ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE

Größe: px
Ab Seite anzeigen:

Download "ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE"

Transkript

1 ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE 1.1 Füllen Sie bitte folgenden Lückentext aus. Daten, die in Untersuchungen erhoben werden, muss man grundsätzlich nach ihrem unterscheiden. Denn in Abhängigkeit von dessen Art eröffnen sich unterschiedliche Möglichkeiten der der Daten. Die einfachste Art, Daten darzustellen, ist die Angabe von und. Damit kann man zahlreiche Datenpunkte effizient und auf einen Blick darstellen. Diese Form der Darstellung eignet sich allerdings nur bei Daten. Daten auf und sind jedoch zu differenziert, um sie mit Anteilen und Häufigkeiten sinnvoll zusammenfassen zu können. Anteile und Häufigkeiten lassen sich in Form von und anschaulich darstellen. 1.2 Ein Bezirk wird lediglich von zehn Personen bewohnt. Fünf dieser Personen haben ein Monatseinkommen von je 2500, die fünf übrigen Personen haben ein Monatseinkommen von 2600 bzw bzw bzw bzw In dem Bezirk lässt sich eine weitere Person nieder, deren Monatseinkommen beträgt: a) 2500, 2500, 2500, 2500, 2500, 2600, 2700, 2800, 2900, 3000 b) 2500, 2500, 2500, 2500, 2500, 2600, 2700, 2800, 2900, 3000, Welche Auswirkungen ergeben sich dadurch bezüglich des Modus, des Medians und des arithmetischen Mittels der Monatseinkommen aller Bewohner des Bezirks? Berechnen Sie zunächst jeweils die Lagemaße und vervollständigen Sie anschließend die beiden folgenden Aussagen. Modus und Median sind gegenüber dem Ausreißer von relativ, wodurch sie für die Stichprobe weiterhin repräsentative Lagemaße darstellen. Das arithmetische Mittel wird stark in Richtung des Ausreißers, sodass eine repräsentative Aussage für die Stichprobe nicht mehr möglich ist. 1.3 Welche der Aussagen über die Anwendung von Streuungsmaßen ist richtig? a) Range und Interquartilsabstand verwendet man bei Ordinaldaten, Varianz und Standardabweichung hingegen bei metrischen Daten b) Varianz und Standardabweichung verwendet man bei Ordinaldaten, Range und Interquartilsabstand hingegen bei metrischen Daten 1.4 Was sind Lagemaße? Wozu gibt man zusätzlich Streuungsmaße an? Vervollständigen Sie dazu bitte den Lückentext. Zentrale Lagemaße geben uns Auskunft über den Wert einer Verteilung von Stichprobendaten. Maße der zentralen Lage sind der, der und der. Diese Maße spiegeln zwar den Schwerpunkt der wieder, sie geben jedoch keine Auskunft über die Variation der. Um dieses Problem zu lösen, verwenden wir zusätzlich Streuungsmaße wie,, und. Durch sie

2 erfahren wir, wie breit sich die Einzelwerte verteilen und wie die Maße der zentralen Tendenz für die Verteilung sind. 1.5 Wir gehen von folgendem Zusammenhang aus: Das Geschlecht hat einen Einfluss auf die Körpergröße eines Menschen, das heißt Männer sind größer als Frauen. Wenn wir eine repräsentative Stichprobe von Erwachsenen ziehen und deren Körpergröße erfassen, werden wir viele verschiedene Ausprägungen der Körpergröße erhalten. Wir werden jedoch feststellen, dass weder alle Frauen noch alle Männer gleich groß sind, sondern dass sich die Werte jeweils um den Mittelwert der Frauen und um den Mittelwert der Männer verteilen. Wir werden weiterhin feststellen, dass die Verteilung der Körpergrößen der Frauen die Verteilung der Körpergrößen der Männer überlappt, insgesamt jedoch nach links verschoben ist. Ordnen sie den beschriebenen Sachverhalten die Begriffe Fehlervarianz, systematische Varianz und Gesamtvarianz zu. die gemessenen Körpergrößen aller Personen in der Stichprobe Fehlervarianz Verteilung aller Personen eines Geschlechts um den jeweiligen Mittelwert systematische Varianz Die durch das Geschlecht hervorgerufene unterschiedliche Lage der Verteilungen Gesamtvarianz 1.6 Ordnen Sie bitte den verschiedenen Verteilungen die richtige Bezeichnung zu. Verteilung 1 Verteilung 2 Verteilung 3 Verteilung 4 links-schief und unimodal bimodal rechts-schief und unimodal multimodal

3 1.7 Maria ist 174 cm groß (der Mittelwert der Frauen betrage 165 cm und die Standardabweichung 8 cm). Tom ist 188 cm groß (der Mittelwert der Männer betrage 178 cm und die Standardabweichung 10 cm). Wir wollen herausfinden, wer von beiden relativ zu seiner Gesamtpopulation (also Frauen und Männer) am größten ist. Es geht nicht darum, die beiden Körpergrößen zu vergleichen, sondern darum, die Körpergrößen in Relation zum jeweiligen Durchschnitt zu setzen und dieses Verhältnis zu vergleichen. Dazu sollen Sie für beide Werte die entsprechenden z-werte berechnen und diese anschließend vergleichen. 2.1 In einem Konzentrationstest haben zwölf Schüler folgende Punktwerte erreicht: 26, 27, 29, 29, 11, 25, 27, 23, 27, 28, 26, 24 Zeichnen Sie ein Stamm-und-Blatt-Diagramm! Konstruieren Sie ein Box-Plot für diese Werte! 2.2 In der folgenden Tabelle ist die Regierungszeit (in Monaten) der ersten sechs Bundeskanzler der Bundesrepublik Deutschland zu finden. Name Regierungszeit Konrad Adenauer 169 Ludwig Erhard 37 Kurt Georg Kiesinger 35 Willy Brandt 54 Helmut Schmidt 100 Helmut Kohl 193 Erstellen Sie den Boxplot. 2.3 Gegeben sind die folgenden Messungen von Gewicht X (in kg) und Körpergröße Y(in m) bei 7 Personen: i Gewicht X Größe Y ,77 1,65 1,83 1,69 1,57 1,72 1,75 a) Bestimmen Sie den Korrelationskoeffizienten zwischen Gewicht und Körpergröße!

4 b) Würde der Koeffizient größer oder kleiner werden, wenn er aus Gewicht (jetzt in g) und Größe (jetzt in cm) berechnet würde? 2.4 Wie würden Sie ein r = 0,948 interpretieren? 2.5 In einem Versuchsbericht werden folgende Kennwerte mitgeteilt: Prädiktorvariable n 12 x 10 s 2 Kriteriumsvariable n 12 x 40 s 5 cov 4 xy x y Berechnen Sie die Produkt-Moment-Korrelation. Interpretieren Sie! 2.6 Sie haben von 15 studentischen Versuchspersonen den IQ erhoben (X). Außerdem haben Sie alle Probanden gebeten, auf einer Skala von 1 bis 9 einzuschätzen, wie gut ihre Leistung war (Y). i X Y Sie möchten die Hypothese prüfen, dass Personen sehr gut in der Lage sind, ihre eigene Leistung einzuschätzen. Daher entscheiden Sie sich, die Korrelation zwischen Intelligenztestleistung (X) und selbsteingeschätzter Leistung zu bestimmen. a) Sie haben mit einem Statistikprogramm ein Streudiagramm der Werte erstellt, um zu prüfen, ob eine Korrelation berechnet werden kann. Ist die Berechnung einer Korrelation im vorliegenden Fall zulässig? Warum (nicht)?

5 b) Welche weitere Voraussetzung muss erfüllt sein, um eine Korrelation berechnen zu können? c) Der Korrelationskoeffizient beträgt.73. Was sagt dieser bezüglich Ihrer Hypothese aus? d) Können Sie auf der Grundlage dieses Ergebnisses Schlüsse über die Ursachen des Zusammenhangs zwischen Leistungseinschätzung und tatsächlicher Leistung ziehen? 2.7 In welchen der Fälle dürfen Sie eine Regression rechnen? 2.8 In einer Untersuchung hat man die Aggressivität von 5 Kindern durch deren Erzieherinnen einschätzen lassen. Zusätzlich hat man erhoben, wie stark diese Kinder von den Spielkameraden abgelehnt wurden. Nun möchten Sie gerne eine Vorhersage der Ablehnungswerte für andere Kinder machen, von denen Sie lediglich die Aggressivität erfasst haben. Kind 1 Kind 2 Kind 3 Kind 4 Kind 5 Arithm. Varianz Mittel Aggressivität ,2 46,16 Ablehnung ,4 5,84 1. Warum sollten Sie sich zuerst immer einen Überblick im Streudiagramm verschaffen? 2. Welche Variable dient in der Berechnung als Prädiktor und welche als Kriterium? ˆ 3. Die Regressionsgerade lautety 4,34 0, 3X. Sie wollen überprüfen, wie gut die Vorhersagen mit Ihrer Regressionsgleichung sind. Bestimmen Sie für die fünf Kinder aus Ihrer Studie die vorhergesagten Ablehnungswerte und die Residualwerte. Kind 1 Kind 2 Kind 3 Kind 4 Kind 5 vorhergesagte Ablehnungswerte tatsächliche

6 Ablehnungswerte Residualwerte (y-ŷ) 4. Welche der Schlussfolgerungen ist gerechtfertigt? a) Das Ausmaß der Aggression ist die Ursache für das Ausmaß der Ablehnung eines Kindes. b) Das Ausmaß der Ablehnung ist die Ursache für das Ausmaß der Aggression. c) Eine dritte Variable ist sowohl Ursache der Aggression als auch Ursache der Ablehnung. d) Keine der Schlussfolgerungen ist gerechtfertigt.

7 LÖSUNGEN 1.1 Skalenniveau, Darstellung, Anteilen, Häufigkeiten, nominalskalierten, Ordinalskalenniveau, metrischem Skalenniveau, Tabellen, Diagrammen 1.2 Ergebnisse: a) Modus: 2500; Median: 2550; arithmetisches Mittel: 2650 b) Modus: 2500; Median: 2600; arithmetisches Mittel: Lösung für den Lückentext: robust, verzerrt 1.3 a) ist richtig 1.4 typischen bzw. mittleren, Modus, Median, Mittelwert, Verteilung, Daten, Range, Interquartilsabstand, Varianz, Standardabweichung, typisch 1.5 die gemessenen Körpergrößen aller Fehlervarianz Personen in der Stichprobe Verteilung aller Personen eines Geschlechts um den jeweiligen Mittelwert systemat. Varianz die durch das Geschlecht hervorgerufene unterschiedliche Lage der Verteilungen Gesamtvarianz 1.6 Verteilung 1: bimodal Verteilung 2: rechts-schief und unimodal Verteilung 3: links-schief und unimodal Verteilung 4: multimodal 1.7 z Maria x Maria X s Frauen Frauen ,13 8 z Tom x Tom X s Männer Männer ,00 10 In Relation zu allen Frauen liegt Maria mit ihrer Körpergröße über dem Durchschnitt. Tom liegt mit seiner Größe ebenfalls über dem Durchschnitt aller Männer. Maria übertrifft den Durchschnitt aller Frauen sogar mehr als Tom den Durchschnitt aller Männer.

8 2.1 Stamm-und-Blatt-Diagramm: Frequency Stem & Leaf 1, , , , , Boxplot: 2.2

9 2.3 1 n n ( X i X )( Y Y) 0,544 9,42 0,078 i 1 a) r 0, 74 s X s Y i X 68 Y 1, 71 s 9, 42 s 0, 078 X Y b) Der Korrelationskoeffizient würde gleich bleiben, da er unabhängig von der Maßeinheit ist. Der Grund dafür liegt in der Standardisierung des Koeffizienten mithilfe der Division durch die Streuungen beider Variablen. Dadurch nehmen Korrelationskoeffizienten ausschließlich Werte im Bereich von -1 bis 1 an. Ein großer Vorteil dieser Standardisierung ist die Möglichkeit, Korrelationskoeffizienten unterschiedlicher Studien, Studienanordnungen und Fragestellungen miteinander zu vergleichen. 2.4 Es besteht ein fast perfekter (starker) positiver Zusammenhang zwischen den jeweiligen Variablen. Je größer dabei die unabhängige, umso größer die abhängige Variable. cov( x, y) s r 0, 4 X s Y Es besteht ein mittlerer bis starker positiver Zusammenhang zwischen Prädiktor- und Kriteriumsvariable. Je größer dabei der Prädiktor, desto größer das Kriterium. 2.6 a) Eine Korrelation kann hier berechnet werden, da der Zusammenhang linear zu sein scheint und weder Ausreißer noch Subgruppen erkennbar sind. b) Die Variablen müssen intervallskaliert sein. c) Es besteht tatsächlich ein recht starker Zusammenhang zwischen Testleistung und Selbsteinschätzung. Die Personen sind also recht gut in der Lage, ihre eigene Leistung einzuschätzen. d) Nein, da Kausalaussagen nur auf der Grundlage einer Korrelation nicht möglich sind. Außerdem trifft die Hypothese keine expliziten Aussagen zur Kausalrichtung oder den verantwortlichen Prozessen. 2.7 Bei B und D liegt ein linearer Zusammenhang vor. Nur hier darf eine Regression berechnet werden!!!! Bei A gibt es einen kurvilinearen Zusammenhang, also keinen linearen Zusammenhang. Bei C gibt es keinen Zusammenhang, durch den Ausreißer entstünde aber fälschlicherweise der Eindruck. Bei E gibt es keinen Zusammenhang. Bei F gibt es einen Zusammenhang, es existieren jedoch zwei unterschiedliche Sub-Gruppen, die nicht zusammengefasst werden dürfen. Es ist aber möglich, eine Regression für beide Gruppen getrennt zu berechnen. Bei G gibt es keinen Zusammenhang, durch eine Zusammenfassung der beiden unterschiedlichen Sub-Gruppen würde aber fälschlicherweise der Eindruck entstehen. Bei H gibt es keinen Zusammenhang, durch den Ausreißer entstünde aber fälschlicherweise der Eindruck.

10 Um festzustellen, dass - es einen linearen Zusammenhang gibt - keine Ausreißer die Berechnungen verzerren würden 2. Die Variable Aggressivität fungiert als Prädiktor, mit Hilfe dessen das Kriterium Ablehnung vorhergesagt werden soll. 3. vorhergesagte Ablehnungswerte tatsächliche Ablehnungswerte Residualwerte (y-ŷ) Kind 1 Kind 2 Kind 3 Kind 4 Kind 5 7,34 5,84 10,34 8,84 4, ,34 7-5, ,34 = 1,66 = 1,16 = -0,34 8-8,84 3 4,64 = -0,84 = -1,64 4. Richtig ist Antwort (d), denn es darf auf der Grundlage eines linearen Zusammenhangs nicht geschlussfolgert werden, dass es einen Kausalzusammenhang gibt. Auch liegen keine Informationen über Alternativerklärungen für den Zusammenhang vor. Es ist nur bekannt, dass die zwei Variablen irgendwie miteinander zusammen hängen. Das erlaubt es zwar, die eine Variable aus der anderen vorherzusagen, aber es erlaubt keine Kausalschlüsse.

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren Heinz Holling & Günther Gediga Statistik - Deskriptive Verfahren Übungen Version 15.12.2010 Inhaltsverzeichnis 1 Übung 1; Kap. 4 3 2 Übung 2; Kap. 5 4 3 Übung 3; Kap. 6 5 4 Übung 4; Kap. 7 6 5 Übung 5;

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Diagnostik von Regressionsmodellen (1)

Diagnostik von Regressionsmodellen (1) Diagnostik von Regressionsmodellen (1) Bei Regressionsanalysen sollte immer geprüft werden, ob das Modell angemessen ist und ob die Voraussetzungen eines Regressionsmodells erfüllt sind. Das Modell einer

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 2C a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Bei HHEINK handelt es sich um eine metrische Variable. Bei den Analysen sollen Extremwerte ausgeschlossen werden. Man sollte

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Name Vorname Matrikelnummer Unterschrift

Name Vorname Matrikelnummer Unterschrift Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden Klausur Statistik II (Sozialwissenschaft, Nach- und Wiederholer) am 26.10.2007 Gruppe

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Informationen zur KLAUSUR am

Informationen zur KLAUSUR am Wiederholung und Fragen 1 Informationen zur KLAUSUR am 24.07.2009 Raum: 032, Zeit : 8:00 9:30 Uhr Bitte Lichtbildausweis mitbringen! (wird vor der Klausur kontrolliert) Erlaubte Hilfsmittel: Alle Unterlagen,

Mehr

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg Statistik I Übungklausur Prof. Dr. H. Toutenburg Hinweis: Die Zeitangaben sollen Ihnen aufzeigen wieviel Zeit Ihnen für eine Aufgabe von gewissem Umfang eingeräumt wird. Die Punktzahlen für die einzelnen

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A Prüfung aus Statistik 1 für SoziologInnen- Gruppe A 26. Juni 2012 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden 1) Wissenstest (maximal 20 Punkte) Lösungen Kreuzen ( ) Sie die jeweils richtige Antwort

Mehr

Ferienkurse Mathematik Sommersemester 2009

Ferienkurse Mathematik Sommersemester 2009 Ferienkurse Mathematik Sommersemester 2009 Statistik: Grundlagen 1.Aufgabenblatt mit praktischen R-Aufgaben Aufgabe 1 Lesen Sie den Datensatz kid.weights aus dem Paket UsingR ein und lassen sie die Hilfeseite

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/ Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/2015 13.02.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Methodik für Linguisten

Methodik für Linguisten Claudia Methodik für Linguisten Eine Einführung in Statistik und Versuchsplanung narr VERLAG 1 Reisevorbereitungen und Wegweiser 2 Linguistik als empirische Wissenschaft 15 2.1 Karl Popper und der Falsifikationismus

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Deskriptive Statistik

Deskriptive Statistik Markus Wirtz, Christof Nachtigall Deskriptive Statistik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Statistische

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen.

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik. Deskriptive Statistik. Deskriptive Statistik. 1.Tabellen. Department of Sport Science and Kinesiology Block 1 Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Gerda Strutzenberger Block I Mittwoch 15.2.2012 13:00 bis 14:50 Grundlagen, Skalenniveau

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho Übungen (HS-2010): Urteilsfehler Autor: Siegfried Macho Inhaltsverzeichnis i Inhaltsverzeichnis 1. Übungen zu Kapitel 2 1 Übungen zu Kontingenz- und Kausalurteile 1 Übung 1-1: 1. Übungen zu Kapitel 2 Gegeben:

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Quantitative Methoden (Vertretung für Prof. Th. Pechmann)

Quantitative Methoden (Vertretung für Prof. Th. Pechmann) Quantitative Methoden (Vertretung für Prof. Th. Pechmann) Inferenzstatistik I: Zusammenhänge (Korrelationen) Logik inferenzstatistischer Verfahren Andreas Opitz Universität Leipzig Institut für Linguistik

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Bivariate Zusammenhänge

Bivariate Zusammenhänge Bivariate Zusammenhänge 40 60 80 Bivariater Zusammenhang: Zusammenhang zwischen zwei Variablen weight (kg) Gibt es einen Zusammenhang zwischen Größe & Gewicht? (am Beispieldatensatz) Offensichtlich positiver

Mehr

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf:

Bei näherer Betrachtung des Diagramms Nr. 3 fällt folgendes auf: 18 3 Ergebnisse In diesem Kapitel werden nun zunächst die Ergebnisse der Korrelationen dargelegt und anschließend die Bedingungen der Gruppenbildung sowie die Ergebnisse der weiteren Analysen. 3.1 Ergebnisse

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Statistische Methoden in der MMST: Deskriptive Statistik

Statistische Methoden in der MMST: Deskriptive Statistik Statistische Methoden in der MMST: Deskriptive Statistik VL MMS Wintersemester 2014/15 Professur für Prozessleittechnik L. Urbas; J. Pfeffer Ziele und Inhalt Statistik in der MMST Anwendungsgebiete Evaluationen

Mehr

Übungsaufgaben zu Kapitel 2 und 3

Übungsaufgaben zu Kapitel 2 und 3 Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 3 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 5 Aufgabe

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Statistische Methoden in der MMST: Deskriptive Statistik

Statistische Methoden in der MMST: Deskriptive Statistik Statistische Methoden in der MMST: Deskriptive Statistik VL MMS Wintersemester 2013/14 Professur für Prozessleittechnik L. Urbas; J. Pfeffer Ziele und Inhalt Statistik in der MMST Anwendungsgebiete Evaluationen

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 2 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 4 Aufgabe

Mehr

Statistik - Übungsaufgaben

Statistik - Übungsaufgaben Statistik - Übungsaufgaben 1) Eine vor mehreren Jahren durchgeführte Befragung von 30 Arbeitern eines Großbetriebes ergab für die Stundenlöhne folgende Liste: 16,35 16,80 15,75 16,95 16,20 17,10 16,64

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Es wurden die Körpergrößen von 3 Versuchspersonen, sowie Alter und Geschlecht erhoben. (Jeweils Größen pro Faktorstufenkombination). (a)

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004)

Übungsklausur zur Vorlesung Statistik I (WiSe 2003/2004) Universität Siegen, FB 1 Prof. W. Ludwig-Mayerhofer/ Dipl.Soz. Uta Liebeskind Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004) 1. Bitte vermerken Sie hinter dem jeweiligen Merkmal das Skalenniveau.

Mehr

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25

Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25 Inhaltsverzeichnis Einführung 17 Über dieses Buch 17 Törichte Annahmen über den Leser 19 Wie dieses Buch aufgebaut ist 19 Teil I: Kopfüber eintauchen indie Statistik 19 Teil II: Von Wahrscheinlichkeiten,

Mehr

Psychologie als Wissenschaft

Psychologie als Wissenschaft Psychologie als Wissenschaft Die Ursprünge der Psychologie liegen in der Philosophie. In der Philosophie steht das Verstehen von Zusammenhängen oder von Sinn im Vordergrund, in der Psychologie ist das

Mehr

Statistik. Ronald Balestra CH St. Peter

Statistik. Ronald Balestra CH St. Peter Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Maße der zentralen Tendenz

Maße der zentralen Tendenz UStatistische Kennwerte Sagen uns tabellarische und graphische Darstellungen etwas über die Verteilung der einzelnen Werte einer Stichprobe, so handelt es sich bei statistischen Kennwerten um eine Kennzahl,

Mehr

VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler

VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler Hausübung In der Übung Übungsblatt 06 1. Gegeben: Skala zur Messung der Gesundheitssorge mit 20 Items (dichotomes Antwortformat).

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Univ.-Prof. Dr. Georg Wydra Methoden der Physiotherapie II Elemente einer empirischen Arbeit

Univ.-Prof. Dr. Georg Wydra Methoden der Physiotherapie II Elemente einer empirischen Arbeit Univ.-Prof. Dr. Georg Wydra Methoden der Physiotherapie II Elemente einer empirischen Arbeit Prof. Dr. Georg Wydra Sportwissenschaftliches Institut der Universität des Saarlandes 1 Elemente einer empirischen

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Übungsbuch Statistik für Dummies

Übungsbuch Statistik für Dummies beborah Rumseif Übungsbuch Statistik für Dummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über die Autorin 8 Über den Übersetzer 8 Einführung 15 Über dieses Buch 15 Törichte Annahmen

Mehr