissegment Kreisbogen

Kreis Kreisabschnitt Kreissegment Kreisbogen Kreis Kreisabschnitt Kreissegment Kreisbogen Bezeichnung in einem Kreis: M = Mittelpunkt d = Durchmesser r = Radius k = Kreislinie Die Menge aller Punkte, die von einem bestimmten Punkt M (= Mittelpunkt)

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

14,8 12,3 67,75 8, , ,0 ; 2 2 8, ,67 )* +! 8,23 )*36 6,66 . /0' 1 ' 1 9, , /0' 5 67,69338,45

14,8 12,3 67,75 8, , ,0 ; 2 2 8, ,67 )* +! 8,23 )*36 6,66 . /0' 1 ' 1 9, , /0' 5 67,69338,45 Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 50.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar.

Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar. Raumgeometrie 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar. H G E F K D C A B (a) Berechne den Flächeninhalt des Dreiecks ABK. Runde das Ergebnis auf zwei

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen von Spitzkegeln bzw. Kugeln genannt, wie z. B. Radius, Kegelhöhe, Seitenkante, Mantel, Oberfläche und Volumen. Aus diesen Teilangaben

Mehr

Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe

Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe I) So berechnet man das Volumen einer Säule. Körper Strukturbild geometrische Bedeutung Formel Säule Volumen Volumen einer Schicht mal h s Anzahl der Schichten V s A h s Volumen Säule Grundfläche Höhe

Mehr

Raumgeometrie WORTSCHATZ 1

Raumgeometrie WORTSCHATZ 1 Raumgeometrie WORTSCHATZ 1 Video zur Raumgeometrie : http://www.youtube.com/watch?v=qbqbd0b3vzu VOKABEL : eine Angabe ; angeben ; was angegeben ist : ce qui est donné (les données) eine Annahme ; annehmen

Mehr

! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2

! #$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '.2 % Note: mit P.! "#$% &' (#$ (#$ )* #$ +,' $-. / 01#$#$ '. 4+ Körperberechnung: Die Übungsarbeit dient der gezielten Vorbereitung auf die Arbeit. Die Übungsarbeit hat insgesamt 8 Aufgaben mit einigen Teilaufgaben.

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Sicheres Wissen und Können zum Kreis 1

Sicheres Wissen und Können zum Kreis 1 Sicheres Wissen und Können zum Kreis 1 Die Schüler können Figuren als Kreise erkennen und Kreise nach gegebenen Maßen mit dem Zirkel zeichnen. Die Schüler beherrschen folgende Bezeichnungen: Mittelpunkt

Mehr

Flächeninhalt des Kreises

Flächeninhalt des Kreises Flächeninhalt des Kreises 1 Schätze die Fläche der Antarktis, indem du den Maßstab der Karte benutzt Schreibe deine Rechnung auf und erkläre, wie du zu deiner Schätzung gekommen bist (Du kannst in der

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

Zentrale Klassenarbeit 2003

Zentrale Klassenarbeit 2003 Zentrale Klassenarbeit 2003 Tipps ab Seite 21, Lösungen ab Seite 31 ZK Mathematik 2003 1. Aufgabe (8 Punkte) [ b 3 a) Vereinfache so weit wie möglich b) Löse die Gleichung 3 2x 3 x = 6. b5 : an 2 c 2n

Mehr

Anzahl der Fahrschüler Bild 1

Anzahl der Fahrschüler Bild 1 Kultusministerium des Landes Sachsen-Anhalt Schriftliche Abschlussprüfung Mathematik Schuljahr 2001/2002 Realschulbildungsgang 10. Schuljahrgang Pflichtaufgaben 1. 5 a) Lösen Sie die Gleichung + x = 1,

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Fit für den Mathematik-Lehrgang? Teste dich selbst!

Fit für den Mathematik-Lehrgang? Teste dich selbst! Fit für den Mathematik-Lehrgang? Teste dich selbst Erlaubte Hilfsmittel: Die offizielle Formelsammlung für den Vorkurs (siehe Homepage der ISME, Vorkurs + EP PH/Dokumente) eventuell ein einfacher Taschenrechner

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Prozent- und Zinsrechnung

Prozent- und Zinsrechnung Prozent- und Zinsrechnung Promillewert, Grundwert, Promillesatz berechnen Das Promillerechnen ist eine Erweiterung des Prozentrechnens. Vergleich: 1 % = ein Hundertstel des Grundwertes; 1 = ein Tausendstel

Mehr

Prüfungsteil I. Aufgabe 1. Wie viele Stunden und Minuten sind Sekunden? Kreuze an.

Prüfungsteil I. Aufgabe 1. Wie viele Stunden und Minuten sind Sekunden? Kreuze an. Prüfungsteil I Aufgabe 1 Wie viele Stunden und Minuten sind 15 120 Sekunden? Kreuze an. 2 Stunden 52 Minuten 25 Stunden 6 Stunden 30 Minuten 4 Stunden 12 Minuten 630 Minuten Aufgabe 2 Bestimme das Volumen

Mehr

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet.

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.2 Erkläre wie man ein Parallelogramm in ein Rechteck verwandeln kann und somit auch dessen Fläche berechnen kann. 90X.3 Erkläre wie man

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert) Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Lösungen Grundaufgaben Folgen und Reihen

Lösungen Grundaufgaben Folgen und Reihen Folgen und Reihen 05.03.006 Grundaufgaben Lösungen Grundaufgaben Folgen und Reihen Formeln arithetische Folge mit Anfangsglied a und Differenz d: a n = a +(n )d (explizite Darstellung) a n+ = a n + d (rekursive

Mehr

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle aus. Würfel Quader Pyramide Zylinder Kegel Kugel Ecken Kanten Flächen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle

Mehr

Übungsaufgaben zu Kapitel 7 und 8

Übungsaufgaben zu Kapitel 7 und 8 Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen

Mehr

DOWNLOAD Farbmengen berechnen Mathe-Aufgaben aus dem Alltag

DOWNLOAD Farbmengen berechnen Mathe-Aufgaben aus dem Alltag DOWNLOAD Karin Schwacha Farbmengen berechnen Mathe-Aufgaben aus dem Alltag 7 8 auszug aus dem Originaltitel: Katrin: Simon, ich soll für die Kunst-AG die Farbmenge für unser neues Kunstwerk berechnen.

Mehr

8.1 Vorstellen im Raum

8.1 Vorstellen im Raum äumliche Geometrie 1 8 äumliche Geometrie 8.1 Vorstellen im aum 1. Alle dargestellten Körper sind aus elf Würfeln zusammengesetzt. a) Welche der Körper sind deckungsgleich zueinander? b) Welche der Körper

Mehr

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A)

Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A) Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule 2010 Mathematik (A) Teil 1 Taschenrechner und Formelsammlung sind

Mehr

Berufsmaturitätsprüfung 2006 Mathematik

Berufsmaturitätsprüfung 2006 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 2. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 2. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA Mathematik: Mag. Schmid Wolfgang Areitslatt 9. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen haen deckungsgleiche (kongruente), parallele und eckige Grund- und Deckflächen.

Mehr

2 14,8 13,8 10,7. Werte einsetzen

2 14,8 13,8 10,7. Werte einsetzen Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 7 auf 8 Juni Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 8

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 7 auf 8 Juni Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 8 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 8 Ø Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

Download. Basics Mathe Flächenberechnung. Kreisfläche. Michael Franck. Downloadauszug aus dem Originaltitel:

Download. Basics Mathe Flächenberechnung. Kreisfläche. Michael Franck. Downloadauszug aus dem Originaltitel: Download Michael Franck Basics Mathe Flächenberechnung Kreisfläche Downloadauszug aus dem Originaltitel: Basics Mathe Flächenberechnung Kreisfläche Dieser Download ist ein Auszug aus dem Originaltitel

Mehr

K2 KLAUSUR MATHEMATIK

K2 KLAUSUR MATHEMATIK K2 KLAUSUR MATHEMATIK NACHTERMIN 16.02.2012 Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 (max) 2 2 3 4 5 3 4 3 Wahlteil Analysis Aufgabe a b c (max) 10 3 5 Wahlteil Geometrie Aufgabe a b c (max) 7 4 5 Gesamtpunktzahl

Mehr

Grundlagen IV der Kathetensatz

Grundlagen IV der Kathetensatz Grundlagen IV der Kathetensatz Der Kathetensatz ergibt sich wie auch der Höhensatz aus dem Ähnlichkeitssatz: b a a c = p a a 2 = p c p q b c = q b b 2 = q c c Löse die folgenden Teilaufgaben mithilfe des

Mehr

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015 Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 3: Analytische Geometrie Das Modell einer Gartenlaterne kann als Stumpf einer regelmäßigen quadratischen

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck 1 Stern Berechnungen am Dreieck Ein fünfzackiger Stern, wie abgebildet, soll völlig symmetrisch sein (alle fünf Linien sind gleich lang und alle gleichartigen Innenwinkel gleich groß) Die Gesamtlänge der

Mehr

Jahresplanung. Seitentitel/ Schularbeit

Jahresplanung. Seitentitel/ Schularbeit Jahresplanung Reihenfolge und Zeitbedarf der Themenblöcke in der Jahresplanung haben Vorschlagscharakter und müssen an die individuellen Bedürfnisse, die Länge des es, Ferienzeiten und besondere inhaltliche

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

a) Welches Volumen besaß die Cheops-Pyramide ursprünglich? Fertige hierzu eine maßstabsgetreue Schrägbildzeichnung an!

a) Welches Volumen besaß die Cheops-Pyramide ursprünglich? Fertige hierzu eine maßstabsgetreue Schrägbildzeichnung an! Aufgabe 1: Die Pyramiden von Gizeh Nach der so genannten Frühzeit (2850-2600 v. Chr.) setzte gleich als erster kultureller Höhepunkt der Bau der großen Pyramiden, welches Grabmäler der altägyptischen Könige

Mehr

Quader Für das Volumen eines Quaders der Länge l, Breite b und der Höhe h gilt: Maße: Höhe Breite Länge. V Q =5cm 3cm 4cm=60cm 3

Quader Für das Volumen eines Quaders der Länge l, Breite b und der Höhe h gilt: Maße: Höhe Breite Länge. V Q =5cm 3cm 4cm=60cm 3 Definition Die Größe des Raumes, die ein Körper einnimmt, nennt man. Körper können mit Hilfe von Einheitswürfeln gefüllt werden, womit das gemessen oder bei verschiedenen Körpern verglichen werden kann.

Mehr

Proportionale, umgekehrt proportionale und andere Zuordnungen (ab LU 1) Eine Maschine produziert in 2 min 1000 Stück.

Proportionale, umgekehrt proportionale und andere Zuordnungen (ab LU 1) Eine Maschine produziert in 2 min 1000 Stück. Im Bereich «Zuordnungen» 21 5 Proportionale, umgekehrt proportionale und andere Zuordnungen (ab LU 1) Diese Übung kann man mit Kärtchen durchführen. Ist die Zuordnung proportional (p), umgekehrt proportional

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

Aufgabe 1: Das Stanzblech: Gewicht

Aufgabe 1: Das Stanzblech: Gewicht Aufgabe 1: Das Stanzblech: Gewicht Aus einem Blech werden kreisförmige Löcher im abgebildeten hexagonalen Muster ausgestanzt (d.h. die Mittelpunkte benachbarter Kreise bilden gleichseitige Dreiecke). Der

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Kreis- und Kreisteileberechnungen

Kreis- und Kreisteileberechnungen Kreis- und Kreisteileberechnungen Aufgabe 1: Berechne den Inhalt der getönten Fläche aus dem Radius r des größten Kreises und dem Radius a der beiden kleinen Halbkreise. Aufgabe 2: Wie groß ist der äußere

Mehr

Korrekturanweisung Mathematik 2015

Korrekturanweisung Mathematik 2015 Korrekturanweisung Mathematik 2015 Erster allgemeinbildender Schulabschluss Herausgeber Ministerium für Schule und Berufsbildung des Landes Schleswig-Holstein Brunswiker Str. 16-22, 24105 Kiel Aufgabenentwicklung

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

Mathematik Aufnahmeprüfung Teil 1

Mathematik Aufnahmeprüfung Teil 1 Berufsmaturitätsschulen St.Gallen, Buchs, Rapperswil, Uzwil 2010 Mathematik Aufnahmeprüfung Teil 1 Technische Richtung Name, Vorname:... Zeit: 60 Minuten Erlaubte Hilfsmittel: Massstab, Zirkel, kein Rechner,

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

a) 15 % von 300 ml = ml b) von 28 g = g c) 2 von 25 sind % Aufgabe 4: Terme berechnen (Rechenweg) a) (4 + 5)² b) 11² c) 23 + ( 4) = = =

a) 15 % von 300 ml = ml b) von 28 g = g c) 2 von 25 sind % Aufgabe 4: Terme berechnen (Rechenweg) a) (4 + 5)² b) 11² c) 23 + ( 4) = = = a) 6,3 kg = g b) 45 min = h c) 0,95 km = m d) 10,5 mm = cm a) 15 % von 300 ml = ml b) von 28 g = g c) 2 von 25 sind % a) (4 + 5)² + 6 7 b) 11² 2 + 11 c) 23 + ( 4) Aufgabe 5: Körper (Rechenweg) a) Berechne

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Korrekturanweisung Hauptschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit Korrekturanweisung Hauptschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2014 Korrekturanweisung Hauptschulabschluss Herausgeber Ministerium für Bildung und Wissenschaft des Landes

Mehr

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 4 Flächeninhalt

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 4 Flächeninhalt Elemente der SchulgeometrieGrundschule Aufgabenblatt 4 Flächeninhalt Achtung Fehler!! Alle Punkte auf der Kreislinie sind gleichweit von Mittelpunkt des Kreises entfernt. Die Distanz entspricht dem Radius

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

Lösungen zu Differentialrechnung IV-Extremalprobleme

Lösungen zu Differentialrechnung IV-Extremalprobleme Diff rechnung IV 12.12.2006 Lösungen 1 Lösungen zu Differentialrechnung IV-Extremalprobleme 1. Ein Kugelstösser stösst eine Kugel. Die Flugbahn der Kugel lässt sich mit dem folgenden Gesetz beschreiben:

Mehr

Lösungen zur Prüfung 2005: Pflichtbereich

Lösungen zur Prüfung 2005: Pflichtbereich 005 Pflichtbereich Lösungen zur Prüfung 005: Pflichtbereich Aufgabe P1: erechnung des Pyramidenvolumens: ür das Volumen V p einer Pyramide gilt: V P = 1 3 a h Dabei ist a die Kantenlänge der quadratischen

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0 Berechnen Sie die Länge!". Diese Pyramide hat das Volumen 70,1

Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0 Berechnen Sie die Länge!. Diese Pyramide hat das Volumen 70,1 Aufgabe W2b/2003 Die vier dunkel eingefärbten Teilflächen eines regelmäßigen Fünfecks mit der Seitenlänge 7,6 bilden den Mantel einer quadratischen Pyramide. Berechnen Sie das Volumen der Pyramide. Der

Mehr

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:

Mehr