= 27

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "= 27"

Transkript

1 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ ÁÒ ÂÙÐ Ë Ù Ö Ò Ø Ò Ö È Ö Ë Ù º Ë Ò ÑÑØ Ñ ÙÒ ÐÒ Ú Ö ÒÞ ÐÒ Ë Ù Ö Ù º Á Ø Ò ÞÙ ÑÑ Ò Ö Ò È Ö Ù ¹½¾ Û ÚÓÒ Ò Ð Ö Ò Ò Ú ÐÐ Ð º Ï Ð Ò

2 ¾ À Ï Ò ÐÚÓ ÛÛÛº Рк Ù ¹½ ÓÖÓØ Ï º Â Ö ÃÐ Î Ö Ò ÈÙÒ Ø Ò Ö Ê Ò ÓÐ ÚÓÒ ½ ½ º Ï Ø ÐÐØ Ð Ö Ù Ö ÐØ Ø Ù ¹½ ÒÒ ÈÓÐÐ Ò Ø Â Ö ÃÐ ÂÓÒ Ø Öº ½ Ö ÓÑÑØ Ö ÞÙº Ï Ú Ð Ö Ø Ö ØÞØ Ù ¹½ ÒÒ ÈÓÐÐ Ò Ø Â Ö ÃÐ Ù ÖÓÐ Ò ÙÖØ Ø Ñ Ò Ã Ò Öº ÚÓÒ Ò Ò Û Ö Ò ÂÙÒ Òº Ï Ú Ð Å Ò ØØ ÖÓÐ Ò Ò Ð Ò

3 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ Ù ¹½ ÒÒ ÐØ Ø Ò ÕÙ Ö Ø Ð ØØ È Ô Ö ÒØÐ Ò Ö Å ØØ ÐÐ Ò Ó Ò Ê Ø Ö Ðغ Ò Ð Ò ÐØ Ø Ê Ø ÒÓ ÒÑ Ð Ò Ö Å ØØ ÙÒ Ö ÐØ ÖÒ ÙØ Ò ÉÙ Ö Øº ÉÙ Ö Ø ÐØ Ø ÒÒ ÒÓ ÒÑ Ð ÞÙ Ò Ñ Ê Ø º ÆÙÒ Ò Ø Ñ Ê Ø Ò Ï Ú Ð Ä Ö Ø È Ô Ö Ò Ñ ÒÒ Û Ö Ù Ò Ò Ö ÐØ Ø Ø ¾ ÃÐ Ò ½ ÙÒ ¾ Ù ¹¾½ Ê Ø Á Ö Ñ Ø Ñ Ò Ñ ÖÖ Ò ¾ ËØÙÒ Ò ¾ à ÐÓÑ Ø Öº Á Ö Ö ÙÒ Ò Ø ÐÐØ Ø Á à ÐÓÑ Ø Ö Ò ½ Å ÒÙØ Òº Ï Ú Ð Ã ÐÓÑ Ø Ö ÖØ Ö Ò Ö ÙÒ ÒÒ Ò Ò Ò Ö ËØÙÒ Ù ¹¾¾ ÁÑÑ Ö ÞÛ Ö Ù Ø Ò ÙÒØ Ò ÒÒ Ñ Ò ÞÙ Ò Ñ Ï Ö Ð ÞÙ ÑÑ Ò ØÞ Òº Ï Ð Ò

4 À Ï Ò ÐÚÓ ÛÛÛº Рк Ù ¹¾ Æ ÓÐ Ù Â Ö ÃÐ ½ Ð Ü Ø ½ Â Ö ÙÒ ½½ ÅÓÒ Ø ÐØ À ÒÒ Ø ÅÓÒ Ø ÐØ Öº Ï ÐØ Ò ÞÙ ÑÑ Ò Ù ¹¾ ÒÒ ÈÓÐÐ Ò Ø Â Ö ÃÐ ¾ Ò Ð Ò Ò Ð Ò Ù ¹¾ Ö ØÞ ËØ ÖÒ Ò Ó ÙÖ Ø ÓÒ ¹ Ó Ö ËÙ ØÖ Ø ÓÒ Þ Ò Ð ÙÒ Ø ÑÑØ = 27

5 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ Ù ¹¾ ÂÓ ÒÒ Ì ÒØ Ð Â Ö ÃÐ ½ Ê Ò Ù Ò 1+1 = 2+2 = 3+3 = 4+4 = 5+5 = 6+6 = 7+7 = 8+8 = 9+9 = = Ï ÐÐØ Ö Ù Ù ¹¾ Ö Ö º Í Ð Ò ÓÖ Â Ö ÃÐ Ò Ù Ö Û ÐÐ ¼ À Ò Ö ÙÒ ¼ À Ò Ú Ö Ù Òº Ò ÀÙ Ò Ó Ø Ø ¼ Ø ÙÒ Ò À Ò Ó Ø Ø 1,20e Û Ð À Ò Ò ÔÖ Ø Öµº Ò Æ Ö Ù Ø Ñ ¼ À Ò Ö ÙÒ ½¼ À Ò º Ï Ú Ð ÑÙ Ö Þ Ð Ò Ù ¹¾ Ï Í Ð Ò ÓÖ ½¼ Â Ö ÃÐ Ù Ò Ñ Ù ÖÒ Ó Ø ½ à ½¾ À Ò Ö ½ Ë Û Ò ½ È Ö ÙÒ Ë º ÚÓÒ Ð Ø Ø Ö Ù Ö Ã Ë Û Ò ÙÒ À Ò Öº ÎÓÒ Ò È Ö Ò Ú Ö Ù Ø Ö º ÒØÛÓÖØ ÓÐ Ò Ò Ö Ò µ Ï Ú Ð Ì Ö Ø Ö ÒÓ µ Ï Ð ËÙÑÑ Ö Ì Ö Ð Ø Ð µ Ï Ú Ð Ì Ö ØØ Ö Ñ Ò Ò

6 ÃÐ Ò ÙÒ À Ï Ò ÐÚÓ ÛÛÛº Рк Ù ¹ ½ ÌÓ Ø ÁÒ ¾ Â Ö Ò Û Ö Ú ÖÑ Ð Ó ÐØ Ò Û ØÞØ Òº Ï ÐØ Ø ÌÓ Ù ¹ ¾ ÂÙÐ Ö ÐÖØ Ö Ñ ÖÙ Ö Ö Ë ÐÐ ½ à ÐÓÑ Ø Ö Ò ØÛ Ë ÙÒ Ò ÞÙÖ Ð Øº µ Ï Û Ø Ø Ò Ð ØÞ ØÛ ÒØ ÖÒØ Û ÒÒ ÓÒÖ Ø Ø ÐÐØ ÚÓÑ Ï ÖÒ Ñ Ò Ð ØÞ ÞÙÑ À Ö Ò ÓÒÒ Ö ½¾ Ë ÙÒ Ò Ú Ö Ò µ Ï Ð Ò Ù ÖØ ÚÓÑ Ë Ò Ð ØÞ ÞÙÑ À Ö Ò ÓÒÒ Ö Û ÒÒ Ö Ð ØÞ ØÛ ½¾ à ÐÓÑ Ø Ö ÒØ ÖÒØ Ø Ù ¹ Ö ØØ ÖÓÓÐ Ã ÖÐ Ã ÖÓØØ ÙÒ È ÙÐ È ÔÖ ÙÒØ Ö ÐØ Ò Ö Ö Ä Ð Ò ¹ Ñ Ò Ø ÖÒ ÖÓÓÐ Ò Ã ÖÓØØ Ò Ö ØØ È ÔÖ º ÃÓÑ Ò ÚÓÒ ÙÒ Ø Ñ ÖÒ Ö Ñ Æ Ñ Ò ÒØ ÔÖ Ø Ø ÐÐØ Ö ØØ ÖÓÓРغ ËØ ÑÑØ Ô Ø Ø Ö Å Ò ÖÒ Ã ÖÓØØ Ò Øº Ï Ð Ñ Ø Ö Å Ò ÓÒ Ö ÖÒ Ù ¹ Î Ö Ù ÞÙ Ö Ð Ò Ò ÒÒÚÓÐÐ Ò Ç Ö Ö ÞÙ Ò Ò ÆÓ Ö Ø Û ÒÒ Ù Ò Ò Ñ Ð Ø Ð Ò Ò Ç Ö Ö Ò Øº Ô Ð Ã Ö ÖÒ Ò Ò Ò Ñ Ð Ö Ç Ö Ö ÛÖ Ò Ö Ò Ð Ò Ö Ö Ô Ò Ö Ç Ö Ö Ø Ç Ø º Ï ÒÒ Ö Û Ö Ð Ò ÒÞ ÐÒ ÏÓÖØ Ò ÐÐØ Ö Ù Û Ö Ö Ò Ò Ö Ð Ñ Ò Ñ Ò Ö Ò Ð Ò Ò Ö Ò Á Òº

7 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ Å ØÞ ÃÓÔ ØÙ ÀÙØ ËÓÒÒ Ð Ð ÑÔ Ð ÑÑ Ë Ð Ò ÃÖÓ Ó Ð Ð Ø ÃÐ Ú Ö ÌÖÓÑÔ Ø Î ÓÐ Ò ÐÐÓ ÃÓÒØÖ Ï Ì ÖÑÓÑ Ø Ö Ò Ñ Ð Ò Ê Ð ÒØ Ù ¹ Ð Ø ½½ Ñ Ð Ò º Ë Ø ½ Ñ ÖÞ Ö Ð Ö Ê Òº Ö Ê Ò Ø ¾ Ñ ÐÒ Ö Ð ËÔÖ º Ï Ð Ò Ø ËÔÖ Ù ¹ Ò ÀÙÒ ÐÙ Ø Ò Ñ À Ò Ò º Ö À Ø ½ ¼ Ù ÐØ ÄÒ Ò Ò Øµ ÚÓÖ Ù º Ö À Ñ Ø Ù Û Ø ËÔÖ Ò Û Ö Ò Ö ÀÙÒ Ù Û Ø ËÔÖ Ò Ñ Øº Æ Û Ú Ð Ò ËÔÖ Ò Ò ÓÐØ Ö ÀÙÒ Ò À Ò Ò Ù ¹  ÒÒÝ ÙÒ Â Ò ÛÓÐÐ Ò Ú Ö Ø ÐÐ Ð Ò Ù Ö Òº  ÒÒÝ Ñ Ø ÞÙ ÒÙÖ ÖÒ ¼ ½ ¾ ÙÒ Ú ÖÛ Ò Ò Â Ò ÖÒ ÙÒ º ÛÓÐÐ Ò Ã Ò Ö Ö Ò Ö Ð ÒÙÖ ÒÑ Ð Ö Òº µ Ï Ú Ð Ú Ö Ò Ú Ö Ø ÐÐ Ð Ò ÒÒ Â ÒÒÝ Ù Ö Ò µ Ï Ú Ð Ú Ö Ò Ú Ö Ø ÐÐ Ð Ò ÒÒ Â Ò Ù Ö Ò Ù ¹ ÂÓÒ À ÙÔØÑ ÒÒ Â Ö ÃÐ ¾ Ï Ú Ð Ò Ø Ñ Ò ÑÑ Ö ÒØÛÓÖØ Ú ÖÖØ Ö Ö Ò Ö Ã ØØ Ò Ù ¹ º ( ) : 12 =

8 ÃÐ Ò ÙÒ À Ï Ò ÐÚÓ ÛÛÛº Рк Ù ¹ ½ ÖÒ Ð Ò Ö ÖÙ Ö Û Ø ½¼ ÙÒ ÒÓ ÒÑ Ð ÀÐ Ø Ò Û Ø º Ï Ú Ð Û Ø Ö Ù ¹ ¾ Ï ÐØ Ø Ò Å Ò Ö ½¼ Å ÐÐ ÓÒ Ò ½¼ ¼¼¼ ¼¼¼ Ë ÙÒ Ò Ð Ø Ø Ë ØÞ ÞÙÒ Ø ÙÒ Ö Ò ÒÒº Ù ¹ Ï Ú Ð Ë Ò Ð ÒÒ Ñ Ò Ñ Ø Ú Ö Ú Ö Ò Ö Ò Ä Ø ÖÒ Ò ÖÓØ Ð Ö Ò ÙÒ Ð Ùµ Ò Ò Ë Ò Ð Ø Ò Ø ÑÑØ ÒÓÖ ÒÙÒ ÚÓÒ Ò Þ Ò Ø Ò Ä Ø ÖÒ Òº Ñ Ò Ò Ø ÑÑ Ö ÐÐ Ä Ø ÖÒ Ò Ð Ù Ø Òº Å Ð Ë Ò Ð Ò Ð Ó ÞÙÑ Ô Ð ÖÓØ Ð Ö Ò Ð Ù Ð ÖÓØ Ö Ò Ð Ù Ó Ö Ð Ù Ù Ù Ò ÓÐ Ò Ø ÖÐ Ö Ð Ò ÛÙÖ Ò Ò Ö Ø ÑÑØ Ò Ê Ð Ð Øº Ö Ø Ò Ð Ö Ö ÓÐ Ð ÙØ Ò 4,7,12,21,38,... Ï Ð ÙØ Ø Ê Ð ÙÒ Û Ø Ò Ö Ê Ð º ÓÐ Ò Ð À ÒÛ Ø ÙÒ Ò Ð Ú Ð Ä ÙÒ Ò ÞÙ Ö Ù º Ö Ø Ò Ä ÙÒ ÒÙÖ ÚÓÐÐ ØÒ Û ÒÒ Ò Ô Ò Ê ÙÖ ÓÒ Ê Ðµ Ò Ò Û Ö º Ö ÖÒÓ Ñ ÐÓ ÚÓÒ ÈÖÓ ÓÖ ÃÓÒ Ù Ù Ø Ò ÞÛ Ø ÐÐ Ò Ø Ö¹ Рк Ä Ö Û Ö Ö Ñ Ð Û Ö Þ Ö ØÖ ÙØ ÙÒ Ø Ò ÑÓ Ú Ö Òº ÒÞ ÛÓÖ Ò Ö Ö ÒÒ ÖØ Ø Ð Ð Ö ËÙÑÑ Ö Ö ÉÙ Ö ÙÑÑ ÙÒ Ö ÉÙ ÖÔÖÓ Ù Ø Øº Ò ÐÐ ÞÛ Ø ÐÐ Ò Ð Ò Ò ÙÒ Ö ÐÐ Ò Ñ Ø ÈÖÓ ÓÖ ÃÓÒ Ù Ù Ò Ó Ò ÐÐ Ö Û Ö Ò Øº

9 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ Å Ø Ð ÒØ Ð Ò Ù Û Ð Ò Ù Ð Ò Ò ÉÙ Ö Ø Ò Ø Ò Ò ÓÖÑ Ò Ä Ò ÓÖ Ò Ø Ò ÓÐÐ Ò Ð Ù Ð Ø Û Ö Ò Ù 8 5 Ð Ò Ò Ð ÒÕÙ Ö Ø Ò Ø Øº Ú ÖØ Ð Ò Ð Ò Ò ÐÐ Ð ÇÖ ÒØ ÖÙÒ ÙÒ Ö Ò Ð Ð Ò Ö Ò Ö Ø Ö ÆÁ ÀÌ Ô ÐØ Û Ö Òº Ð Þ Ø Ð Ó Ò ÙÒÞÙÐ Ð Ò ÒÓÖ ÒÙÒ Ò Ò Ò Ò Ò Ö Òµ ÔÙÒ Ø Ø Ð ÙÒØ Ò Ò Ö Å ØØ Ô ÐØ ÛÙÖ Ï Ø Ò ÞÙÐ Ð Ò ÒÓÖ ÒÙÒ Ù Ò Ã ÐÓ Ö ÑÑ Ñ Ø ÖÓØ ÙÒ Û ÖÞ ÂÓ ÒÒ Ö Ò Ó Ø Ø e Ò Ã ÐÓ Ö ÑÑ Û ÖÞ ÂÓ ÒÒ Ö Ò Ó Ø Ø e ÙÒ Ò Ã ÐÓ Ö ÑÑ ÖÓØ ÂÓ ÒÒ Ö Ò Ó Ø Ø ¾e º Ï Ú Ð Ö ÑÑ Û ÖÞ ÂÓ ÒÒ Ö Ò Ò Ò Ò Ñ Ã ÐÓ Ö ÑÑ Ñ Ø Ö ÂÓ ÒÒ ¹ Ö Ò ÒØ ÐØ Ò Ë Ø Ò Æ Ò Ö ½¼ Â Ö ÃÐ Ù Ö Ø ÚÓÒ Ò Ñ ÇÔ Ò Ï Ò ÓÖÑ Ò À Ð Ö Ò ÃÙ Ö È Ó Ø Ò Ò Ë Ð ÙÒ Ò Ë Ö º ÃÙ Ö Ð ÖÙÒ Ð Ò Ø Ú ÖÐ Ò ÓÐÐ Ö Ù Ó Ú Ð Û Ñ Ð ÙØØ Ö Ò Òº Ï Ø Ù

10 ½¼ ÃÐ Ò ÙÒ À Ï Ò ÐÚÓ ÛÛÛº Рк Ù ¹ ½ Ò Â Ö ÙÖ Û Ö Ñ Ø À Ò ÞÙÖ ËØ Ø Øº Ö ÓÐÐ Ò Ö Ö Ø Ò ËØ ÐÐ ÀÐ Ø Ö À Ò ÚÓÒ ÐÐ Ò Ö Ø ÙÒ Ò Ò Ð Ò À Ò Ð ÖÒ Ò Ö ÞÛ Ø Ò ËØ ÐÐ Û ÖÙÑ ÀÐ Ø ÙÒ Ò Ò Ð Ò Ò Ö Ö ØØ Ò ËØ ÐÐ Ð Ò ÀÐ Ø ÙÒ Ò Ò Ð Ò ÚÓÑ Ê Øº Ò Ö Ú ÖØ Ò ËØ ÐÐ ÓÐÐ Ö Ò Ò Ò À Ò Ò Ö Ö Ø Ð ÖÒº Ö Ö Ö Ò Ò À Ò Þ ÖØ Ð Òº Ï Ú Ð À Ò Ø Ö Â Ö ÙÖ Ø ÙÒ Û ÖÙÑ Ù ¹ ¾ Ö Ò Ñ Ï Ö Ò ØÞØ Ò ÖÓÒÞ Ð Û Ñ Ï Ö Ù Ò Ù Ò Ö Æ Ñ Å ÙÐ ÙÒ Ò Ö Ì ØÞ Ð٠غ ÄÙ Ø Ï Ö ÒÙÖ Ù Ò Ù ÒÒ Ø Ò Ò ¾ Ì Ò ÐÐغ ÄÙ Ø Ï Ö ÒÙÖ Ù Ö Æ Ó Ù ÖØ Ì ÒÙÖ Ù Ö Ì ØÞ Ù ÖØ Ì ÙÒ Ù Ñ Å ÙÐ ËØÙÒ Òº ÁÒ Û Ð Ö Ø Û Ö Ò ÐÐØ Û ÒÒ Ï Ö Ù ÐÐ Ò ÒÙÒ Ò ÞÙ Ð ÔÖÙ ÐØ Ù ¹ ÁÒ Ò Ñ ÌÖ Ô Þ ABCD Ñ Ø Ò Ô Ö ÐÐ Ð Ò Ë Ø Ò AB ÙÒ CD ÓÒ Ð AC Ð ÄÒ Û Ë Ø BCº Ö Ï Ò Ð ADC Ö 100 Ö Ï Ò Ð ABC Ö 20 º Ï Ð Ö Ò ÚÓÒ Ö ÓÒ Ð Ò AC A ÙÒ C ÖÞ Ù Ø Ò Ï Ò Ð Ö Ö ÙÒ Ë Ò Ö Ò ÎÓÖÒ Ñ Ò À Ò Â ÖÒ ÙÒ ÃÙÖØ ÙÒ Ô Ð Ò Ñ Ò Ñ Ë Øº ÆÙÒ Ò ÓÐ Ò Ò Ù Ò Û Ö ½µ Ö Ë Ö Ñ ËÔ Ð ØÖÙ Ò Ð Ù ÃÖ Û ØØ º ¾µ Ö Ø ÞÙÑ Ö Ø Ò Å Ð Ö Þ٠غ µ ÃÙÖØ ØÖ Ø Ò ÃÖ Û ØØ º µ Ö ÛÖ Ø Ø Ö ËÔ Ð Ö ÛÓÖ Òº µ  ÖÒ Ø ÑÑ Ö Ñ Ë Ø ËÓ ÚÓÒ Ö Ð ËØ ÑÑÔÐ ØÞº µ Ë Ò Ö ØÖ Ø Ò Ö Ò ÃÖ Û ØØ º Ï Ð Ò ÎÓÖ¹ ÙÒ Æ Ò Ñ Ò Ø Ö

11 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½½ ÁÒ Ö Ò Ø Ò Ò Ð ÙÒ Ò Ã Ø Ò ÙÖ Ì ÖÑ Ó ÞÙ Ö ØÞ Ò Ð ÙÒ ÐÐ Ñ Ò ÐØ Ø Ö ÐÐ Ö ÐÐ Ò Ð Ò x Ø Ø Ò Û Ö Ù Û Ö ºµ ) (2x+3) ( + = x (2x+11)+ ÁÑ Ù Ò ¹ Ù Ö Ê ÓÖ Ø Ø Ö Ø ÒÒØ ÈÖ ÑÞ Ð Ð Øº à ÒÒ Ø ÑÑ Ò ÎÓÒ ÐÙÑ Ò Ø Ø Ò ËÓÒÒ Ò ÓÖ Ú ÖÐÙ Ø Ò ½¾ Ñ Ð Ò ËØÖ º ¾ Ñ ÚÓÒ ÐÙÑ Ò¹ Ø Ø ÒØ ÖÒØ Ò Ø Ò Ò Ö Ò Ö Û ÐÒ Å ÒÙØ Ò ÐÓ Ò ÙÒ Å ÒÙØ Ò Ò Ø Øº Æ Ñ ÙÒ Ò Ñ Ò Ò ÑÔ ÐÒ Û ÐÒ ¾ Å ÒÙØ Ò Ù ÖÓØ ÙÒ Å ÒÙØ Ò Ù Ö Ò Ø Òº À ÖÖ ÍÒÛ Ò Ö Ø ÚÓÒ ÐÙÑ Ò Ø Ø Ò ËÓÒÒ Ò ÓÖ Ù Ø Ò Ñ ÅÓÑ ÒØ Ð Ë Ö Ò Ò Ö Ò Ð Ø ÙÒ ÑÔ ÐÒ Ù ÖÓØ ÐØ Òº ÁÒÒ Ö Ð Û Ð Ö ÖÞ Ø Ñ Ð Ò Ø Ô ÒÒ Ò Å ÒÙØ Òµ ÒÒ À ÖÖ ÍÒÛ Ò Ó Ò ÒÑ Ð ÒÞÙ ÐØ Ò ÚÓÒ ÐÙÑ Ò Ø Ø Ò ËÓÒÒ Ò ÓÖ Ö Ò Û ÒÒ Ö Ò Ö Ñ¹ Ô Ð Ö ÙÞÙÒ Ò ÖÓØ ÖÕÙ Ö Ò ÙÒ Ñ Ø Ø Ø Ð Ð Ò Ö Û Ò Ø Ö Ò Û ÐÐ µ Ò a 1,a 2,b 1,b 2 ÔÓ Ø Ú Ö ÐÐ Ð Òº à ÒÒ ÒÒ Ö Ð z := b 1 +b 2 a 1 +a 2 Ð Þ Ø ÐØ Ò z > b 1 a 1 ÙÒ z > b 2 a 2 µ Ò a 1,a 2,...,a n,b 1,b 2,...,b n ÔÓ Ø Ú Ö ÐÐ Ð Ò ÙÒ z Ò ÖØ Ð z := b 1 +b 2 + +b n a 1 +a 2 + +a n. à ÒÒ ÒÒ z Ð Þ Ø Ö Ö Ð Ö Ö n Ö b i a i,i = 1,...,n, Ò

12 ½¾ ÃÐ Ò ½ À Ï Ò ÐÚÓ ÛÛÛº Рк Ù ¹ ½ Ö Ö ÙÒ Ö Ò ÎÓÖÒ Ñ Ò ÊÓÐ ÃÙÖØ ÞÛº Ï ÖÒ Ö ÙÒ Ö Ò Æ Ò Ñ Ò Ð Ï Ò Ö ÞÛº ÎÓ Ø Ò ØÞ Ò Ò ÏÓ Ò Ò Ù º ÀÙ Ö Ð Ò Ò Ò Ò Ò Ö Ò Ö Ê Ò Ð Ò Ñ ØØÐ Ö ÙÒ Ö Ø À Ù Þ Ò Øº Ë Ò Ð Ù ÖÓØ ÞÛº Ð Ò ØÖ Òº Ò Ñ ÏÓ Ò Ò ØÖ Ò Ö Ö ÙÒ Ñ Ø Ö Ò Ñ Ð Ò Ò Ò Ñ Ö ÀÙ Ö ÞÙ Ò Ö Ð Ò Ò Öº ÛÙÖ Ú Ö Ò ÖØ Ö Ø Ö Ø Ø ÒÙÖ Ò ÙÒ Ð ØÖÒ Ò Ø Ø ÙÒ ÞÛ Ö Ö Ó Ö Ï Ò Ó Ö Ã º À ÙØ Ò Ö ÙÒ Û Ö ØÖÓ Òº Ø ÓÐ Ò ÒÒØ ½º Ð ÙÒ ÊÓÐ Ò ÙØ Ø Ñ Ð Ò À Ù º ¾º Ö Ø Ö Ø Ò Ø ÃÙÖØ Ò À Ù Ð Ø Ò Ø Ò Ò Ñ À Ù ÚÓÒ Ï Ò Ö Ö Ò Ò Ö À Ù ØÞغ º ÁÒ Ñ Ö Ø Ò À Ù Û Ö Ø Ø Ö Ò ÓØ Ò ÃÙÖØ Ø Ø Ò Ò Ø Ò ÒÙÖ Ð Ó ÓÐ Ö ØÖÒ Òº º Ñ ØØÐ Ö À Ù Ø Ò Ø ÖÓØ Ò ØÖ Òº º ÊÓÐ Ø Ø Ò Ò Ø Ò ÒÙÖ Ï Ò Òº Ï Ø Ö ÙØ Ø Ö Ï Ð À Ù ØÞØ Ö Ï ØÖ Ò Ò Ò Ø ÙØ Ï Ð Ö Ò Ò ÀÙ Ö Ò Ò Ò ÙØ Ò Ø ÖØ Û Ö Ù ¹ ¾ Ù Ò Ñ Ö Ø Ò Ó Ò È Ô Ö Ö ÄÒ ¼Ñ ÙÒ Ö Ø ¼Ñ ÓÐÐ Ò ÝÑÑ ØÖ Ö Ö Ò ABCD Ñ Ø Ö Ø Ñ Ï Ò Ð C ÙØ Û Ö Ò ÁÒ Û Ð Ñ ÐÐ Ø Ö Ð Ò Ò ÐØ Ö Ò Ñ Ö Ø Ò

13 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ Ù ¹ ½¼ Ø Ñ Ò ÞÙ Ù ÙÒ Ø ÐÐØ Ò Ö Ë Ù Ñ ÃÓÖÖ ÓÖ º Ã Ò ÞÛ Ø ØØ Ò Ð Ë Ù Ö º ËÔØ Ö Ñ Ò Ò Ò Ø Ò ÙÒ Ò ÒÞ ÐÒ Û Ö Ò À Ù ÛÓ Ö ÞÙ ÐÐ Ò È Ö Ë Ù Ò Ñ Û Ð Ö Ò Ø Ð Ò Ö Û Ö Ð Ò Ò º Æ Ñ Ò Û ÒÞ Ð Ø Ò Ò Û Ö Ø ÐÐØ Ö Ù Ò Ö Ö Ú Ö Ð Ò Ò Ø Ò È Ö Ë Ù Ò Ò ÓÒÒØ Ñ Ò Ø ÞÙ Ð Ò Û Öº Ï Ð Ø Ö ØÑ Ð ÒÞ Ð Ø Ñ Ò Ð Ô Ò Ö Ë Ù Ò Ø Ñ Ö Ò ÓÒÒØ ÍÐÖ Ï ÖÒ Å Ò Ø Ö µ ÁÒ ÓÐ ÙÒØ Ö Ð Ò ÎÓÖ Ò Ø Ì Ó Ö Ù ÙÒ Ò Ö ÏÙÖÞ Ð Ð ÙÒ , Ê Ò 2+ 6 Ö ÐØ Òº À Ø Ò Ö Ö Ò Ú ÖÖ Ò Ø ÍÒØ Ö Ù Ò Ð Ò Ø Ò Ù µ Ì Ó ÙÔØ Ø Û Ò Ö Ù ØÖ Ø Ò Ò Ó Ö Ø ÐØ Ò ÏÙÖÞ Ð Ù Ö Ò ÖÖ Ø ÓÒ Ð Ð º Ê Ò ÙÔØ Ø Ð Ö Ø ÓÒ Ð Ó Ö Ò ÒÞ Ð ÒÒ Û Òº à ÒÒ Ø Ù Ù ÁÑ ÁÒÒ Ö Ò Ò ÃÖ Ñ Ø Ñ Ê Ù r Ñ Ò ½ Ú Ö Ò ÈÙÒ Ø Ð Òº Å Ò Û ÙÒØ Ö Ò ½ ÈÙÒ Ø Ò Ø Ø ÞÛ ÈÙÒ Ø Ø Ö Ò Ø Ò Ò Ö Ð 2 3 r غ

14 ½ À Ï Ò ÐÚÓ ÛÛÛº Рк ÍÐÖ Ï ÖÒ Å Ò Ø Ö ÁÑ ÐÐ Ñ Ò Ò Ø ËÙÑÑ Ö ÉÙ Ö Ø ÞÛ Ö Ö ÐÐ Ö Ð Ò Ò Ø ØÓÖ Ö Öº ÁÒ Ò Ñ ÓÒ Ö Ò ÐÐ Ø ÐÐ Ö Ò Ö ÛÓ Ð Ñ Ð Û Ö ÒÞ Å Ø ¹ Ñ Ø Ö Ò ËÓÔ ÖÑ Ò ½ ¹ ½ ½µ Þ Ø Øº Ù Ö ÐÐ Ò a,b Ò Ö ÐÐ Ð c Ó 2ab = c 2 غ ÒÒ ÐØ Á ÒØ ØØ ÚÓÒ ËÓÔ ÖÑ Òµ a 2 +b 2 = (a+b+ 2ab)(a+b 2ab). Ù Ò µ Å Ò Û Á ÒØ ØØ ÚÓÒ ËÓÔ ÖÑ Òº µ Å Ò ØÓÖ Ö a 4 +4b 4 º µ Å Ò Û Ñ Ø À Ð Ö Á ÒØ ØØ ÚÓÒ ËÓÔ ÖÑ Ò n n ÈÖ ÑÞ Ð Ø Ò Ù ÒÒ Û ÒÒ n = 1 غ µ Å Ò ÒØ Ñ Ø À Ð Ö Á ÒØ ØØ ÚÓÒ ËÓÔ ÖÑ Ò Ó Ò ÈÖ ÑÞ Ð Øº

15 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ ÉÙ ÐÐ ÒÒ Û Ù ¹½½ ÂÓ ÒÒ Ä Ñ ÒÒ ¾ Ñ Ð ÔÐÙ ËÔ Ëº Ù ¹½¾ Ä ÔÞ Ö ÎÓÐ Þ ØÙÒ ¾µ½ ¾ Ù ¹½ ÓÖÓØ Ï Ò ÐÚÓ Â Ö ÃÐ Ù ¹½ ÒÒ ÈÓÐÐ Ò Ø Â Ö ÃÐ Ù ¹½ ÒÒ ÈÓÐÐ Ò Ø Â Ö ÃÐ Ù ¹¾½ ÂÓ ÒÒ Ä Ñ ÒÒ ¾ Ñ Ð ÔÐÙ ËÔ Ëº¾ Ù ¹¾¾ ÂÓ ÒÒ Ä Ñ ÒÒ ¾ Ñ Ð ÔÐÙ ËÔ Ëº½¾ Ù ¹¾ Æ ÓÐ Ù Â Ö ÃÐ ½ Ù ¹¾ ÒÒ ÈÓÐÐ Ò Ø Â Ö ÃÐ ¾ Ù ¹¾ Å Ø Ø ÊÙ Ð Ò µ µ¾¼¼¼ Ù ¹¾ ÂÓ ÒÒ Ì ÒØ Ð Â Ö ÃÐ ½ Ù ¹¾ Ö Ö ÖÒ Ø Í Ð Ò ÓÖ Â Ö ÃÐ Ù ¹¾ Ï Í Ð Ò ÓÖ ½¼ Â Ö ÃÐ Ù ¹ ¾ ÂÓ ÒÒ Ä Ñ ÒÒ ¾ Ñ Ð ÔÐÙ ËÔ Ëº½¼ Ù ¹ ÂÓ ÒÒ Ä Ñ ÒÒ ¾ Ñ Ð ÔÐÙ ËÔ Ëº½ Ù ¹ ÂÓÒ À ÙÔØÑ ÒÒ Â Ö ÃÐ ¾ Ë Ø Ò Æ Ò Ö ½¼ Â Ö ÃÐ Ù ¹ ½ Ê Ò ÖÞ Ð Ò ÙÒ Ø ØÙ ÙÒ ÓÑ ØÖ Ù Ö ÙÒ ÙÒ ÐØ Ëº½ ½ Ù ¹ ¾ Ê Ò ÖÞ Ð Ò ÙÒ Ø ØÙ ÙÒ ÓÑ ØÖ Ù Ö ÙÒ ÙÒ ÐØ Ëº½ Ù ¹ ÐÔ µ½ ¾ ÐÔ µ½ ÐÔ µ½ Å Ø Ø ÊÙ Ð Ò µ µ¾¼¼½ Ù ¹ ½ ÐÔ ½µ½ ½ Ù ¹ ¾ ÐÔ µ½ ÍÐÖ Ï ÖÒ Å Ò Ø Ö ÐÔ ½µ½ ¾ ÍÐÖ Ï ÖÒ Å Ò Ø Ö Ê Ø À Ï Ò ÐÚÓ

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = =

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Ë ÈÌ»ÇÃÌ ¾¼½¾ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ï Ú Ð Ö ÒÒ Ø Ù Ò Ö ÙÖ ÒØ Ò Ù ¹½¾ Ù Ô Ø Ö ÊØ ÐÖ Ø Ö ÙØ Å Ù Ò ÙÒ Ò Ã Ø Ö ÍÒ ÒÒ Ö Ò Ø Ù Û Ò Û ÐØ ÛÓ Ð Ò Ò Ò ÏÓ Òµ À ÒÛ ÙÒ Ò Û Ð Ò Ò Ð Ò Ò ÈÙÒ Ø ÙÒØ

Mehr

x y x+y x+15 y 4 x+y 7

x y x+y x+15 y 4 x+y 7 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¼ ¹ Â Æ» ¾¼½ ½ ½ ÎÓÖ ÙÐ Ä ÙÒ ¼¹½½ Î ¾ Ï ¾ Ä ÙÒ ¼¹½¾ È Ö Ö Ö Ò ÓÖ Ò Ø Ò ÅÓÓÒ Ñ Ù ÊÓÑ Ó Ä Ë ÒØÓ ÄÓ Ä Ó Ð Ò Ø Ö Ø Ä ÙÒ ¼¹½ Ä ÙÒ ¼¹½ ¹¾ ¹ ¹½ ¹ Ä ÙÒ ¼¹½ Ò Ã Ò Öº Ë Ñ Ò ½ ¾ ÙÒ Ó Ò ØÖÓ

Mehr

α : Σ γ Σ α γ : Σ α Σ γ

α : Σ γ Σ α γ : Σ α Σ γ Ë Ñ Ò Ö Ö Ø ØÖ Ø ÁÒØ ÖÔÖ Ø Ø ÓÒ Á È Ò ½¼º ÂÙÐ ¾¼¼ ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ä Ö¹ ÙÒ ÓÖ ÙÒ Ò Ø Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ØØ Ò Ò ØÖ ¹ ¼ Å Ò Ò Î Ö Ö ÓÞ ÒØ ØÖ Ù Ö Æ Þ Å ÝÐÓÚ ÈÖÓ º Å ÖØ Ò ÀÓ

Mehr

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ Ø ÓÒ ÒÙÑ Ö ÁÒØ Ö Ø ÓÒ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á º Ö Ò ÙÒ º À Ù Ò Ð ¾ º Å ¾¼½ ½» ¾ Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ

Mehr

R ψ = {λ ψ, λ 0}. P ψ P H

R ψ = {λ ψ, λ 0}. P ψ P H Ã Ô Ø Ð Ç ÖÚ Ð Ù ØÒ ÙÒ ÍÒ Ø ÑÑØ Ø ÒØ Ò ÐÐ Ò Ö Ö ØØÐ Ò Ñ ÙÒ Ò ººº Ò Û Ö Ø ¹ Ø Ø Ö Ø Ö Ö È ¹ ÙÒ Ø ÓÒ ÙÒ Ñ Ø Ö Æ ØÙÖ ØÞ ººº Ò ËØ Ð Ö ØÞ Û Ò Ø Ò Ö Ò Â Ö ÙÒ ÖØ Ø ÑÑ Ò Û Ö ººº ÎÓÒ Ò Ñ Ï ÞÙÖ ÞÙ ØÖÙÑ Ò ÞÙÖ ÞÙÑ

Mehr

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ Ò Ò Ø Ó ÍÒØ Ö Ù ÙÒ Ö Ð ØÖÓÒ Ò ÄÓ Ð ÖÙÒ Ò Ò Ö Ñ Ò ÓÒ Ð Ò À Ð Ð Ø Ö ØÖÙ ØÙÖ Ò Ñ Ø Ï ÐÛ Ö ÙÒ ÙÒ ÍÒÓÖ ÒÙÒ Ò Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö ÚÓÖ Ð Ø ÚÓÒ Å Ö

Mehr

Þ ÒÞÙÒØ Ö Ù ÙÒ Ò Ò Ö ÎÓÖ Ð Ò ÙÒ Î ÖØ Ù Ò ¹Å Ø Ó Ö ÙÓÖ ÒÙÒ ÔÖÓ Ð Ñ ÔÐÓÑ Ö Ø Ñ ÁÒ ÓÖÑ Ø Ò º Ò ÓÖѺ Ê Ò Ö À ÖÖÐ Ö ØÖ Ù Ö ÈÖÓ º Öº Ö Ò ÈÙÔÔ Ôк ÁÒ ÓÖѺ Ù Ä Ö ØÙ Ð Ö Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ ÙÒ Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÍÒ

Mehr

Ê Ê ÙÒ ÒØ ÖÖ Ý Ó ÁÒ Ô Ò ÒØ ÙØÓÖ ÖÒ Ö Ë Ñ Ø Å Øº ÆÖº ¾ à ÒÒÞº ½ ½ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ ÅÓØ Ú Ø ÓÒ ¾ Ì Ð Ò Ê ËÝ Ø Ñ ÖÖ Ý Å Ò Ñ ÒØ ËÓ ØÛ Ö Ê Ä Ú Ð º½ Ö «Ò Ø ÓÒ Ò ººººººººººººººººººººººººººººººº

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º Ö ÒÙÒ ÖÞ Ø Ö È ÙÒØ Ö ØÙÒ ÚÓÒ Ú Ö ÓØ Ò Ã Ö ÐÐ Å ÐÐ Ö ËØÙ Ò Ö Ø Ñ ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø Ä Ö ØÙ Ð ÈÖÓ º Öº ÓÖÓØ Ï Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÙÐØØ Ö ÁÒ ÓÖÑ Ø ¾ º Ç ØÓ Ö ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú

Mehr

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1 T U M Á Æ Ë Ì Á Ì Í Ì Ê Á Æ Ç Ê Å Ì Á à ¼º ÏÓÖ ÓÔ Ö ÃÓÑÔÐ Ü ØØ Ø ÓÖ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Þ ÒØ Ð ÓÖ Ø Ñ Ò ÖÒ Ø Ïº Å ÝÖ ËÚ Ò ÃÓ Ù ÀÖ ºµ ÀÁ ÃÄÅÆÇ ÌÍŹÁ¼ ¼ ÅÖÞ ¾¼¼ Ì À Æ Á Ë À Í Æ Á Î Ê Ë Á Ì Ì Å Æ À Æ ÌÍŹÁÆ

Mehr

Peter Gienow Nr.11 Einfach heilen!

Peter Gienow Nr.11 Einfach heilen! Peter Gienow Nr.11 Einfach heilen! Reading excerpt Nr.11 Einfach heilen! of Peter Gienow Publisher: Irl Verlag http://www.narayana-verlag.com/b4091 In the Narayana webshop you can find all english books

Mehr

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û Ù Ñ ÁÒ Ø ØÙØ Ö ËÓÞ Ð È ØÖ ÙÒ ÂÙ Ò Ñ Þ Ò Ö ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÎÓÖ Ø Ò ÃÓÑÑ Ö Ö Ä Ø Öµ ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ Ê Ó ØÓÖ Ò Ö Ò Ð ÔÓ Ø ÍÒØ Ö Ð Ø ÒÓÖÑ Ð¹ ÙÒ Ö Û Ø Ò Ã Ò ÖÒ ÖØ Ø ÓÒ ÞÙÑ ÖÛ Ö Ó ØÓÖ Ö

Mehr

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº Ö Å Ò Ò Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº ÁÒ ÐØ Ú ÖÞ Ò Ù Ò ÔÙÒ Ø ½ ½ ÖÔ ÖÐ ¹ Ø ½º½ Ö Û ÙÒ ÔÔ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º ÎÓÖ Ö ØÙÒ Ö Î ÖØ ÙÒ ÔÖ ÙÒ Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ Ï Ò Ö ÔÖ ÒØ Ø ÓÒ ÙÒ Ø Ò Ò Ò Ò Ö ÏÓÖØÑ ÒÒ Ò Ö ºÛÓÖØÑ ÒÒÖÛØ ¹ Òº µ Ö Ò Ù Ò ÎÓÖ Ö ØÙÒ Ò ÚÓÒ ÓÑ Ò ÕÙ ÐÑ Ý Ö ÓÑ Ò ÕÙ ºÞ ÐÑ Ý ÖÖÛØ ¹ Òº µ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½

Mehr

Ã Ô Ø Ð ¾ ØÙ ÐÐ Ö ËØ Ò ÙÒ Ì Ò ÒÞ Ò Ö Ã Þ¹ÁÒÒ ÒÖ ÙÑ ÖÛ ÙÒ ÁÒ ÐØ Ò ¾º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÁÒÒ ÒÖ ÙÑ ÙØÞ Ñ Ã Þ¹ÁÒÒ ÒÖ ÙÑ º º º º º º º º º º º º º º

Mehr

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö Â Ö Ò ¼ À Ø ½¼¾ ÂÙÒ ¾¼½¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Mehr

ÁÈÄÇÅ Ê ÁÌ Â ¹Ï Ðع ÒÒ Ñ Ò Ö ÄÓ ÔÖÓ Ö ÑÑ ÖÙÒ Ð È Ö Ñ ÞÙÖ Ï Ò Ú Ö Ö ØÙÒ Ö Ë Ñ ÒØ Ï ÚÓÒ ÌÓ Å ØÞÒ Ö Ò Ö Ø Ñ ½º Ë ÔØ Ñ Ö ¾¼¼ Ñ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÙÒ ÓÖÑ Ð Ö ÙÒ Ú Ö Ö Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ö

Mehr

Verteilte Systeme/Sicherheit im Internet

Verteilte Systeme/Sicherheit im Internet ruhr-universität bochum Lehrstuhl für Datenverarbeitung Prof. Dr.-Ing. Dr.E.h. Wolfgang Weber Verteilte Systeme/Sicherheit im Internet Intrusion Detection und Intrusion Response Systeme (IDS & IRS) Seminar

Mehr

Lehrstuhl und Institut für Strömungslehre

Lehrstuhl und Institut für Strömungslehre ÙÒ Ò ÞÙÑ È Ø ËØÖ ÑÙÒ Ð Ö Ö Ñ Ò Ò ÙÖÛ Ò ÙÒ Î Ö Ö Ò Ø Ò ½º Ù Ò Ð ØØ ËØÖ ÑÙÒ Ö ÀÝ ÖÓ Ø Ø Ù ½º½ ÙÒ Ù ËØÖ ÑÙÒ Ñ Ò Ù ¾º½º½µ º ½º½ ÃÖ Ø ÖÞ Ù ÙÑ ØÖ ÑÙÒ Ò ÃÖ Ø ÖÞ Ù Û Ö ÚÓÒ Ò Ö Ö ÙÒ Ö Ò È Ö ÐÐ Ð ØÖ ÑÙÒ Ö Û Ò Ø

Mehr

ÒØÛ ÐÙÒ ÚÓÒ Å ØÖ Ò Ö ÅĹ Ó ÙÑ ÒØ ÓÐÐ Ø ÓÒ Ò ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ ÊÓ ØÓ Ö ÁÒ ÓÖÑ Ø ÚÓÖ Ð Ø ÚÓÒ ÓÖ Ò Ñ Ä Ö Ë Ò Ö ¾½º ÔÖ Ð ½ Ò ÊÓ ØÓ ØÖ Ù Ö ÈÖÓ º Öº Ò Ö À Ù Ö ÈÖÓ º Öº Ð Ñ Ò Ô Öº¹ÁÒ º Å ÃÐ ØØ ØÙÑ ¾ º Þ Ñ Ö

Mehr

PTBS Belastung unterschiedlicher Populationen

PTBS Belastung unterschiedlicher Populationen Ù Ö È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö Ò Ö ÖÙÒ Ö Ø Ä ÓÒ Ö ÃÖ ØÞ Ö Ö ÒÞ È ØÞ Ö È Ø Ö À ÒÞ È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö ÈÖ Ò Ñ Ñ È Ý ÓØ Ö Ô ÓÖ ÙÒ Ö ÃÐ Ò ÙÒ ÈÓÐ Ð Ò Ö È Ý ØÖ ÙÒ È Ý ÓØ

Mehr

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ Ë Ñ Ò Ö ÞÙÖ Ì ÓÖ Ö ØÓÑ Ã ÖÒ ÙÒ ÓÒ Ò ÖØ Ò Å Ø Ö Æ ØÞÐ Ì ÓÖ Ñ ÙÒ Ö ÒÛ Ò ÙÒ Ò Ö ÅÓÐ ÐÔ Ý Ä Ä Ò ¾ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ÙÐ Ö¹Ì ÓÖ Ñ ¾º½ ÀÓÑÓ Ò ØØ Ò Ö ÙÒ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º

Mehr

½ Ï ÐÐ ÓÑÑ Ò ÞÙÑ ËØÙ Ý Ù ÁÒ Ø ÐÐ Ø ÓÒ Ò ÓÒ ÙÖ Ø ÓÒ Á² ½µ ÖØ Þ ÖÙÒ º Ø Ö Ö Ø ÚÓÒ Ú Ö ÃÙÖ Ò ÞÙÑ Ë Ö Ä ÒÙÜ Ò ÆÍ ÖØ Ñ Ò ØÖ ØÓÖ Ä µº Ò Ö Ò Ö ÃÙÖ Ò ËÝ Ø Ñ Ñ Ò ØÖ Ø ÓÒ Ë ½µ Æ ØÛÓÖ Ò Æ Ì½µ ÙÒ Ë ÙÖ ¹ ØÝ Ë È½µº

Mehr

0 = 2x+2y 5 y = 4x+6

0 = 2x+2y 5 y = 4x+6 ÌÐ ÁÁ ÙÒÒ ÙÒ ½ ½º ÖÒ (((4/3+5/2) 6/5) 2/5) 5/2º 1 ¾º ÖÒ µ )) µ 1 ÙÒ µ (1 ( 2 2 ) ( 3 4 ( (2 3 ) 4 ) ( 3)º 4 º Î ÖÒ µ ( 4 xy + 3 yz )(4z xy 2 y ) µ x y z x 2 x + z y ÙÒ µ x º 1 1 1 x º Û 2 Ò Ö Ø ÓÒ Ð Ð

Mehr

ÎÓÖÖØÙÒ ÑØÖÐ ĐÙÖ Ò ËØÙÙÑ Ò Ò ĐÖÒ ÅØÑØ ÙÒ ÁÒÓÖÑØ Ò Ö ÍÒÚÖ ØĐØ ÄÔÞ ÀÖÙ Ò ÚÓÑ ËØÙÒÒ Ö ÙÐØĐØ ĐÙÖ ÅØÑØ ÙÒ ÁÒÓÖÑØ ÏÖÙÑ Ò ÌÙØÓÖÙÑ ÅØÑØ ÁÒ ÐÐÒ ÚÓÒ ÙÒ ÖÖ ÙÐØĐØ ÒÓØÒÒ ËØÙÒĐÒÒ Ø ĐØÙÒ ÑØ ÑØÑØ Ò ËÚÖÐØÒ Ð ØÚÖ ØĐÒк

Mehr

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ Ö ÁÒ ÓÖÑ Ø Ø Ë Ö Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ö ÙÒ Ó Ö¹ÁÒ Ø ØÙØ Ö Ë Ö ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ËÁÌ ÈÖÓ º Öº Ð Ù ÖØ Ì Ò ÍÒ Ú Ö ØØ ÖÑ Ø Ø ÔÐÓÑ Ö Ø Ë Ö ÐÙ ØÓÓØ ¹ÃÓÑÑÙÒ Ø ÓÒ Ò ¹ Ó¹ËÞ Ò Ö Ò ÂÙÐ Ò Ë ØØ ¾º ÅÖÞ ¾¼¼ ØÖ Ù Ö

Mehr

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö ËÔ ÖÖÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑÖ ØÙÒ ËÔ ÖÖ Òµ ÖÙ Ú ÒØ Ð Ø ÑÑØ Ð Ø ÖÙ Ñ ËÝ Ø Ñ Ö Ò¹ Å Ò ÖÒ Ù ÐØ Òµ Þ Ò ËØÖÓÑÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑ Ñ ËÝ Ø Ñ ÖÓ ÐÒ Î ÒØ Ð Ä ØÙÒ Ù ÙÖ Ò Ù ÙÒ ÚÓÒ p ËØ Ù ÖÙÒ ÙÒ ËØÖ ÑÙÒ Ö ØÙÒ

Mehr

Ä ÓÔÓÐ ¹ Ö ÒÞ Ò ¹ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ø Ò Ò Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ËÓ Ð¹Å ÃÓÒÞ ÔØ Ò È Ö ÓÒ Ð¹ÁÒ ÓÖÑ Ø ÓÒ¹Å Ò Ñ ÒعËÝ Ø Ñ Ò ÐÓÖ¹ Ö Ø ØÖ ÙØ ÚÓÒ ÏÓÐ Ò Ð Ö Ú Ò ÖÐ ÁÒÒ ÖÙ ½ º ÂÙÒ ¾¼½¾ Ù ÑÑ

Mehr

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22 Å Ø Ñ Ø º Ë Ñ Ø Ö ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÓÐ Ò Ä ½º½ Ö Ö Ö ÓÐ ½Ä º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÜÔÐ Þ Ø ÙÒ Ö ÙÖ Ú Ö ÙÒ ÚÓÒ ÓÐ Ò Ä º º º º º º º º º ½º ËÙÑÑ Ò¹ ÙÒ ÈÖÓ Ù

Mehr

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG Å ÙÖ ØØÐ Ö ÃÓÒÞ ÔØÓÔØ Ñ ÖÙÒ ÙÒ ÒØÛ ÐÙÒ Ò Ö Ó ÒØ Ö ÖØ Ò Ä Ø ÖÔÐ ØØ ÔÐÓÑ Ö Ø À ¹ÃÁȹ½¼¹ KIRCHHOFF-INSTITUT FÜR PHYSIK ÙÐØÝ Ó È Ý Ò ØÖÓÒÓÑÝ ÍÒ Ú Ö ØÝ Ó À Ð Ö ÔÐÓÑ Ø

Mehr

Ø ÑÑÙÒ Ö Ä Ò Ö ØØ ÙÒ Ò Ö Ù ÙÒ ÚÓÒ Ð Ð ÑÓ ÙÐ Ò Ñ Ð ØÖÓÑ Ò Ø Ò Ã ÐÓÖ Ñ Ø Ö Ñ ÇÅÈ Ë˹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ ÓÑ Ó ¹Å Ö Ó ÓØ ÁÒ Ø ØÙØ Ö Ã ÖÒÔ Ý ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ Å ÒÞ ¼º ÔÖ Ð ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ

Mehr

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º ËÌÊÇÆÇÅÁ ÆÙØÞÙÒ ØÖÓÒÓÑ Ö ÈÐ ØØ Ò Ö Ú ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Ñ Ö È Ý Ö Å Ø Ñ Ø Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ö Ï Ø Ð Ò Ï Ð ÐÑ ÍÒ Ú Ö ØØ Å Ò Ø Ö ÚÓÖ Ð Ø ÚÓÒ Ê Ò Ø Ù ÐÐ Ù ÓØØÖÓÔ ½ Ò Ö Ø

Mehr

¾¼¼

¾¼¼ Ù Ù ÙÖ Å Ø Ñ Ø Å Ø Ó Ò ÙÒ Ô Ð ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÂÓ Ä Ý ÓÐ Ô ÖØÑ ÒØ Ö ËØ Ø Ø ÙÒ Å Ø Ñ Ø Ö Ï ÖØ Ø ÙÒ Ú Ö ØØ Ï Ò ½ º ÂÙÒ ¾¼¼ ¾¼¼ Josef.Leydold@wu-wien.ac.at ÙÒ Ø ÓÒ Ò Ò Ñ Ö Ö Ò Î Ö Ð Ò ½º Ò Ø ÆÙØÞ Ò ÙÒ Ø ÓÒ

Mehr

ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò À ÙÔØ Ñ Ò Ö Ñ ËÓÑÑ Ö Ñ Ø Ö ½ ÈÖÓ º Öº Àº º À Ö Ò Î ÖÞ Ò Ò Ø ÙÒ Ö ÒÛ Ò ÙÒ Ò Ñ Æ ØÞ¹ ÙÒ ËÝ Ø ÑÑ Ò Ñ ÒØ Ä È Ú Ä ØÛ Ø Ö ØÓÖÝ ÈÖÓØÓÓÐ Î Ö ÓÒ Ê Ö ÒØ Ò Ö Ë ÐÐÑ

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ØÖ Ý Ø Ñ Ì˵ º ÂÙÐ ¾¼½½ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò Ò Ø Û

Mehr

ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ù Ø ÙÒØ Ö Ù ÙÒ ÙÒ Æ ÒÓ ØÖÙ ØÙÖ ÖÙÒ Ñ Ø Ñ Ê Ø Ö Ö ØÑ ÖÓ ÓÔ ÜÔ Ö Ñ ÒØ ÙÒ Ð Ò ÐÝ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ ËÚ Ò È ÙÐÙ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø È Ý ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ¼º ÆÓÚ Ñ Ö ½ Ö Ø ÙØ Ø Ö

Mehr

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2 Â Ö Ò ¾ À Ø Ë ÔØ Ñ Ö ¾¼¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö ÒÛÖØ Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò

Mehr

JENAER SCHRIFTEN MATHEMATIK UND INFORMATIK

JENAER SCHRIFTEN MATHEMATIK UND INFORMATIK FRIEDRICH-SCHILLER- UNIVERSITÄT JENA JENAER SCHRIFTEN ZUR MATHEMATIK UND INFORMATIK Eingang: 05..04 Math/Inf/06/04 Als Manuskript gedruckt Papierfalten im Mathematikunterricht Bericht zum Kolloquium vom

Mehr

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼ ÍÐØÖ ÐØ Ø ÖÓÒÙ Ð Ö ¹ÅÓÐ Ð ÎÓÒ Ö ÙÐØØ Ö Å Ø Ñ Ø ÙÒ È Ý Ö ÓØØ Ö Ï Ð ÐÑ Ä Ò Þ ÍÒ Ú Ö ØØ À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ¹ Öº Ö Öº Ò Øº ¹ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º Ì ÓÖ Ø Ò À ÒÒ Ò Ö ÓÖ Ò Ñ ¾

Mehr

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M.

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M. ĐÍ ÖÐ Ò Û Ö Ó ÈÖÓ Ö ÑÑ Ò Ò Ù ÖÙÒ Ò ÒĐÙ Ø Û Öº ÐØ ÙÒ ÒÓ Ë ÐÙ ÞÙ ÖÙÒ º Ë Û Ö ÒÙÖ ÒÒ ÆÙÒ 1 Die Invariantentechnik Algorithmen mit Intervallen Ò Û Ø Å Ø Ó ÞÙÑ Ö Ø ÐÐ Ò Ö ÒØ ÖØ ÓÖÖ Ø Ö ÈÖÓ Ö ÑÑ Ø ÁÒÚ Ö ÒØ ÒØ

Mehr

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½ ÆÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ ÙÒØ Ö Î ÖÛ Ò ÙÒ Ý Ò Ö Î Ö Ð Ò Ð Ø ÓÒ ¹ źËÑ Ø ² ʺÃÓ Ò ¹ ½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ

Mehr

δ x := x x ε x := x x

δ x := x x ε x := x x Ì Ð Á Ð ÖØ ÓÖ ½ Ð Ö ÖØ Ò Ò Ø ÓÒ ½º½º Ò Ð ÓÖ Ø ÑÙ Ø Ò Ö Ò Ñ Ð Ò ÐÐ Ò¹ ÙØ Ø Ð Ø ÓÐ ÚÓÒ Ð Ñ ÒØ Ö Ò Ê ÒÓÔ Ö Ø ÓÒ Ò ÙÒØ Ö Ò Þ ÙÒ Ñ Ø Ñ Ø Ö ÙÒ Ø ÓÒ Ò ÙÒ Ò ÙÒ Òº Ð Ñ ÒØ Ö Ê ÒÓÔ Ö Ø ÓÒ Ò Ò ÖÙÒ Ö Ò ÖØ Ò ÐÓ ÇÔ

Mehr

ØÛ ÎØÓÒÐÝ ÐØÒ ÓÐÒÒ ÊÒÐÒ µ µ ¼ ¼ ¼ µ µ ¼ ¼ ¼ µ ¼ ¼ ¼ Û Ò ÐÐÑÒ Ú Úµ µ ÓÒ Øº µ ¼ Û µ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ Ø ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

ØÛ ÎØÓÒÐÝ ÐØÒ ÓÐÒÒ ÊÒÐÒ µ µ ¼ ¼ ¼ µ µ ¼ ¼ ¼ µ ¼ ¼ ¼ Û Ò ÐÐÑÒ Ú Úµ µ ÓÒ Øº µ ¼ Û µ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ Ø ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ÀÐØÙÒ ÃÔÐ ØÞ Ù Ñ ÚØØÓÒ ØÞ Ò ÀÒ ÊÓØ ËØÒ ÒÙÔÔÒ Ã ÌÑÒØ ØÓÒÓÑ ÇÐÐ Ð ÎÐ µ º ØÛ ÎØÓÒÐÝ º ÒÒ Ò ÞÒØÐÒ ÃØÐÒ Ò Ò º ÐÒ ØÞ º ÑØÒ º Ò ÒØÞÐ ÒØ ÚØÓ º ÒØ Ò ÁÒÚÒØ º ÒÒ Ò ¹ÃØÐÒ Ò ÃÐ ÒØØ º ÜÞÒØÞØØ ÙÒ ÑØÒ º ØØ ØÞ ÚÓÒ ÃÔÐ

Mehr

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ Â Ö Ö Ø ¾¼¼½ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¾µ ½ ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ÈÓØ Ñ ¼ ÐÐ Ñ Ò ËØ ÖÒÛ ÖØ Ð Ö Ò Ö ËØ ÖÒÛ ÖØ ½ ¹½ ¾ ÈÓØ Ñ Ì Ð ÓÒ ¼ ½µ ¼ Ì Ð Ü ¼ ½µ ¾ ¹Å Ð Ö ØÓÖ Ôº ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛº Ôº Ù Ò Ø ÐÐ Ò

Mehr

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø ÈÖÓ º Öº Ë Ö Â ØÞ Ä Ø Ö Î Ö ÒØÐ ÙÒ Ò ÎÓÖØÖ Ä ÖÚ Ö Ò Ø ÐØÙÒ Ò ÙÒ ÜÔÓÒ Ø Ù Ù Ø ¾¼½½ ½ ½º½ Î Ö ÒØÐ ÙÒ Ò Ø Ö Ø Ò ½º ʺ À ÔÔÐ Ö Àº¹Âº ÀÙÑÔ ÖØ Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ Ò ÙÐ Ö ØÖ ÙØ ÓÒ Ó Ô ÓØÓ Ð ØÖÓÒ ÖÓÑ ÑÙÐØ Ô

Mehr

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim Ì Ð ÁÁ Ä Ò Ö Ð ÙÒ Ý Ø Ñ ¹ Ö Ø Å Ø Ó Ò Ä Ò Ù¹ËÝÑ ÓÐ Ä Ò Ù¹ËÝÑ ÓÐ Ð Ò Î Ö ÐØ Ò ÚÓÒ ÙÒ Ø ÓÒ Ò Ò Ò Ö ÍÑ ¹ ÙÒ ÚÓÒ Ø ÑÑØ Ò Ï ÖØ Ò ÞÙ Ð Þ Ö Òº Ò Ø ÓÒ º½º Ò f,g : D R R ÙÒ Ø ÓÒ Ò ÙÒ a D Ò ÀÙ ÙÒ ÔÙÒ Øº ÐØ f(x)

Mehr

ÃÔØÐ ÒÓÑÑÒ ¹ ÙÒ ËÙ ØØÙØÓÒ «Ø ËÐÙØÞݹÐÙÒ ÙÒ ËÐÙØ ÞµÝ ¼¹µ Ö ÏÐ ÎÓÖÞÒ Òººº Òкºº Þ Ð ß Ü Ü Ô Ô ßÞÐ ÃÖÙÞÔÖ «Ø ÞÛº ÒÒØ ÑÐ ĐÒÖÙÒÒ Þ Ð ß Ü Ü Ô Ô ÈÖ ĐÒÖÙÒ Ô ¼µØÞÛ «Ø º ĐÒÖÙÒ Ö ÖÐØÚÒ ÈÖ ËÙ ØØÙØÓÒ «Ø ¾º ĐÒÖÙÒ Ö

Mehr

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH Ã Ô Ø Ð ¾ ÜÔ Ö Ñ ÒØ ÐÐ Å Ø Ó Ò ¾º½ ÒÐ ØÙÒ ÖÓÑÓÔÖÓØ Ò Û Ò Ò Ø Ù Ö ÓÐÓ Ê Ø ÓÒ ÙÖ Ä Ø¹ ÓÖÔØ ÓÒ ÒÞÙØÖ Òº Ù Ñ ÖÙÒ Û Ö Ò Ä Ø ØÖ Ð ÞÙÖ ÒÖ ÙÒ ÈÖÓØ Ò ÙÒ ÞÙÑ ËØ ÖØ Ö Ê Ø ÓÒ Ò Ø Øº Ñ Ø Ú Ö ÙÒ Ò Ò ÖÙÒ Ð ØÖÓÒ Ò Ù Ø

Mehr

ÖÓÒÐÝ ÒÙÒ ÎÖÖÒ ÞÙÖ ÈÁƹÖÒÙÒ ÙÒ ÈÁƹÈÖĐÙÙÒ ĐÙÖ ¹ÃÖØÒ ÖÓÒÐÝ ÒÙ ÈÁƹÎÖÖÒ ½ ÁÒÐØ ÚÖÞÒ ½ Ù ÑÑÒ ÙÒ Ö Ê ÙÐØØ ¾ ¾ ÒÙ ÎÖÖÒ ¾º½ ÈÁƹÒÖÖÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º½º½ ÈÁƹÒÖÖÙÒ Ù ÃÖØÒÒÓÖÑØÓÒÒ

Mehr

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ º ËÙÚÖÖÒ º (a,b) ¹ ÙÑ º ÂÙÒ Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ T i ÔÖØ Ò Ò ÐÐ ÐÒÖ Ð Ù

Mehr

Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Û Ö Ò Ù Ó Ó ÖÙÒ Ò Ò Ó Ò ÒÒØ Ö ÑÙ Ð Ö Ò¹ Ö Ö ÙÒØ Ö Ù Øº ËÓÐ Ò Ö Ö Ø ÙÑ Ò Ð µ Ò Ö Û Ð ÅÙ Ø Ö ÔÖ ÒØ Ø Ú Ì Ð Þº º Ê Ö Ò ËØÖÓÔ ºººµº Ò Ø

Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Û Ö Ò Ù Ó Ó ÖÙÒ Ò Ò Ó Ò ÒÒØ Ö ÑÙ Ð Ö Ò¹ Ö Ö ÙÒØ Ö Ù Øº ËÓÐ Ò Ö Ö Ø ÙÑ Ò Ð µ Ò Ö Û Ð ÅÙ Ø Ö ÔÖ ÒØ Ø Ú Ì Ð Þº º Ê Ö Ò ËØÖÓÔ ºººµº Ò Ø Ù Ó Ó ÖÙÒ ÙÖ ÑÙ Ð Ò Ö Ö ÔÐÓÑ Ö Ø ÌÓ ÅÙÖ ØÖ Ù Ö ÍÒ Úº º Á Öº ÐÓ ËÓÒØ ÙØ Ø Ö ÓºÍÒ Úº ÈÖÓ º Å º Á Öº ÊÓ ÖØ À Ð Ö ÁÒ Ø ØÙØ Ö Ð ØÖÓÒ ÅÙ ÙÒ Ù Ø ÍÒ Ú Ö ØØ Ö ÅÙ ÙÒ Ö Ø ÐÐ Ò ÃÙÒ Ø Ö Þ Ø ÖÖ Ë ÔØ Ñ Ö ¾¼¼ Ù ÑÑ Ò ÙÒ

Mehr

ÔÐÓÑ Ö Ø ÈÖÓ Ù Ø ÓÒ ÔÐ ÒÙÒ Ñ Ø À Ð ÚÓÒ ÅÙÐØ ÒØ Ò Ý Ø Ñ Ò Ë ÄĐÙ ÔÐÓÑ Ö Ø Ñ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØĐ Ø ÓÖØÑÙÒ ½ º Ç ØÓ Ö ¾¼¼½ ØÖ Ù Ö ÈÖÓ º Öº Ã Ø Ö Ò ÅÓÖ Ôк ÁÒ ÓÖѺ ËØ Ò À Ù Ø Ò À ÖÑ Ø ØĐ Ø Ö Ø Ð Ø ØĐ Ò Ú

Mehr

BS Registers/Home Network HLR/AuC

BS Registers/Home Network HLR/AuC Ë Ö Ø Ñ ÅÓ Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞ Ö º Ò Ö Ø ÓÒ ÍÅÌ˵ ÃÐ Ù ÚÓÒ Ö À Ý ¾¼¼¾¹¼ ¹¾ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ¾ ½º½ Ï ÖÙÑ Ö ÙÔØ Ë Ö Ø ÓÒÞ ÔØ ÑÓ Ð Ö ÃÓÑÑÙÒ ¹ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

ÙÐØØ ÁÒ Ò ÙÖ Û Ò Ø Ò ÙÒ ÁÒ ÓÖÑ Ø ÔÐÓÑ Ö Ø Ö Ì Ñ ÃÓÒ ÓÐ ÖÙÒ Ò Á̹ËÝ Ø Ñ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ ÐÐ ÖØ Ö Ö Ö ËÓ ØÛ Ö Ò ØÐ ØÙÒ Ò ÚÓÖ Ð Ø ÙÖ ÌÓÖ Ø Ò ÁÖÐÒ Ö ¾¼¼ ÌÓÖ Ø Ò ÁÖÐÒ Ö ÓÑ Ö Ø Ö ÖÚ Ï Ö Ø ÙÒØ Ö Ö Ö Ø Ú ÓÑÑÓÒ

Mehr

Ë Ö Ø ÒĐÙ ÖØÖ ÙÒ ĐÙ Ö ÁÒØ ÖÒ Ø Ñ ØØ Ð ÁÈË ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÚÓÒ Ì ÐÓ ÊÙ ÞÙÖ ÙØ ØÙÒ ÙÖ ÈÖÓ º Öº ÃÐ Ù ÖÙÒÒ Ø Ò ½ º Þ Ñ Ö ½ ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Ò ÁÒ

Mehr

Ê Ñ Ò¹ËÔ ØÖÓ ÓÔ Ò Ò Ö Ñ Ò ÓÒ Ð Ò Ð ØÖÓÒ Ò Ý Ø Ñ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ ÚÓÖ Ð Ø ÚÓÒ Þ Ö ÍÐÖ Ù À Ñ ÙÖ À Ñ ÙÖ ¾¼¼¼ ÙØ Ø Ö Ö ÖØ Ø ÓÒ ÙØ Ø Ö Ö ÔÙØ Ø ÓÒ ØÙÑ Ö ÔÙØ Ø ÓÒ ËÔÖ Ö

Mehr

ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö Æ ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Òµ Ò ÁÌ¹Ë Ö Ø ÓÒÞ ÔØ Ö Ò Û Ò ØÐ ÒÖ ØÙÒ Ñ Ô Ð Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ À Ñ ÙÖ Ì Ð ÁÁÁ ÖÐÙØ ÖÙÒ Ò Â Ò Æ ÓÒ Ö ØÖ ¾ ¾¾ ½

Mehr

À Ö Ø ÐÐÙÒ ÚÓÒ ÝÔ ÖÔÓÐ Ö ÖØ Ñ ÒÓÒ¹½¾ ÙÒ ÒÛ Ò ÙÒ Ò Ò Ö Ð Ø ¹ÆÅʹËÔ ØÖÓ ÓÔ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øºµ Ö Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ

À Ö Ø ÐÐÙÒ ÚÓÒ ÝÔ ÖÔÓÐ Ö ÖØ Ñ ÒÓÒ¹½¾ ÙÒ ÒÛ Ò ÙÒ Ò Ò Ö Ð Ø ¹ÆÅʹËÔ ØÖÓ ÓÔ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øºµ Ö Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ ½ À Ö Ø ÐÐÙÒ ÚÓÒ ÝÔ ÖÔÓÐ Ö ÖØ Ñ ÒÓÒ¹½¾ ÙÒ ÒÛ Ò ÙÒ Ò Ò Ö Ð Ø ¹ÆÅʹËÔ ØÖÓ ÓÔ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øºµ Ö Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ ÁÁÁ ¹ ÓÐÓ ÙÒ ÎÓÖ Ð Ò Å Þ Ò Ö ÍÒ Ú Ö ØØ Ê Ò ÙÖ ÚÓÖ

Mehr

A BC T EF

A BC T EF ÇϹÈÖÓ Ø ØØÔ»» Ô º Ù¹ ÖÐ Òº»ÓÛ» Ç Ë ÓÛÒÐÓ Ý Ø Ñ ÇÏ Ñ Ä ÔÞ Ö ÓÖÑ Øµ ØØÔ»» Ô º Ù¹ ÖÐ Òº»ÓÛ» ÓÛÒÐÓ» Ò ÖÙÒ Ò Ï ÓÖÔÙ ¹ Ù Ë Ö Ò Ð Ù Ö ¾¼½ ØÓ ÔÔ Öµ ØØÔ»»ÛÛÛºÑÓÖ ÒÐ ÝÔÓÓкÓÑ»ØÓ» ÐØ»½»½ Ð Ü Ð Ù Ö ÙÒ ÊÓÐ Ò Ë Ö ÐÔ

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

Grundtypen von Lägern

Grundtypen von Lägern º Ä Ö Ý Ø Ñ Ñ Ö Î Á¹Ê ØÐ Ò ¾ ½½ Ø Ä ÖÒ ÔÐ ÒØ Ä Ò Ö Ø ¹ Ò Ø Ò Ñ Å Ø Ö Ð Ù º Ä Ö Ø Ò Ê ÙÑ ÞÛº Ò Ð ÞÙÑ Ù Û Ö Ò ÚÓÒ ËØ ¹ ÙÒ»Ó Ö Ë ØØ ÙØ Ò ÓÖÑ ÚÓÒ ÊÓ ØÓ Ò Û ¹ ÒÔÖÓ Ù Ø Ò Ó Ö ÖØ Û Ö Ò Ñ Ò Ò¹ ÙÒ»Ó Ö Û ÖØÑ Ö Ø

Mehr

Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ö Ö Ò Ò Ò ÙÒ Ò Ò Ö Ø ÓÒ Ø Ò¹ Ò Ñ Ò Ñ Ò

Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ö Ö Ò Ò Ò ÙÒ Ò Ò Ö Ø ÓÒ Ø Ò¹ Ò Ñ Ò Ñ Ò ÒØÛ ÙÒ Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ñ Ø Ø Ò Ò Ò Ò ÙÒ ÙÒ Å Ò Ø Ò¹ Ø Û Ý Ö Ø Ò Ä Ò Ö Ø Òº Ò ¹Ó Ò ÖÙ º ¾ º ÂÙÒ ¾¼¼ Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û

Mehr

Ò Ö Ò Ð Ò Ö º Ä Ð ØÖÓÒ ÐÙÒ Ñ ØØ Ð Ñ ÁÒØ ÖÒ Ø ĐÍ Ö Ø ÙÒ Û ÖØÙÒ ØÙ ÐÐ Ö Î Ö Ö Ò ÙÒØ Ö ÖĐÙ Ø ÙÒ ÚÓÒ ÃÖ Ø Ö Ò Ö Ë Ö Ø ÙÒ ÙÒ Ø ÓÒ Ð ØĐ Ø ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÞÙÖ ÙØ ØÙÒ ÙÖ Ã Ø Ö Ò Ë Ö Þ Ñ Ö ½ ÍÆÁÎ ÊËÁÌ Đ Ì À Å

Mehr

ËØ Ø Ø Ò ÐÝ ÚÓÒ Î Ö Ö Ø Ò ÙÒ ÅÓ ÐÐ ÖÙÒ ÚÓÒ Î Ö Ö Ù Ñ ØØ Ð Þ ÐÐÙÐ Ö Ö ÙØÓÑ Ø Ò ÎÓÑ Ö È Ý ß Ì ÒÓÐÓ Ö Ö Ö ¹Å Ö ØÓÖ¹ÍÒ Ú Ö ØĐ Ø Ù ÙÖ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ ÄÙØÞ Æ Ù ÖØ Ù

Mehr

¾ Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ã Ö Ø Ò ÒÞÑ ÒÒ Ì Ö ÈÖÓÑÓØ ÓÒ ¾ º ÆÓÚ Ñ Ö ¾¼¼

¾ Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ã Ö Ø Ò ÒÞÑ ÒÒ Ì Ö ÈÖÓÑÓØ ÓÒ ¾ º ÆÓÚ Ñ Ö ¾¼¼ Ó ÒÐ Ö Ñ Ø À ÖØÞ¹Ä Ò Ò Ö Ø ĐÙÖ Ò ÓÔØ Ð Ùѹ Ö ÕÙ ÒÞÒÓÖÑ Ð ÎÓÑ Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øº Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º À Ö Ó ËØÓ Ö ÓÖ Ò Ñ ½ º¼ º½ ½ Ò À Ð

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÎÓÐÐ ØĐ Ò Ö ÖÙ Ö ÚÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ

Mehr

ÁÈÄÇÅ Ê ÁÌ Î Ö Ð Ú Ö Ò Ö ÊÓØÓÖ ØÖÙ ØÙÖ Ò Ò Ô Þ Ø Ú Ò Ö ÑÓÑ ÒØ Ò ÓÖ Ù ĐÙ ÖØ Ñ ÁÒ Ø ØÙØ ĐÙÖ Ò Û Ò Ø Ð ØÖÓÒ ÙÒ ÉÙ ÒØ Ò Ð ØÖÓÒ Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø Ï Ò ÙÒØ Ö ÒÐ ØÙÒ ÚÓÒ ÍÒ ÚºÈÖÓ º Ôк¹ÁÒ º ÖºØ Òº ÓÖ Ö ÙÖ Ôк¹ÁÒ

Mehr

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ¼ Ì Ò Ò ÍÒ Ú Ö ØØ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ¼ ÐÐ Ñ Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ÛÙÖ Ñ º  ÒÙ Ö ½ Ö Ò Ø ÙÖ Ù ÑÑ ÒÐ ÙÒ Ö Ö Ò ÒÖ ØÙÒ Ò ØÖÓÒÓÑ ÁÒ Ø ØÙØ Ä Ö¹ ÙÒ ÓÖ¹

Mehr

Promotionskolloquium: Reinforcement Lernen mit Regularisierungsnetzen

Promotionskolloquium: Reinforcement Lernen mit Regularisierungsnetzen Promotionskolloquium: Reinforcement Lernen mit Regularisierungsnetzen Tobias Jung Betreuer: Prof. Dr. Thomas Uthmann Prof. Dr. Elmar Schömer Dr. Daniel Polani Fachbereich Physik, Mathematik & Informatik

Mehr

Ò Ø Ò ÃÓ ÑÓ Ôº ¾ ¼ß ¼¼ À ÐÑ Ö Ïº Ù Ö ÙÒ ÏÓÐ Ò Êº ÀÖ ºµ Àº ÙØ ¾¼¼ Ò Ø Ò¹ Ò ØĐ ØØ Ò ÏÓÐ Ò Êº ÈÓØ Ñ ÙÒ ÖÒÓ Ä Ò Ú Ð ÄĐÓÒ Ò Ò Û Ö Ò Î ÖÞ Ò ÚÓÒ ØÛ ¼ Ò ØĐ ØØ

Ò Ø Ò ÃÓ ÑÓ Ôº ¾ ¼ß ¼¼ À ÐÑ Ö Ïº Ù Ö ÙÒ ÏÓÐ Ò Êº ÀÖ ºµ Àº ÙØ ¾¼¼ Ò Ø Ò¹ Ò ØĐ ØØ Ò ÏÓÐ Ò Êº ÈÓØ Ñ ÙÒ ÖÒÓ Ä Ò Ú Ð ÄĐÓÒ Ò Ò Û Ö Ò Î ÖÞ Ò ÚÓÒ ØÛ ¼ Ò ØĐ ØØ º ½ ÞÙÑ ÓÐ Ò Ò ØÖ µº Ò Ø Ð Ò ÈÖ µº ß Ù Ò Ñ ÚÓÑ ½ º º¾¼¼ º ÐÐ Ù Ò Ñ Ò ØÖ ÖÒÓ Ä Ò Ú Ðµ Ò Ø Ò ÃÓ ÑÓ Ôº ¾ ¼ß ¼¼ À ÐÑ Ö Ïº Ù Ö ÙÒ ÏÓÐ Ò Êº ÀÖ ºµ Àº ÙØ ¾¼¼ Ò Ø Ò¹ Ò ØĐ ØØ Ò ÏÓÐ Ò Êº ÈÓØ Ñ ÙÒ ÖÒÓ Ä Ò Ú Ð ÄĐÓÒ

Mehr

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ Â Ö Ö Ø ¾¼¼ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼ µ ¾¾ ¾ ½ Ö ÙÖ º Öº Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ò ØÖ ½¼ Ö ÙÖ Ì Ðº ¼ ½µ ½ ¹¼ Ü ¼ ½µ ½ ¹½½½ ¹Å Ð Ö ºÙÒ ¹ Ö ÙÖ º ÏÏÏ ØØÔ»»ÛÛÛº ºÙÒ ¹ Ö ÙÖ º Ù Ò Ø ÐÐ Ñ Ç ÖÚ ØÓÖ

Mehr

Stefan Michaelis E S. Lehrstuhl für Elektronische Systeme und Vermittlungstechnik. Lehrstuhl für Künstliche Intelligenz

Stefan Michaelis E S. Lehrstuhl für Elektronische Systeme und Vermittlungstechnik. Lehrstuhl für Künstliche Intelligenz ß ÔÐÓÑ Ö Ø ß Ì Ò Ò Ø Å Ò Ò ÞÙÖ Ò ÐÝ ÚÓÒ Ì Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞÛ Ö Ò Stefan Michaelis Þ Ñ Ö ¾¼¼¼ E S V Lehrstuhl für Künstliche Intelligenz Lehrstuhl für Elektronische Systeme und Vermittlungstechnik Prof.

Mehr

ÖÖ Ö Ø ÚÓÒ ÓÑÔÙØ Ö Ý Ø Ñ Ò Ë Ö ÔØ ÞÙÑ Ë Ñ Ò Ö ËÓÑÑ Ö Ñ Ø Ö ½ À Ö Ù Ö Å Ò Ö Ã Ö Ö Ü Ð ÈÖĐ Ð Ò Ö ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø Ã Ö Ð ÙØ ÖÒ ¹ ¼ Ã Ö Ð ÙØ ÖÒ Ï Ø ÖÑ ÒÝ ÁÒ ÐØ Á Ø Ò ÙØÞ ½ Ø Ò ÙØÞ ß Ö ØÐ Ä ½º½ ÏÓ Ö ÓÑÑØ

Mehr

Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò ÚÓÒ ÅÓ Ð ÁÈ ÞÙ Đ ØÞÐ Ñ ÃÓÒØ ÜØØÖ Ò Ö ËØ Ò Ê Ò ÓÖ ÙÒ ¹ ÙÒ Ä Ö Ò Ø ÁÒ ÓÖÑ Ø ÎÁÁÁ ÈÖÓ º Öº Â Ò Ê Ò Ö ÓÑÑÙÒ Ø ÓÒ Å Ò ÐÐ Ù Ø ÓÒ Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò

Mehr

ß Ð ¹ ÓÜ¹Ï ÖÚ ÖÛ Ò ÙÒ Î Ö ĐÙ Ö Ø ÚÓÒ Ú Ö Ò Ò Ö Ø ÒÙØÞ Ö ÃÐ Ò ÞÙÖ ÁÒ Ø ÒØ ÖÙÒ ÖĐ Ò Ø ÅĐÓ Ð Ø Ò ÞÙÖ ÒÔ ÙÒ Ö Ò Ö Ú ÖÛ Ò Ö ß Ï ÖÚ ÖÛ Ò ÙÒ ÚÓÒ ÃÓÑÔÓÒ ÒØ Ò Ò ÃÓÑÔÓÒ ÒØ Ò Ô Þ ÐÐ ËÛ¹Ì Ð Ò Ô Þ Î Ö ÐØ Ò Ù ¹ Û Ò

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½º½ ØÝÓ Ø Ð ÙÑ Ó ÙÑ Ð ÅÓ ÐÐÓÖ Ò ÑÙ º º º º º º º º º º º º º º º ½º¾ ÝØÓ Ð ØØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º Ø Ò Ò Ò ÈÖÓØ Ò Ò ØÝÓ Ø Ð ÙÑ Ó ÙÑ

Mehr

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø ÖÐØÙÒ Ö ÖØÒÚÐÐØ ÙÖ ÅÖØÓÒ ÒØÓÒÓ ËØÒÖ ÙÒ ÅÖØÒ Âº ÒÖ ØÖØ Ï ÒÚ ØØ Ø Ò ÙÒ Ó ÑÖØÓÒ ÓÒ Ø ÚÓÐÙØÓÒ Ó ÓÒ Ò ØÛÓ Ô ÐÚÒ Ò ÖÓÒ ÙÒÖ ÙÒØÒ ÓÒØÓÒ Û Ô Ø ØÓØÐ ÒÙÑÖ Ó ÒÚÙÐ ÓÒ ØÒغ ÁÒÚÙÐ ÑÖØ ÖÓÑ Ò Ö ÛØ ØØÖ ÐÚÒ ÓÒØÓÒ ØÓ Ò Ö

Mehr

Abschlussklausur Cluster-, Grid- und Cloud-Computing (CGC) M.Sc. Christian Baun

Abschlussklausur Cluster-, Grid- und Cloud-Computing (CGC) M.Sc. Christian Baun ÐÙ Ð Ù ÙÖ ÐÙ Ø Ö¹ Ö ¹ ÙÒ ÐÓÙ ¹ ÓÑÔÙØ Ò µ ½ º ÂÙÐ ¾¼½¼ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò

Mehr

Ò ÖØ Ö ÑÙÐØ Ñ Ð ÒÛ Ò ÙÒ Ò Ö Ø Ã Ö Ð ÓÖÒÖ Ò ¼ Ø ØØ Ò Ö Ø Ö ÐºÒ Ø ¾ º Å ¾¼¼½ Ù ÑÑ Ò ÙÒ Ö Ø Ñ Ø Ò Ò Ö Ð Ö ÒÓÖÑ Ò ÓØ Ò ÑÙÐØ Ñ Ð Ò Ò ÖØ Ò Ò ÙÒ Ò ÒØ Ö ÒØ ÙÒ Ò Ù Ì ÒÓÐÓ Ò ÙÖ ÔÖ Ø ¹ Ì Ø Ò Ù Ö ÙÒØ Ö ÄÙÔ Ò Ñ Òº

Mehr

TUM INSTITUT FÜR INFORMATIK. Internet -Buchhandel Eine Fallstudie für die Anwendung von Softwareentwicklungstechniken mit der UML

TUM INSTITUT FÜR INFORMATIK. Internet -Buchhandel Eine Fallstudie für die Anwendung von Softwareentwicklungstechniken mit der UML TUM INSTITUT FÜR INFORMATIK Internet -Buchhandel Eine Fallstudie für die Anwendung von Softwareentwicklungstechniken mit der UML Gerhard Popp, Franz Huber, Ingolf Krüger, Bernhard Rumpe, Wolfgang Schwerin

Mehr

ËÓÑÑ Ö Ñ Ø Ö ¾¼¼½ ÝÒ Ñ ËÝ Ø Ñ ¾ ÎÓÖÐ ÙÒ Ö ÔØ Ñ Ø ÄĐÓ ÙÒ Òµ Í Ó Ù Þ ÒØÖ Ð Ò ËÝ Ø Ñ Ö ÎÓÖÐ ÙÒ Å Ò Ð ÖÓØÑ Ò ÂÙÐ Ñ Ò ÙÒ ÒÞÙ Ø ÈÓ Ð³ Ò Ê Ñ Ø ÍÒÛÙ Ø ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ÒÐ Ò Ä ÖÒÞ Ð Ú ½ ½ º ÔÖ Ð ¾¼¼½

Mehr

Abschlussklausur Betriebssysteme (BTS) M.Sc. Christian Baun

Abschlussklausur Betriebssysteme (BTS) M.Sc. Christian Baun ÐÙ Ð Ù ÙÖ ØÖ Ý Ø Ñ Ì˵ º ÂÙÐ ¾¼½½ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò Ò Ø Û ÖØ Ø Û Ö Òº Ë

Mehr

ÐÙÑ Ò ÙÑÒ ØÖ ¹Ë ÙØÞ Ø Ò Ù ÐÐ ÙÑÒ ØÖ À Ö Ø ÐÐÙÒ ÙÒ Ö Ø Ö ÖÙÒ ÚÓÒ Å ÐØ Ã Ö ÔÐÓÑ Ö Ø Ò È Ý Ò ÖØ Ø Ñ ÁÒ Ø ØÙØ ĐÙÖ ËØÖ Ð Ò¹ ÙÒ Ã ÖÒÔ Ý ÚÓÖ Ð Ø Ö Å Ø Ñ Ø ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØĐ Ø Ö Ê Ò Ò Ö Ö ¹Ï Ð ÐÑ ¹ÍÒ Ú Ö ØĐ

Mehr

ÁÒ Ø Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ¾ Å ÒÞ Ö ÌÖ Ø Ùѹ ¹ ÜÔ Ö Ñ ÒØ ¾º½ ÌÖ Ø Ùѹ ¹ËÔ ØÖÙÑ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÜÔ Ö Ñ ÒØ Ò Å ÒÞ º º º º º º º º º º º º º º º º º º º º º º º º ½½ ¾º¾º½

Mehr

Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen

Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen Bearbeitet durch Lambert Schneider Berlin, März 2000 Geschäftsstelle Freiburg Büro Berlin

Mehr

ËØ Ò À ÖØÑ ÒÒ Å ØÖ Ð¹ÆÖº ½ µ ÃÓÒÞ ÔØ ÓÒ ÙÒ Ú ÐÙ ÖÙÒ Ò Ö Î Ù Ð ÖÙÒ Ø Ò Ö Ñ Ò Ò Ø Ò ÚÓÒ ÓÐÓ Ò ÐÐ Ò ÔÐÓÑ Ö Ø ÈÖÓ º Öº º ÃÖ Ñ Ö ÈÖÓ ÙÖ Ö Ö Ô Ø ÒÚ Ö Ö ØÙÒ Ö ÓÐÓ ÙÒ ÁÒ ÓÖÑ Ø ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø ÂÓ ÒÒ ÏÓÐ Ò Ó

Mehr

Spaltung. Fusion. E/M [MeV/amu] 2 H. 1 10 100 Massenzahl M. 62 Ni 3 H 1 H

Spaltung. Fusion. E/M [MeV/amu] 2 H. 1 10 100 Massenzahl M. 62 Ni 3 H 1 H ÈÐ Ñ Ô Ý ÙÒ Ù ÓÒ ÓÖ ÙÒ Ì Ð ÁÁ Ù ÓÒ ÓÖ ÙÒ ÚÓÒ Ê ÐÔ ÙÜ ÍÒ Ú Ö ØĐ Ø Ù ÙÖ ËË ¾¼¼¾ Ë Ö ÔØ ÖØ Ù Ñ ÎÓÖÐ ÙÒ Ö ÔØ ÚÓÒ À ÖÖÒ À ÖØÑÙØ Ó Ñ ĐÙÖ Ò Ö ÙÒ Ð ÍÒØ Ö ØĐÙØÞÙÒ ÑĐÓ Ø Ñ Ù Ñ Ï Ò Òº Ã Ô Ø Ð Ø À ÖÖ ÊÙ ÓÐ Æ Ù ÞÙÖ

Mehr

Von Zeit zu Zeit ist man gezwungen, ein fsck manuell auszuführen. Sehen Sie sich dazu einfach das folgende Beispiel an:

Von Zeit zu Zeit ist man gezwungen, ein fsck manuell auszuführen. Sehen Sie sich dazu einfach das folgende Beispiel an: º Ø Ý Ø Ñ Ö Ô Ö Ö Ò ¾ ½ mounten. Der Parameter blocksize definiert die Blockgröße des Loop-Back-Geräts. Als Nächstes wird nun die Datei linux in /mnt (oder dort, wohin Sie das Image gemountet haben) mit

Mehr

Á Ãȹû¾¼¼ ¹½½ ÒØÛ ÐÙÒ Ò Ò ÐÐ Ò Ù Ð Ý Ø Ñ Ö Ñ ÒØ ØÖ ÐÑÓÒ ØÓÖ Ñ Å˹ ÜÔ Ö Ñ ÒØ Ö ØÓÔ Ê Ð ½ º ÅÖÞ ¾¼¼ ÔÐÓÑ Ö Ø ÁÒ Ø ØÙØ Ö ÜÔ Ö Ñ ÒØ ÐÐ Ã ÖÒÔ Ý Á ÃÈ ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ö ÒØ ÈÖÓ º Öº Ï Ñ Ó Ö ÃÓÖÖ Ö ÒØ

Mehr

9 Dynamische Programmierung (Tabellierung)

9 Dynamische Programmierung (Tabellierung) 9 (Tabellierung) PrinzipºÊ ÙÖ ÓÒ ÒÑ Ø ĐÙ ÖÐ ÔÔ Ò ÒÌ Ð Ù ÒÛ Ö Ò 9.1 Grundlagen Ì ÐÐ ÖÙÒ Ö ÖÄĐÓ ÙÒ Ò Ù Û ÖØ Ø ÙÑÛ Ö ÓÐØ ÆÞ ÒØ Ö ÙÖ Ý Ø Ñ Ø ÙÖ Ð Ù Ò ÖÌ Ð Ù ÒÙÒ Ö ÒÙÒ ÒÞÙÚ ÖÑ Òº Ì ÐÐ Ò ĐÓÒÒ Ò Ø Ø Ø ÖÁÒ Ü Ö

Mehr

Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse

Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse Sven Mühlthaler Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse Dargestellt für die Amaturenaufarbeitung kassel university press Die vorliegende

Mehr

ÔÐÓÑ Ö Ø Ú ÀÓÖÒ Ö ½ ÌÀ ÖÑ Ø Ø Ö ÁÒ ÓÖÑ Ø ØÖ Ù Ö ÈÖÓ º Ϻ À Ò ÔÐ ÁÒ ÓÖÑ Ø ÈÖÓ º ĺ ÈÓÒ Ö ØÞ ÈĐ Ó Öº ź À Ö À ÖÙÒ ÞĐÙ Ö ÁÒ ÓÖÑ Ø Á ß Ø Ò ÐÝ ĐÍ ÙÒ ØÖ ß ÒÖ ÙÒ Ò ÞÙÖ Æ Ù ÓÒÞ ÔØ ÓÒº Ú ÖĐÓ«ÒØÐ Ø Ð À ¹ Ö Ø Ö Ø

Mehr

Ð ØÛÓÖØ Ó ØÓÖÚ Ø Ö Ñ Î Ö Ð ÚÓÒ ÁÒ ÓÖÑ Ø ÓÒ ÕÙ ÐÐ Ò ÙÒ Đ Ò ÚÓÒ Ò Ò Ö ÒØÛ ÐØ ÛÙÖ Ò ØĐÓ Ø Ñ Ò ÑÑ Ö Û Ö Ù È Đ ÒÓÑ Ò Ø Ò Ò Ö ÁÒ ÓÖÑ Ø ÓÒ ÕÙ ÐÐ ÐØ Ò ÓÑÔ Ø Ð Ò Ñ Ø Ò Ò Ò Ö ÞÛ Ø Ò Ð Ø Û ÒÒ ÙÑ Ð ÒÛ Ò ÙÒ Ò Ðغ À

Mehr

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6740 Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Mehr

Ù ØÓÑ Ö Ê Ð Ø ÓÒ Ô Å Ò Ñ ÒØ Ò ÇÖ Ò Ø ÓÒ Ò Ò ÅÓ ÐÐ Ö ËØÖÙ ØÙÖ ÖÙÒ ÒÒ ØØ È ØØÐÓ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö È ÐÓ ÓÔ Ò Ö Ö ØÙÒ ÁÒ ÓÖÑ Ø ÓÒ Û Ò Ø Ò Ö ÍÒ Ú Ö ØØ Ë ÖÐ Ò ÖÐ Ò Ñ ÂÙÒ ¾¼¼ ¾ ÙØ Ø Ö ÈÖÓ º

Mehr

ËÚ Ò Æ ÙÑ ÒÒ À Ò Ä Ò Ö È Ö Ò Ò Ò ĐÙ ÖÙÒ Ò Ñ Ò ÐÐ Ò ÐÝ Ò ØĐÙÖÐ Ö ËÔÖ Ú ÎÓÖÛÓÖØ Ð Û Ö Ò Ö ¼ Ö Â Ö ÞÙÑ Ö Ø ÒÑ Ð Ä ÖÚ Ö Ò Ø ÐØÙÒ Ò ÚÓÖ Ö Ø Ø Ò Ò Ò ĐÍ Ö Ð ĐÙ Ö Ù Ë Ø Ö ÓÑÔÙØ ÖÐ Ò Ù Ø Û Ø Ø Ò È Ö¹ Ò Ð ÓÖ Ø Ñ

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Logik in der Informatik Was ist Logik? 2 Logik in der Informatik Was ist Logik? Mathematisch? 3 Logik in der Informatik

Mehr

A B A B A B B \A A (B C) = (A B) (A C) A B Def. = {x x A oder x B} = {x x B oder x A} = B A. Def

A B A B A B B \A A (B C) = (A B) (A C) A B Def. = {x x A oder x B} = {x x B oder x A} = B A. Def à ÈÁÌ Ä Áº ÄÁÆ Ê Ä Ê ½ ÁÑ ÓÐ Ò Ò Ø Ö Ò ÖØ Ò Ö ÒÓ Ñ Ð Ö Ô Ö Ø ÐÐغ A B A B A B A B A B A B A\B B \A A B A B ½º¾ Ê ÒÖ ÐÒ Ö Å Ò Ò ½º Ë ØÞ Ë Ò ÙÒ Å Ò Òº ÒÒ ÐØ Ò ÓÐ Ò Ê ÒÖ ÐÒ Ö Å Ò Ò µ ÃÓÑÑÙØ Ø Ú ØÞ A B = B

Mehr

Å Ò ØÙÖ ÖØ Ð ØÖÓ Ø Ø Ä Ò Ò Ù ÓÒÚ ÒØ ÓÒ ÐÐ Ò Ð Ò Ò Ö Ó Ù Ò Æ Ö Ô ÒÒÙÒ ¹ Ê Ø Ö Ð ØÖÓÒ ÒÑ ÖÓ ÓÔ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Ö ÙÐØØ Ö È Ý Ö Ö Ö ¹Ã ÖÐ ¹ÍÒ Ú Ö ØØ ÞÙ Ì Ò Ò ÚÓÖ Ð Ø ÚÓÒ Ê ÑÓÒ

Mehr