Überlagern sich zwei Schwingungen, so gilt für die Amplitude, also für die maximale Auslenkung:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Überlagern sich zwei Schwingungen, so gilt für die Amplitude, also für die maximale Auslenkung:"

Transkript

1 (C) SchulLV 1 von 12 Einführung Egal ob im Alltag oder im Urlaub, Wellen begegnen uns immer wieder in Form von Wasser, Licht, Schall,... Eine einfache Welle besteht aus einem Maximum und einem Minimum. Bei der Meereswelle nennt man dieses Maxi- und Minimum Wellenberg und Wellental. Unter Wellenlänge versteht man die Länge einer Schwingung, also den kürzesten Abstand zwischen zwei gleichen Zuständen wie dem Maxioder Minimum. Wie viele dieser Schwingungen pro Sekunde stattfinden, gibt man mit der Frequenz an. Abb. 1: Nordseebrandung. Allgemeines Häufig kommt es vor, dass sich Wellen überlagern. Dieses Phänomen nennt man Interferenz. Dabei können sich die Auslenkungen zweier Wellen entweder verstärken oder auch auslöschen. Abb. 2: Konstruktive und destruktive Interferenz. Überlagern sich zwei Schwingungen, so gilt für die Amplitude, also für die maximale Auslenkung: Trifft das Maximum von Welle auf das Maximum von Welle oder das Minimum von Welle auf das Minimum von Welle, dann verstärken sich die beiden Wellen und es ergibt sich die Maximalauslenkung. Man spricht von konstruktiver Interferenz. Sind zwei Wellen mit gleicher Amplitude zueinander so verschoben, dass das Maximum der Welle und das Minimum der Welle aufeinander treffen, dann löschen sich die beiden Wellen gegenseitig komplett aus und man spricht man von destruktiver Interferenz. Die Verschiebung der Wellen zueinander nennt man Gangunterschied. Das Bild, das bei der Überlagerung entsteht, nennt man Interferenzmuster. An diesen Mustern erkennt man die Stellen von konstruktiver und destruktiver Interferenz sehr gut: Überlagern sich zum Beispiel Lichtwellen, so erscheinen die Maxima der entstehenden Welle hell. Die Stellen, an denen sich die Wellen auslöschen

2 (C) SchulLV 2 von 12 (hier findet destruktive Interferenz statt), erscheinen dagegen dunkler. Dieses Interferenzmuster verwendet man, um den Wellencharakter z. B. von Licht nachzuweisen. Abb. 3: Interferenz in der Wasserwanne. Schwebung Bisher hatten die beiden Wellen sowohl die gleiche Amplitude als auch die gleiche Frequenz. Überlagern sich zwei Wellen mit unterschiedlichen Frequenzen, so entsteht eine neue Welle mit der Frequenz. Haben die beiden Wellen nahe beieinander liegende Frequenzen kommt es zur so genannten Schwebung. Darunter versteht man das Phänomen, dass sich die Amplitude der neuen stehenden Welle mit der Frequenz verändert. Abb. 4: Schwebung entsteht bei der Überlagerung von zwei Wellen mit unterschiedlicher Frequenz. Diese Frequenz berechnest du mit folgender Formel:

3 (C) SchulLV 3 von 12 Die Frequenz der neuen Welle berechnet man mit Brechung Allgemeines Das physikalische Phänomen der Brechung tritt am Phasenübergang zwischen verschiedenen Medien auf, in denen eine Welle unterschiedliche Phasengeschwindigkeiten besitzt, z. B. am Übergang zwischen Luft und Wasser. Dabei gehen zwei Wellen von der Grenzfläche aus: Die an der Grenzfläche reflektierte Welle und die gebrochene Welle, die sich im anderen Medium mit veränderter Geschwindigkeit bewegt. Abb. 5: Strohhalm im Wasserglas. Mit diesem Prinzip lässt sich auch die Entstehung von Regenbögen erklären: Sonnenstrahlen treffen auf die Oberfläche der Wassertropfen. Die verschiedenen Farben, die in weißem Licht enthalten sind, werden an der Oberfläche unter verschiedenen Winkeln reflektiert und treten unter unterschiedlichen Winkeln aus dem Tropfen aus. Abb. 6: Entstehung von Regenbögen. Das Huygens'sche Prinzip Das Huygens'sche Prinzip besagt, dass jeder Punkt einer Wellenfront sich als Ausgangspunkt einer Elementarwelle auffassen lässt. Desweiteren werden die Wellenfronten von Einhüllenden der Elementarwellen gebildet. Außerdem gelangen Wellen in den Schattenraum eines Hindernisses (sie werden gebeugt), weil von jedem Randpunkt des Hindernisses Elementarwellen ausgehen. Darauf werden wir im Abschnitt Beugung wieder zurückkommen. Schauen wir uns nun das Beispiel einer Wasserwelle an, die schräg von tiefem Wasser in flaches Wasser trifft. Dabei ändert sich die Ausbreitungsgeschwindigkeit. Wenn die Wellenfront die Grenzlinie mit Geschwindigkeit erreicht, werden nacheinander viele Elementarwellen ausgelöst. Da die Welle schräg verläuft, hat sich die erste Elementarwelle bereits mit dem Radius im flachen Wasser ausgebreitet, wenn die letzte Elemtarwelle die Grenzlinie erreicht. ist

4 (C) SchulLV 4 von 12 dabei der zeitliche Abstand zwischen dem Eintreffen der beiden Elementarwellen an der Grenzlinie, die Ausbreitungsgeschwindigkeit im tiefen, die im flachen Wasser. Es gilt dabei: Die neue Wellenfront im flachen Wasser ist Einhüllende der während des Zeitraums zwischen erster und letzter Elementarwelle ausgegangenen Kreiswellen. Da die Ausbreitungsgeschwindigkeit im flachen Wasser langsamer als im tiefen ist ( ), ändern die Wellenstrahlen ihre Richtung am Übergang, es tritt Brechung zum Lot hin ein. Die Tangente der ersten Kreiswelle, die die Grenzlinie am Übergang der letzten Elemtarwelle schneidet, beschreibt nach der Brechung die Wellenfront. Abb. 7: Wellen-Brechung; hier zum Bildnachweis. Das Brechungsgesetz Das Brechungsgesetz besagt, dass bei der Brechung das Verhältnis von Sinus des Einfallswinkels zum Sinus des Ausfallswinkels gleich dem Vehältnis der Ausbreitungsgeschwindigkeiten vom ersten zum zweiten Medium ist. Formal sieht das wie folgt aus: Dabei ist der Einfallswinkel und der Ausfallswinkel, beide gegen das Lot gemessen. n wird Brechungszahl gennant, und sind wie oben die Ausbreitungsgeschwindigkeiten in den verschiedenen Medien. Beugung Allgemeines Unter Beugung versteht man die Ablenkung einer Welle an einem Hindernis, also wenn die Welle in den geometrischen Schattenraum hinter Hindernissen oder Öffnungen eindringt. Hierbei ist das Verhältnis der Größe des beugenden Elements (z. B. des Einzelspalts, siehe unten) zur Wellenlänge entscheidend. Ist die Wellenlänge von gleicher Größenordnung oder auch größer, tritt das Phänomen der Beugung besonders stark auf. Beugung am Einzelspalt Durch Beugung von Wellen an einem Spalt entstehen neue Wellen nach dem Huygens-Prinzip. Wir benötigen nun, dass jeder Punkt an einer Wellenfront Ausgangspunkt einer neuen Elementarwelle ist: Wie du in der nebenstehenden Abbildung erkennen kannst, trifft eine Wellenfront (links) auf eine Wand, in der sich ein einzelner Spalt befindet. Bis auf einen Punkt wird die komplette Front an der Mauer reflektiert. Nur der eine Punkt auf Höhe des Spalts kann weiterlaufen und erzeugt auf der anderen Seite eine neue kreisförmige Welle.

5 (C) SchulLV 5 von 12 Abb. 8: Kugelförmige Elementarwelle. Beugung am Doppelspalt Hat man anstelle des einen Spalts zwei Spalte, so entsteht an beiden jeweils eine kugelförmige Elementarwelle. Hinter der Wand kommt es zur Interferenz dieser beiden Wellen. Abb. 9: Kugelförmige Elementarwellen interferieren. Interferenzmuster Trifft das Licht nach Passieren des einen oder der beiden Spalte oder eines Gitters auf eine Fläche der Abstand zwischen Spalt und Schirm/Detektor ist viel größer als der Abstand zwischen den Spalten, kann man beobachten, dass die Intensität an manchen Stellen stärker ist als an anderen. Teilweise ist es sogar komplett dunkel. Anhand dieser Bilder kann man auf das Spaltmuster schließen: Das breite Hauptmaximum ist in diesem Schaubild sehr auffällig. Die weiteren Maxima sind dagegen kaum zu erkennen, da die Intensität nach außen hin sehr schnell abnimmt. Das sind eindeutige Charakteristika eines Einzelspaltes, demnach wird das Schaubild diesem zugeschrieben.

6 (C) SchulLV 6 von 12 Abb. 10: Einzelspalt. In diesem Schaubild sind die Hauptmaxima alle nahezu gleich breit. Zwischen ihnen befinden sich keine Nebenmaxima. Darüber hinaus nimmt die Intensität nach außen hin zwar ab, aber nicht so schnell wie im obigen Schaubild. Infolgedessen wird mehr Licht durchgelassen, was auf die höhere Spaltanzahl zurückzuführen ist. Es folgt hiermit: Dieses Schaubild ist dem Doppelspalt zuzuordnen. Abb. 11: Doppelspalt. Zwischen den Hauptmaxima lassen sich Nebenmaxima erkennen. Diese treten auf, wenn Licht durch mehr als zwei Spalte tritt. Die Intensitäten der Hauptmaxima nehmen nach außen hin deutlich stärker ab als dies im letzten Schaubild der Fall ist. Dieses Schaubild gehört zum Mehrfachspalt.

7 (C) SchulLV 7 von 12 Abb. 12: Mehrfachspalt. An diesem Schaubild ist auffällig, dass zwischen den Hauptmaxima eine große Anzahl Minima liegen und diese eine geringe Breite aufweisen. Dies hat zur Folge, dass sich ihre Lagen sehr genau ablesen lassen und sie schärfer werden. Darüber hinaus nimmt die Höhe und damit die Intensität dieser Hauptmaxima nach außen hin kaum ab. Auf Grund dieser Tatsachen ist dieses Schaubild einem Gitter zuzuordnen. Sehr viele enge Spalte, die in gleichen Abständen angeordnet sind, nennt man dabei Gitter. Abb. 13: Gitter. Änderung der Lichtquelle Erhöhst du etwa den Abstand zwischen dem Gitter und deiner Lichtquelle, so vergrößert sich der auf dem Gitter auftreffende Lichtkreis. Hierdurch werden mehr Spalte beleuchtet: Abb. 14: Abstand beim Gitter.

8 (C) SchulLV 8 von 12 Wichtig ist hierbei, dass du dir klar machst, dass wir dasselbe Gitter verwenden. Das bedeutet, dass lediglich die Anzahl der beleuchteten Spalte erhöht wird und eben nicht, dass die Spalte näher aneinander rücken. Der Spaltmittenabstand (auch Gitterkonstante genannt) verringert sich also nicht. Da der Spaltmittenabstand nicht verändert wird, verbleiben die Maxima in derselben Lage. Der Abstand zwischen den Maxima wird also ebenfalls nicht verändert. Hingegen treten aus mehr beleuchteten Spalten mehr Lichtwellen in den Raum hinter das Gitter ein, wo sie miteinander interferieren. Hierdurch nimmt zum einen die Helligkeit der Hauptmaxima zu, da mehr Strahlen mit dem Gangunterschied konstruktiv interferieren als bei kleinerer Spaltanzahl. Das letzte Schaubild (Gitter) würde sich qualitativ folgendermaßen ändern: Abb. 15: Erhöhung beleuchteter Spalte. Wenn die Anzahl der beleuchteten Spalte erhöht wird, verändert sich die registrierte Intensitätsverteilung des Gitters dahingehend, dass die Maxima heller und schärfer werden. Die Lage der Maxima ändert sich hingegen nicht. Spaltbreite und -abstand berechnen Für folgende Berechnungen verwenden wir das nebenstehende Schaubild (Intensitätsverteilung eines Doppelspalts). Den Abstand der beiden Spalten berechnet sich über den Spaltmittenabstand mittels der Lage der Maxima. Generell treten Maxima auf, wenn sich die Elementarwellen aus den Spaltmitten konstruktiv überlagern. Dies ist dann der Fall, wenn für den Gangunterschied der am Detektor zusammenlaufenden Wellen gilt:, Der Faktor. steht hierbei für die Ordnung des jeweiligen Maximums. Für das Maximum 2. Ordnung gilt daher: Dieser Gangunterschied lässt sich geometrisch wiederfinden, wenn man den Weg zweier Elementarwellen zu einem Punkt am Detektor als nahezu parallele Linien betrachtet: Du kannst erkennen: Der Winkel, unter dem die Wellen auf dem Schirm eintreffen, lässt sich in einem rechtwinkligen Dreieck wiederfinden. Die Hypotenuse ist gleich dem gesuchten Spaltmittenabstand und eine

9 (C) SchulLV 9 von 12 der Katheten ist gerade der Gangunterschied. Für den Winkel, unter dem die Wellen auf dem Schirm auftreffen, gilt dann: Nun wissen wir, dass für Maxima der Gangunterschied sein muss. Setze diese Bedingung in die gerade ermittelte Beziehung ein. Es ergibt sich eine Gleichung, die alle Winkel liefert, bei denen Maxima zu beobachten sind: Abb. 16: Intensitätsverteilung eines Doppelspalts. Dem obigen Diagramm kannst du nun die Lage eines Maximums entnehmen: Das 1. Hauptmaximum, für das also tritt laut dem Diagramm bei einem Beugungswinkel von auf. gilt, Abb. 17: Gangunterschied. Einzelspaltminimum eines der Spalte zusammenfällt. Weiterhin fällt im Diagramm auf, dass das Maximum 3. Ordnung, welches unter dem Beugungswinkel auftreten sollte, fehlt. Dies lässt sich damit erklären, dass dieses Doppelspaltmaximum mit einem Diese Tatsache ist darauf zurückzuführen, dass die einzelnen Spalte selbst jeweils als Zentren einer großen Zahl von Elementarwellen wirken. Sie interferieren im Bereich hinter dem Spalt. Die Wellen interferieren destruktiv, wenn der Gangunterschied von je zwei Wellen beträgt. Stellen wir uns vor, dass genau 100 Elementarwellen dem Einzelspalt entspringen würden, so herrscht ein solcher Gangunterschied von gerade zwischen der 1. und der 51. Welle, der 2. und der 52. Welle usw. Der Gangunterschied zwischen der 1. und der 100. Welle liegt damit exakt bei. Abb. 18. Die Skizze kann dir bei der Vorstellung behilflich sein: In diesem Fall löschen sich die Wellen gegenseitig aus. Fehlt das Licht aus einem Spalt, kann in diesem Punkt

10 (C) SchulLV 10 von 12 folglich auch keine Doppelspaltinterferenz stattfinden. Das zu erwartende Maximum fehlt. Mit der Tatsache, dass der Gangunterschied zwischen der 1. und der 100. Welle exakt bei liegt, folgt für die Breite der Einzelspalte die folgende Ablenkungsformel: = = Mit den hier vorgestellten Formel lassen sich durch Umformen der Abstand und die Breite der Spalten des Beugungsobjekts des Diagramms bestimmen. Abb. 19. Abstand der Spalte bestimmen Laut Einleitung treten alle Maxima der Ordnung des Doppelspaltes unter folgenden Winkeln auf: Das 1. Hauptmaximum, für das also gilt, tritt laut Diagramm bei einem Beugungswinkel von auf. Nehmen wir für die Wellenlänge des Lichts, das auf die Spalte leuchtet, beispielsweise den Wert an. Setze diese Werte in die obige Ablenkungsformel ein und forme sie nach dem Spaltmittenabstand Dieser entspricht dem Abstand der beiden Spalte. um.

11 (C) SchulLV 11 von 12 Breite der Spalte bestimmen Wie bereits erwähnt, treten alle Einzelspaltminima der Ordnung unter folgenden Winkeln auf: Das 1. Einzelspaltminimum, für das also gilt, trifft mit dem Doppelspaltmaximum 3. Ordnung zusammen. Laut Diagramm treten diese bei einem Beugungswinkel von auf. Setze diese Beobachtungen in die obige Ablenkungsformel ein und forme nach der Breite eines Einzelspalts um. Das Beugungsobjekt des Diagramms besitzt einen Spaltabstand von ungefähr von etwa. und eine Spaltbreite Bildnachweise [nach oben] [1] Public Domain. [2] 2015 SchulLV. [3] 2015 SchulLV. [4] 2015 SchulLV. [5] 2015 SchulLV. [6] 2015 SchulLV. [7] Stefan-Xp, CC BY-SA. [8] 2015 SchulLV. [9] 2015 SchulLV. [10] 2015 SchulLV. [11] 2015 SchulLV. [12] 2015 SchulLV. [13] 2015 SchulLV.

12 (C) SchulLV 12 von 12 [14] 2015 SchulLV. [15] 2015 SchulLV. [16] 2015 SchulLV. [17] 2015 SchulLV. [18] 2015 SchulLV. [19] 2015 SchulLV.

Einführung in die Gitterbeugung

Einführung in die Gitterbeugung Einführung in die Gitterbeugung Methoden der Physik SS2006 Prof. Szymanski Seibold Elisabeth Leitner Andreas Krieger Tobias EINLEITUNG 3 DAS HUYGENSSCHE PRINZIP 3 DIE BEUGUNG 3 BEUGUNG AM EINZELSPALT 3

Mehr

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.

Mehr

Beugung am Spalt und Gitter

Beugung am Spalt und Gitter Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche

Mehr

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung! Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

Interferenz von Kreiswellen

Interferenz von Kreiswellen 5.2.14 Interferenz von Kreiswellen In einer Wellenwanne werden mit einem geradlinigen Erreger Wellen mit geraden Wellenfronten erzeugt. Treffen diese auf ein Hindernis mit einem kleinen Spalt, so bilden

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Wellen als Naturerscheinung

Wellen als Naturerscheinung Wellen als Naturerscheinung Mechanische Wellen Definition: Eine (mechanische) Welle ist die Ausbreitung einer (mechanischen) Schwingung im Raum, wobei Energie und Impuls transportiert wird, aber kein Stoff.

Mehr

08 Aufgaben zur Wellenoptik

08 Aufgaben zur Wellenoptik 1Profilkurs Physik ÜA 08 Aufgaben zur Wellenoptik 2011 Seite 1 A Überlagerung zweier Kreiswellen Aufgabe A 1 08 Aufgaben zur Wellenoptik Zwei Lautsprecher schwingen mit f = 15 khz und befinden sich im

Mehr

Physikklausur Nr.4 Stufe

Physikklausur Nr.4 Stufe Physikklausur Nr.4 Stufe 12 08.05.2009 Aufgabe 1 6/3/5/4 Punkte Licht einer Kaliumlampe mit den Spektrallinien 588nm und 766nm wird auf einen Doppelspalt des Spaltmittenabstands 0,1mm gerichtet. a.) Geben

Mehr

Wellenfront und Wellenstrahl

Wellenfront und Wellenstrahl Wellenfront und Wellenstrahl Es gibt unterschiedliche Arten von Wellen, Wasserwellen, elektromagnetische Wellen oder Lichtwellen. Um die verschiedenen Wellen zu beschreiben, haben sich Begriffe wie WELLENFRONT

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

Einführung. Interferenz. Interferenz gleichlaufender Wellen

Einführung. Interferenz. Interferenz gleichlaufender Wellen kript Mechanische Wellen Interferenz C) 2014 - SchulLV 1 von 5 Einführung Hast du schon einmal etwas von Monsterwellen gehört? Wellen die so hoch sind, wie ein Mehrfamilienhaus? Diese Wellen sind zwar

Mehr

Lösung: a) b = 3, 08 m c) nein

Lösung: a) b = 3, 08 m c) nein Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter

Mehr

Beugung von Ultraschallwellen

Beugung von Ultraschallwellen M5 Beugung von Ultraschallwellen Die Beugungsbilder von Ultraschall nach Einzel- und Mehrfachspalten werden aufgenommen und ausgewertet. 1. Theoretische Grundlagen 1.1 Beugung (Diffraktion) Alle fortschreitenden

Mehr

7.7 Auflösungsvermögen optischer Geräte und des Auges

7.7 Auflösungsvermögen optischer Geräte und des Auges 7.7 Auflösungsvermögen optischer Geräte und des Auges Beim morgendlichen Zeitung lesen kann ein gesundes menschliche Auge die Buchstaben des Textes einer Zeitung in 50cm Entfernung klar und deutlich wahrnehmen

Mehr

Versuch 3: Beugung am Spalt und Kreisblende

Versuch 3: Beugung am Spalt und Kreisblende Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.

Mehr

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten 5. März 2014 I Lernziele Huygen sches Prinzip und optische Interferenz Photoelektronik als Messmethode II Physikalische Grundlagen Grundlage

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am UNIVERSITÄT BIELEFELD Optik GV Interferenz und Beugung Durchgeführt am 10.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer Inhaltsverzeichnis 1 Ziel

Mehr

2 Mehrdimensionale mechanische Wellen

2 Mehrdimensionale mechanische Wellen TO Stuttgart OII 30 (Physik) Mehrdimensionale mechanische Wellen. Darstellung mehrdimensionaler Wellen Um die Beschreibung von mehrdimensionalen Wellen zu vereinfachen werden in Diagrammen nur die Wellenfronten

Mehr

Aufgaben zur Wellenoptik

Aufgaben zur Wellenoptik Aufgaben zur Wellenoptik C Mehrfachspalte Aufgabe C 1: Zeigeraddition bei Doppelspalt Die Abbildung zeigt einen Doppelspalt, an dessen Spalten zwei gleichphasig schwingende Wellen starten. Die zu den Schwingungen

Mehr

8. GV: Interferenz und Beugung

8. GV: Interferenz und Beugung Protokoll zum Physik Praktikum I: WS 2005/06 8. GV: Interferenz und Beugung Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Maik Stuke Versuchstag Dienstag, 31.01.2006 Interferenz und Beugung 1

Mehr

Protokoll zum Versuch: Interferenz und Beugung

Protokoll zum Versuch: Interferenz und Beugung Protokoll zum Versuch: Interferenz und Beugung Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 30.11.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1

Mehr

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN Praktische ktivität: Bestimmung der Dicke eines Haars mittels Beugung von Licht 1 Quantenphysik Die Physik der sehr kleinen Teilchen mit großartigen nwendungsmöglichkeiten Teil 3: PRKTISCHE KTIVITÄTEN

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 5. Schwingungen und Wellen 5.6 - Beugung von Ultraschall Durchgeführt am 3.0.06 Dozent: Praktikanten (Gruppe ): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer E3-463

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

4.6.Mikrowellen; Wellencharakter der Dipolstrahlung; Hertz sche Versuche

4.6.Mikrowellen; Wellencharakter der Dipolstrahlung; Hertz sche Versuche 4.6.Mikrowellen; Wellencharakter der Dipolstrahlung; Hertz sche Versuche Die Frequenz eträgt 9,35 GHz. Die Wellenlänge eträgt damit = c/f = 3,2 cm. Diese Wellen eignen sich esonders gut, um den Wellencharakter

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Optik II (Beugungsphänomene)

Optik II (Beugungsphänomene) Optik II (Beugungsphänomene) 1 Wellenoptik 2 1 Interferenz von Wellen, Interferenzversuche 3 Überlagerung von Wellen 4 2 Konstruktive und destruktive Interferenz 5 Beugungsphänomene 6 Bei der Interferenz

Mehr

Lloydscher Spiegelversuch

Lloydscher Spiegelversuch 1 Lloydscher Spiegelversuch 1.1 Fertige eine ausführliche gegliederte Versuchsbeschreibung an. 1.2. Erkläre das Zustandekommen von Interferenzen a) beim Doppelspalt, b) beim Fresnelschen Doppelspiegel,

Mehr

2. Klausur in K2 am 7.12. 2011

2. Klausur in K2 am 7.12. 2011 Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter 1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen

Mehr

Gitter. Schriftliche VORbereitung:

Gitter. Schriftliche VORbereitung: D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht

Mehr

7. Klausur am

7. Klausur am Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II Wellenlehre und Optik: Wellen und Wellengleichung, Welle-Teilchen-Dualismus, Licht als Welle (Huygenssches Prinzip, Reflexion, Brechung und Beugung), Optik 3.1. Wellen und Wellengleichung

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

13. Mechanische Wellen Darstellung harmonischer Wellen Überlagerung von Wellen, Interferenz und Beugung. 13.

13. Mechanische Wellen Darstellung harmonischer Wellen Überlagerung von Wellen, Interferenz und Beugung. 13. 13. Mechanische Wellen 13.1 Darstellung harmonischer Wellen 13.2 Überlagerung von Wellen, Interferenz und Beugung 13.33 Stehende Wellen 13.4 Schallwellen 13.5 Wellen bei bewegten Quellen Schematische Darstellung

Mehr

Der Regenbogen: Mathematische Überlegungen

Der Regenbogen: Mathematische Überlegungen Jörg Priewasser Andreas Müller Der Regenbogen: Mathematische Überlegungen Text: Andreas Müller. Voraussetzungen Zur Vereinfachung des Modells werden einige Annahmen gemacht, die zwar nicht alle korrekt

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung

Mehr

2. Schulaufgabe aus der Physik

2. Schulaufgabe aus der Physik Q Kurs QPh0 2. Schulaufgabe aus der Physik Be max 50 BE Punkte am 22.06.207 Name : M U S T E R L Ö S U N G Konstanten: c Schall =340 m s,c Licht=3,0 0 8 m s.wie können Sie den Wellencharakter von Mikrowellenstrahlung

Mehr

Aufgaben Mechanische Wellen

Aufgaben Mechanische Wellen I.2 Unterscheidung von Wellen 1. Beschreibe, in welche zwei Arten man Wellenvorgänge einteilen kann. 2. Welche Arten von mechanischen Wellen gibt es in folgenden Medien: a) Luft, b) Wasser, c) Stahl? I.3

Mehr

Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion

Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion Übung 24 Optik Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion Lernziele - verstehen, dass das Licht Wellencharakter besitzt. - verstehen, wie beim Fresnel'schen Spiegelversuch die beobachteten

Mehr

Ein roter und ein grüner Scheinwerfer beleuchten eine weiße Wand. Wie erscheint die Wand an der Stelle, an der sich beide Lichtkegel überschneiden?

Ein roter und ein grüner Scheinwerfer beleuchten eine weiße Wand. Wie erscheint die Wand an der Stelle, an der sich beide Lichtkegel überschneiden? Multiple Choice Bearbeitungszeit: 10:00 Minuten Aufgabe 1 Punkte: 1 Ein roter und ein grüner Scheinwerfer beleuchten eine weiße Wand. Wie erscheint die Wand an der Stelle, an der sich beide Lichtkegel

Mehr

6.2.2 Mikrowellen. M.Brennscheidt

6.2.2 Mikrowellen. M.Brennscheidt 6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ

Mehr

Beugung am Einfach- und Mehrfachspalt

Beugung am Einfach- und Mehrfachspalt O03 Beugung am Einfach- und Mehrfachspalt Die Beugungsbilder von Einzel- und Mehrfachspalten werden in Fraunhoferscher Anordnung aufgenommen und ausgewertet. Dabei soll insbesondere die qualitative Abhängigkeit

Mehr

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2 Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Schulbiologiezentrum Hannover. Mit einer CD die Wellenlängen des Lichts messen

Schulbiologiezentrum Hannover. Mit einer CD die Wellenlängen des Lichts messen Schulbiologiezentrum Hannover Vinnhorster Weg 2, 30419 Hannover Tel: 0511-16847665/7 Fax: 0511-16847352 email: schulbiologiezentrum@hannover-stadt.de Unterrichtsprojekte Natur und Technik 19.68 Zum Selbstbau

Mehr

Versuch 03: Optisches Gitter

Versuch 03: Optisches Gitter Versuch 03: Optisches Gitter. Einordung in den Kernlehrplan für den Grundkurs Kompetenzen gemäß KLP: Die Schülerinnen und Schüler bestimmen Wellenlängen und Frequenzen von Licht mit Doppelspalt und Gitter

Mehr

Lichtbeugung. Abbildung 1: Christiaan Huygens - der Vater der Wellentheorie des Lichts. 1 Sicherheitshinweise 2

Lichtbeugung. Abbildung 1: Christiaan Huygens - der Vater der Wellentheorie des Lichts. 1 Sicherheitshinweise 2 Lichtbeugung Abbildung 1: Christiaan Huygens - der Vater der Wellentheorie des Lichts Inhaltsverzeichnis 1 Sicherheitshinweise 2 2 Beugung und Interferenz 2 2.1 Beugung............................................

Mehr

13.1 Bestimmung der Lichtgeschwindigkeit

13.1 Bestimmung der Lichtgeschwindigkeit 13 Ausbreitung des Lichts Hofer 1 13.1 Bestimmung der Lichtgeschwindigkeit 13.1.1 Bestimmung durch astronomische Beobachtung Olaf Römer führte 1676 die erste Berechung zur Bestimmung der Lichtgeschwindigkeit

Mehr

4. Klausur ( )

4. Klausur ( ) EI PH J2 2011-12 PHYSIK 4. Klausur (10.05.2012) Telle oder Weilchen? Eure letzte Physik-Klausur in der Schule! Du kannst deinen GTR verwenden. Achte auf eine übersichtliche Darstellung! (Bearbeitungszeit:

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 17: Lichtbeugung Universität der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 Versuch 17: Lichtbeugung Im Modell

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

Interferenz und Beugung

Interferenz und Beugung Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben

Mehr

Interferenz von Schallwellen

Interferenz von Schallwellen Interferenz von Schallwellen Das Wort Interferenz verbindet man meist mit dem Doppelspaltversuch der Optik. Der zeigt, dass sich Licht wie eine Welle verhält. Trifft der Berg einer Welle aus dem einen

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O06 Beugung an Spalt und Gitter (Pr_PhII_O06_Beugung_7, 5.10.015) 1..

Mehr

Das Hook sche Gesetz

Das Hook sche Gesetz Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional Wenn man eine Messung durchführt und die beiden Größen gegeneinander

Mehr

Optik. Wellenoptik ABER: Gliederung. Definition und Kenngrößen. Dispersion

Optik. Wellenoptik ABER: Gliederung. Definition und Kenngrößen. Dispersion Gliederung Optik Wellenoptik Dispersion Definition und Kenngrößen der Welle Huygens sches Prinzip Welleneigenschaften Interferenz Kohärenz Streuung Polarisation Dispersion Strahlengang durch ein Prisma

Mehr

Wissenswertes zum Einsatz von Lichtleitern

Wissenswertes zum Einsatz von Lichtleitern Wissenswertes zum Einsatz von Lichtleitern Dr. Jörg-Peter Conzen Vice President NIR & Process Bruker Anwendertreffen, Ettlingen den 13.11.2013 Innovation with Integrity Definition: Brechung Brechung oder

Mehr

9.10 Beugung Beugung

9.10 Beugung Beugung 9.0 Beugung Abb. 9. Aufbau des Original Michelson-Morley Experiments von 887 mit einer massiven Granitplatte in einem Quecksilberbad (Wikipedia). 9.0 Beugung Bisher sind wir von der Idealisierung ebener

Mehr

Übungen zur Physik des Lichts

Übungen zur Physik des Lichts ) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich

Mehr

Übungsaufgaben zu Interferenz

Übungsaufgaben zu Interferenz Übungsaufgaben zu Interferenz ˆ Aufgabe 1: Interferenzmaxima Natrium der Wellenlänge λ = 589 nm falle senkrecht auf ein quadratisches Beugungsgitter mit der Seitenlänge cm mit 4000 Linien pro Zentimeter.

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 3 Beugung und Interferenz Aufgabe 1: Seifenblasen a) Erklären Sie, warum Seifenblasen in bunten Farben schillern.

Mehr

Beugung von Mikrowellen an Spalt und Steg. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung.

Beugung von Mikrowellen an Spalt und Steg. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung. Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung. Prinzip Treffen elektromagnetische Wellen auf die Kante eines Objekts (beispielsweise Spalt und Steg),

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Astro Stammtisch Peine

Astro Stammtisch Peine Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)

Mehr

Weißes Licht wird farbig

Weißes Licht wird farbig B1 Experiment Weißes Licht wird farbig Das Licht, dass die Sonne oder eine Glühlampe aussendet, bezeichnet man als weißes Licht. Lässt man es auf ein Glasprisma fallen, so entstehen auf einem Schirm hinter

Mehr

Versuchsvorbereitung P2-13: Interferenz

Versuchsvorbereitung P2-13: Interferenz Versuchsvorbereitung P2-13: Interferenz Michael Walz, Kathrin Ender Gruppe 10 26. Mai 2008 Inhaltsverzeichnis 1 Newton'sche Ringe 2 1.1 Bestimmung des Krümmungsradius R...................... 2 1.2 Brechungsindex

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Wie breitet sich Licht aus?

Wie breitet sich Licht aus? A1 Experiment Wie breitet sich Licht aus? Die Ausbreitung des Lichtes lässt sich unter anderem mit dem Strahlenmodell erklären. Dabei stellt der Lichtstrahl eine Idealisierung dar. In der Praxis beobachtet

Mehr

5.9.1 Brechung von Wasserwellen ******

5.9.1 Brechung von Wasserwellen ****** 5.9.1 ****** 1 Motivation Ein periodisch ins Wasser eintauchender Stab erzeugt ebene Wasserwellen, die an im Wasser liegenden Hindernissen gebrochen werden. Experiment Abbildung 1: an einer Kante bzw.

Mehr

1. ZIELE 2. ZUR VORBEREITUNG. D03 Beugung D03

1. ZIELE 2. ZUR VORBEREITUNG. D03 Beugung D03 Beugung 1. ZIELE Licht breitet sich gradlinig aus, meistens. Es geht aber auch um die Ecke. Lässt man z. B. ein Lichtbündel durch eine kleine Blende fallen, so beobachtet man auf dem Schirm abwechselnd

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16 Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch 16/03/16 Inhaltsverzeichnis Technische Universität München 1 Kohärenz 1 2 Beugung 1 2.1 Huygenssches Prinzip.............................

Mehr

Wellen. Experimentalphysik. B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5

Wellen. Experimentalphysik. B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5 Experimentalphysik Wellen B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5 Pendelkette www.berndbaumann.de info@berndbaumann.de page 2 Elongation Amplitude Wellenzahl Nullphase Kreisfrequenz

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Wellenwanne. Einleitung

Wellenwanne. Einleitung Wellenwanne Einleitung Eine wichtige Erkenntnis der Quantenphysik besagt, dass Quantenobjekte (wie z.b. Moleküle, Atome, Protonen, Neutronen, Elektronen) sich in bestimmten Experimenten - z.b. beim Doppelspaltversuch

Mehr

Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik

Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik Wellenoptik Beugung an Linsenöffnungen Wellenoptik Typische bmessungen D der abbildenden System (Blenden, Linsen) sind klein gegen die Wellenlänge des Lichts Wellencharakter des Lichts führt zu Erscheinungen

Mehr

Physik-Abitur 2006 Aufgabe II d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA

Physik-Abitur 2006 Aufgabe II d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA Physik-Abitur 2006 Aufgabe II d Photonen einer monochromatischen Lichtquelle stehen zwei Wege zur Verfügung, die über einen Strahlteiler, je einen Spiegel und einen halbdurchlässigen Spiegel auf den gleichen

Mehr

Gebrauchsanleitung zum Schülerskript Wellenoptik

Gebrauchsanleitung zum Schülerskript Wellenoptik Profilkurs 08 Wellenoptik - Schülerskript Stand 4..0 Seite Gebrauchsanleitung zum Schülerskript Wellenoptik Das, was normalerweise am Ende einer Stunde an der Tafel stehen würde, ist in Schriftgröße 6

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

Grundwissen. Physik. Jahrgangsstufe 10

Grundwissen. Physik. Jahrgangsstufe 10 Grundwissen Physik Jahrgangsstufe 10 1. Impuls Grundwissen Physik Jahrgangsstufe 10 Seite 1 Definition: p=m v [ p]=1 kg m s Impulserhaltungssatz: p vorher = p nachher p= p ' p 1 p = p' 1 p ' m 1 =1kg stößt

Mehr

BIOPHYSIK 6. Vorlesung

BIOPHYSIK 6. Vorlesung BIOPHYSIK 6. Vorlesung Wellenoptik, Beugung, Interferenz, Polarization Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Photoeffekt) Licht besteht aus Teilchen (Quanten)

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

PSI. Physik Schülerlabor-Initiative

PSI. Physik Schülerlabor-Initiative PSI die Physik Schülerlabor-Initiative Das Spektrometer Version ohne eingebettete Animationen Die Physik-Schülerlabor-Initiative c Sven Röhrauer 1 Einleitung Die Beobachtung, dass weißes Licht eine Überlagerung

Mehr

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli) 2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender

Mehr

Übungsblatt 6 ( ) mit Lösungen

Übungsblatt 6 ( ) mit Lösungen 1) Wellengleichung Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 014/15 Übungsblatt 6 (09.01.015) mit Lösungen Eine Welle, die sich in positiver x-richtung mit der Geschwindigkeit

Mehr

Physik-Abitur 2006 Aufgabe III d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA

Physik-Abitur 2006 Aufgabe III d. Offizielle Lösungshinweise. Operatorendefinitionen aus den EPA Physik-Abitur 2006 Aufgabe III d Albert Einstein schreibt im Jahre 1905: Die [... Wellen]theorie des Lichtes hat sich zur Darstellung der rein optischen Phänomene vortrefflich bewährt und wird wohl nie

Mehr

Das Hook sche Gesetz

Das Hook sche Gesetz Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional 18.04.2013 Wenn man eine Messung durchführt und die beiden Größen gegeneinander

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Begriff mechanische Welle Mechanische Schwingungen und Wellen Teil II - Wellen Definition: Eine mech. Welle ist die Ausbreitung einer mech. Schwingung im Raum, bei der Energie übertragen jedoch kein Stoff

Mehr