Bewegungsgleichung der Speziellen Relativitätstheorie

Größe: px
Ab Seite anzeigen:

Download "Bewegungsgleichung der Speziellen Relativitätstheorie"

Transkript

1 Ator: Walter islin on 6 walter.bislins.h/blog/.5.3 3:6 ewegngsgleihng der Seiellen Relatiitätstheorie Dienstag, 6. Jni - :4 Ator: wabis Themen: Wissen, Physik, Kosmologie Wenn es m Geshwindigkeiten ab einigen Proenten der Lihtgeshwindigkeit geht, treten mehr nd mehr sogenannte relatiistishe Effekte in Ersheinng: Die Zeit läft im bewegten System langsamer als im rhenden nd die Längen werden in ewegngsrihtng kürer, m nr einige der [] Effekte erwähnen. Im Prini wird aber die relatiistishe ewegngsgleihng wie die Newtonshe ewegngsgleihng gelöst. Nr sind die Formeln einiges komliierter. In der Regel sind ewegngsgleihngen so komliiert, dass sie nr mit nmerishen Verfahren gelöst werden können. Das eisiel einer konstant beshlenigten Rakete ist jedoh einfah geng, sodass die ewegngsgleihng algebraish gelöst werden kann. [] Vektoren Zr Herleitng der relatiistishen ewegngsgleihng mss ih nähst Viererektoren nd deren Ableitng erklären. Im dreidimensionalen Ram hat ein Vektor bekanntlih drei Komonenten wie hier m eisiel ~ der Vektor : ~ = m = Ein Vektor hat in einem Koordinatensystem die drei Koordinaten. In einem anderen Koordinatensystem, das gegenüber dem ersten gedreht ist, hat der selbe Vektor andere Über eine Rotations-Transformation können die Koordinaten on einem System in das andere mgerehnet werden. Eine Rotations-Transformation ist im Wesentlihen eine Matri-Mltilikation. Was aber in beiden Koordinatensystemen gleih bleibt, ist die Länge des Vektors, die wiefolgt berehnet werden kann: 3 KS ( ; y ; ) A y A [3] KS (; y; ) l () l = + y + = q + y + Die Länge eines Vektors ist inariant beüglih Rotations-Transformationen oder allgemeiner beüglih Galilei-Transformationen. Viererektoren

2 Ator: Walter islin on 6 walter.bislins.h/blog/.5.3 3:6 Ein Viererektor ist ein Vektor mit einer Zeit nd drei Ramdimensionen nd hat ein sog. indefinites Längenqadrat (Interall) [4]. Letteres bedetet, dass ah ein Viererektor eine inariante Grösse hat, ähnlih der Länge eines 3-D-Vektors. Dieses Längenqadrat ist inariant nter der sog. [5] [6] Lorent-Transformation. In wei gegeneinander bewegten Inertialsystemen hängen die Komonenten des Viererektors drh eine Lorent-Transformation miteinander sammen. Shreibweise Um Viererektoren on 3-dimensionalen Vektoren ntersheiden können, erwendet man griehishe hstaben als Inde (.., srih mü). Diese haben die Werte (,,, 3): = kontraariant Dies ist kontraarianter Viererektor. Die Viererektoren gibt es in wei Varianten, kontraariant nd koariant 3 A. eim koarianten Vektor stehen die Indies nten. Ein koarianter Vektor wird r Untersheidng oft als Zeilenektor geshrieben: ; ; ; ) = ( 3 koariant Die Komonenten wishen koarianten nd kontraarianten Vektoren werden über den sog. [8] Metrik-Tensor in einander transformiert. In der seiellen Relatiitätstheorie, wo es m flahe Rameit geht, ist der Metrik-Tensor einfah dieser Stelle niht näher eingehen. diag(; ; ; ), aber daraf brahe ih an Hinweis: In Teten werden beide Vektorarten meist als Zeilenektoren geshrieben. Anhand der Position des Inde kann ja ein kontraarianter on einem koarianten Vektor ntershieden werden. Längenqadrat (Interall) Das inariante Längenqadrat (ah Rameit-Interall oder einfah Interall genannt) ist für [9] Viererektoren als Skalarrodkt des koarianten mit dem kontraarianten Vektor definiert: () ds = d d = (d ) (d ) (d ) 3 (d ) Im Gegensat 3-D-Vektoren gehen bei den Viererektoren die Qadrate der drei Ramkoordinaten mit einem Minseihen in das Längenqadrat ein! Nr wenn das Längenqadrat eines 4-dimensionalen Vektors inariant gegenüber der Lorent- Transformation ist, handelt es sih m einen ehten Viererektor.

3 Ator: Walter islin 3 on 6 walter.bislins.h/blog/.5.3 3:6 Orts-Viererektor Die erste Komonente eines Orts-Viererektors ist die Zeitkoordinate, mltiliiert mit der Lihtgeshwindigkeit, damit diese Koordinate ah die Einheit einer Länge hat. Die kontraariante Darstellng des Orts-Viererektors ist: Dass 3 A t y A = t ~ ein Viererektor ist folgt daras, dass sein Längenqadrat (Interall) nter der Lorent- Transformation inariant bleibt. Das indefinite Längenqadrat latet: (3) ds = d d = dt d dy d Was dieses Längenqadrat assagt ist folgendes: Jedes Ereignis findet in einem Inertialsystem an einem bestimmten Ort nd einer bestimmten Zeit statt. Ort nd Zeit bilden sammen die Komonenten eines Ortsiererektors. In einem anderen Inertialsystem, das sih gleihförmig mit der Geshwindigkeit bewegt, hat das selbe Ereignis andere Koordinatenwerte. Über die Lorent-Transformation können diese Werte on einem System in das andere mgerehnet werden. Was jedoh in jedem das Längenqadrat: = ( t; ; y; ) = ( t ; ; y ; ) immer gleih bleibt, ist (4) s = t y = t y Vierergeshwindigkeit As dem Orts-Viererektor lassen sih weitere Viererektoren ableiten. Wir benötigen nähst die Vierergeshwindigkeit. Diese erhält man drh Differenieren des Ortsiererektors nah [] d der Eigeneit. Die Vierergeshwindigkeit ist definiert als: (5) d = = d d t y _ = = y _ y _ = A ~

4 Ator: Walter islin 4 on 6 walter.bislins.h/blog/.5.3 3:6 (6) s d = dt = dt $ d t = d = d q (7) = q = q + + y wobei = Vierergeshwindigkeit = Orts-Viererektor = Eigeneit des bewegten Systems [] = Lorentfaktor t = Zeit des rhenden Systems = Geshwindigkeit des bewegten Systems begl. des Rhesystems [] = Lihtgeshwindigkeit Znähst wird in (5) drh nah der Formel (6) ersett. Dadrh kommt der Lorentfaktor ins Siel. Dann wird jede Komonente des Ortsektors nah der Zeit abgeleitet. Es entsteht ein neer Viererektor. Ein Pnkt af einem hstaben bedetet abgeleitet nah der Zeit: d _ = dt d dt t eweis dass Vierergeshwindigkeit ein Viererektor ist Ih mss siher sein, dass die abgeleitete Vierergeshwindigkeit ein Viererektor ist, das heisst, dass der etrag des Vektors in allen Inertialsystemen den selben Wert hat, also inariant nter der Lorent-Transformation ist. Ih berehne daher den etrag j j der Vierergeshwindigkeit: (8) j j = = ( ; ; y ; y A = y [9] eahte, dass oben das Skalarrodkt des koarianten mit dem kontraarianten Vektor berehnet wird. Die Terme in der letten Klammer bilden also keinen Vektor, sondern eine Zahl. Die letten drei Terme in der Klammer ergeben gerade die negatie Länge des rämlihen Geshwindigkeitsektors im Qadrat:

5 Ator: Walter islin 5 on 6 walter.bislins.h/blog/.5.3 3:6 (9) = + y + Also kann ih (8) ah shreiben: () j j = + y + = ( ) Wenn ih jett noh as (7) einsete erhalte ih: () j j = = ( ) ( ) = Der etrag der Vierergeshwindigkeit ist somit immer gleih der Lihtgeshwindigkeit, j j welhe in jedem Inertialsystem er Definition der Relatiitätstheorie die selbe ist! Ah jeder andere Viererektor, der so abgeleitet wird, mss ein Viererektor sein! Das nüte ih nn as: Viererimls Der klassishe Imls ist definiert als ~ = m ~. Der relatiistishe Viererimls ist analog definiert: () = m = m ~ wobei = relatiistisher Viererimls m = Rhemasse des Körers = Vierergeshwindigkeit = Lorentfaktor, siehe (7) = Lihtgeshwindigkeit ~ = 3-dimensionaler Geshwindigkeitsektor ( ; ; ) eahte: Weil ein Viererektor ist, ist ah der Imls ein Viererektor, denn wenn ein Viererektor mit einem Skalar (im eisiel die Masse d.h. sein etrag ist in jedem Inertialsystem der selbe. m y ) mltiliiert wird, bleibt er ein Viererektor, Viererkraft nd ewegngsgleihng Wie beim Viererimls kann eine Viererkraft, ah Minkowski-Kraft genannt, analog r

6 Ator: Walter islin 6 on 6 walter.bislins.h/blog/.5.3 3:6 entsrehenden Newton-Kraft F ~ = d~ =dt definiert werden: (3) K d = = m d d d ewegngsgleihng der seiellen Relatiitätstheorie wobei = Viererkraft K m = Viererimls = Vierergeshwindigkeit = Eigeneit des bewegten Systems = Konstante Masse des Objektes Da der Imls ein Viererektor ist nd dieser nah der Eigeneit abgeleitet wird, ist ah die Minkowskikraft ein ehter Viererektor, dessen etrag inariant nter der Lorent- K Transformation ist! Im nähsten Abshnitt werde ih diese ewegngsgleihng am eisiel einer gleihförmig beshlenigten Rakete lösen. Weitere Informationen Relatiitätstheorie; Wikiedia Nmerishe Mathematik; Wikiedia Vektor; Wikiedia Viererektor; Wikiedia Lorent-Transformation; Wikiedia Inertialsystem; Wikiedia Koarian; Wikiedia Metrisher Tensor; Wikiedia Skalarrodkt; Wikiedia Eigeneit; Wikiedia Lorentfaktor; Wikiedia Lihtgeshwindigkeit; Wikiedia

Spezielle Relativitätstheorie. Dynamik der Speziellen Relativitätstheorie

Spezielle Relativitätstheorie. Dynamik der Speziellen Relativitätstheorie Seielle Relatiitätstheorie Dnamik der Seiellen Relatiitätstheorie Dnamik Dnamik als Teilgebiet der Mehanik beshreibt die Änderng der Bewegngsgrößen Weg, Geshwindigkeit nd Beshlenigng nter Einwirkng on

Mehr

1.5 Relativistische Kinematik

1.5 Relativistische Kinematik 1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 8. Der Kreis lässt sih drh seinen Mittelpnkt nd seinen Radis darstellen. Man benötigt die Distanz om Masklikpnkt zm Kreismittelpnkt. Wenn diese kleiner (oder gleih) dem Radis ist, trifft der Masklikpnkt

Mehr

Physikaufgabe 53. ds d. wobei sowohl das Zeitelement als auch das Wegelement

Physikaufgabe 53. ds d. wobei sowohl das Zeitelement als auch das Wegelement Home Startseite Imressum Kontakt Gästebuh Aufgabe: Beweisen Sie daß das Weltall eine endlihe Ausdehnung hat jeweils ein endlihes Alter erreiht und daß es keine Ursahe hat Lösung: Beginnend mit dem Urknall

Mehr

Etwas Relativitätstheorie. 2.3 Relativitätsprinzip, Konstanz der Lichtgeschwindigkeit

Etwas Relativitätstheorie. 2.3 Relativitätsprinzip, Konstanz der Lichtgeschwindigkeit Etwas Relatiitätstheorie.3 Relatiitätsprinzip, Konstanz der Lihtgeshwindigkeit 864, Mawell: ereinheitlihte Theorie der elektr. u. magn. Felder (4 Mawell-Gleihungen) Elektromagn. Wellen, Geshw. = = 9979

Mehr

Die Lorentz-Transformation

Die Lorentz-Transformation Bernhard Szallies Die Lorentz-Transformation Die Lorentz-Transformation stellt die rehnerishe Beziehung zwishen den Ortskoordinaten und der Zeitkoordinate eines Ereignisses bezüglih zweier Inertialsysteme

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols

Mehr

Relativistisch kovariante Formulierung der Elektrodynamik

Relativistisch kovariante Formulierung der Elektrodynamik KAPITEL III Relativistish kovariante Formulierung der Elektrodynamik Die Spezielle Relativitätstheorie wurde gerade entwikelt, um die Konstanz der Lihtgeshwindigkeit im Vakuum in allen Inertialsystemen

Mehr

IX.3 Potentiale und Felder einer bewegten Punktladung

IX.3 Potentiale und Felder einer bewegten Punktladung N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine

Mehr

Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0,

Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0, Übungen ur Ingenieur-Mathematik III WS 5/6 Blatt..6 Aufgabe 4: Betrahten Sie die Gleihungen: Lösung: h(,, := ( + + 4 =, g(,, := =, ( h(,, f(,, := = g(,, (. a Geben Sie eine geometrishe Interpretation der

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

X.5.4 Potentiale und Felder einer bewegten Punktladung

X.5.4 Potentiale und Felder einer bewegten Punktladung X.5 Klassishe Theorie der Strahlung 85 X.5.4 Potentiale und Felder einer bewegten Punktladung Dieser Paragraph beginnt mit der Berehnung der Potentiale und Felder, die durh eine bewegte Punktladung mit

Mehr

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert.

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert. R. Brinkmann http://brinkmann-du.de Seite.9. Vektoren im kartesishen Koordinatensystem Rehengesetze für Vektoren in Koordinatendarstellung Addition und Subtraktion von Vektoren: Vektoren werden addiert,

Mehr

Bewegungsgleichung einer gleichförmig beschleunigten Rakete (1)

Bewegungsgleichung einer gleichförmig beschleunigten Rakete (1) Autor: Wlter islin on 7 wlter.bislins.h/blog/.5.3 3:3 ewegungsgleihung einer gleihförmig beshleunigten Rkete () Dienstg, 6. Juni - :4 Autor: wbis hemen: Wissen, Physik, osmologie Ds Lösen der reltiistishen

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

4.4 Spezielle Relativitätstheorie

4.4 Spezielle Relativitätstheorie perientalphsik I TU Dortnd WS Shakat Khan @ TU - Dortnd. de Kapitel. Spezielle Relatiitätstheorie Asanspnkt: periente on Mihelson nd Morle Lihteshwindikeit ist on der Relatieshwindikeit nabhäni nd in allen

Mehr

7.5 Relativistische Bewegungsgleichung

7.5 Relativistische Bewegungsgleichung 7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

Theoretische Physik III (Elektrodynamik)

Theoretische Physik III (Elektrodynamik) Theoretishe Physik III (Elektrodynamik) Prof. Dr. Th. eldmann. Juni 203 Kurzzusammenfassung Vorlesung 3 vom 28.5.203 5. Zeitabhängige elder, Elektromagnetishe Strahlung Bisher: Elektrostatik und Magnetostatik

Mehr

Skriptum zur Vorlesung GASDYNAMIK

Skriptum zur Vorlesung GASDYNAMIK Tehnishe Uniersität ünhen Lehrsthl für Aerodynamik Uni. Professor Dr.-Ing.habil. N.A. Adams Skritm zr Vorlesng GASDYNAIK Sommersemester Steffen Shmidt Sommersemester Steffen Shmidt Umshlagbild Sae Shttle

Mehr

Ist Zeit relativ? Posten Einleitung

Ist Zeit relativ? Posten Einleitung Posten 3 Ist Zeit relati? Sozialform: Bearbeitungszeit: Voraussetzung: Partnerarbeit 30 Minuten Posten 1 Einsteins Postulate 3.1 Einleitung Die Postulate on Einstein so kurz und erständlih sie auh zu sein

Mehr

Vorlesung Finite-Elemente Prof. Rieg. Elastizitätstheorie I. wieso?? Definition!

Vorlesung Finite-Elemente Prof. Rieg. Elastizitätstheorie I. wieso?? Definition! Vorlesng Finite-lemente Prof. Rieg lastiitätstheorie I wieso?? Definition! lastiitätstheorie II lim A B A B A B A B A Dehnng am Pnkt A ) ( ) ( ) ( ) ( A A ( B ) ( A ) lastiitätstheorie III A B A B ( )

Mehr

MP: RT00: Relativitätstheorie und Gravitation - Vorbemerkungen - Seite1 -

MP: RT00: Relativitätstheorie und Gravitation - Vorbemerkungen - Seite1 - MP: RT: Relativitätstheorie nd Gravitation - Vorbemerkngen - Seite - Elektrodnamik, Mehanik nd Signalgeshwindigkeit. Das. Jahrhndert hat wei wesentlihe Theorien Gesete hervorgebraht: die nvollendeten Qantentheorien

Mehr

R o t e r R i e s e. c 1 c 2. c 3

R o t e r R i e s e. c 1 c 2. c 3 1 2 < = 2 1 3 Sonne 3 Beobahter Große Massen krümmen den Verlauf on Lihtstrahlen und die Geshwindigkeit des Lihts wird kleiner (allgemeine Relatiitätstheorie). In bewegten Systemen ergeht die Zeit langsamer

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Kurzfassung der speziellen Relativitätstheorie

Kurzfassung der speziellen Relativitätstheorie Kurzfassung der speziellen Relatiitätstheorie Olier Passon Raum, Zeit und Bewegungszustände in der klassishen Physik Bereits in der klassishen Mehanik (also der Theorie Newtons) gilt, dass sih keine absolute

Mehr

3 Flächen und Flächenintegrale

3 Flächen und Flächenintegrale 3 Flächen Flächen sind im dreidimensionalen Ram eingebettete zweidimensionale geometrische Objekte In der Mechanik werden zb Membranen nd chalen als Flächen idealisiert In der Geometrie treten Flächen

Mehr

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR F F A E t Teil 1 5/11-014 T Klassische Theoretische Physik Lehramt (0 LA), WS 014/15 Thomas Tauris AIfA Bonn Uni. / MPIfR Kapitel 6+7 + Anhang C Weiterführende Literatur: - Introduction to Special Relatiity

Mehr

12. Lagrange-Formalismus III

12. Lagrange-Formalismus III Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray James.Gray@hysik.uni-muenhen.de Übung.: Eine Gitarrensaite Wir betrahten

Mehr

Kosmologie (WPF Vertiefungsrichtung) Blatt 3

Kosmologie (WPF Vertiefungsrichtung) Blatt 3 Prof. Dr. K. Kassner Kosmologie (WPF Vertiefungsrihtung) Blatt 3 SS 2017 27. 04. 2017 6. Uran-Blei-Datierung 7 Pkt. In dieser Aufgabe wollen wir einige Überlegungen anstellen, wie man mithilfe der bekannten

Mehr

5 Relativistische Mechanik

5 Relativistische Mechanik 5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt

Mehr

Senkrechter freier Fall

Senkrechter freier Fall Senkrehter freier Fall Die Raumzeitkrümmung in der Shwarzshildmetrik [] zeigt sih unter anderem darin, dass die Zeit in der Nähe des Zentralkörpers langsamer läuft Um diesen Effekt zu veranshaulihen, soll

Mehr

Exkurs: Koordinatensysteme

Exkurs: Koordinatensysteme Exkurs: Koordinatensysteme Herleitung der Raum-Zeit-Diagramme Das ist unsere Raumzeit. So mögen wir sie: Ordentlih, gerade und aufgeräumt. Der vertikale Pfeil bildet unsere Zeitlinie t. Der horizontale

Mehr

Die Koeffizienten sollen in einer Matrix, die Unbekannten und die rechte Seite zu Vektoren zusammengefaßt werden: { x}

Die Koeffizienten sollen in einer Matrix, die Unbekannten und die rechte Seite zu Vektoren zusammengefaßt werden: { x} Matrizen: Einleitung Mit Matrizen können Zusammenhänge übersihtliher und kompakter dargestellt werden. Dazu werden Größen zu einer Matri zusammengefaßt, die in einem logishen Zusammenhang stehen. Zur Erläuterung

Mehr

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten 66 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENTEN 6 Tiefenshe in ngerihteten Graphen: Zweifahe Zsammenhangskomponenten Der Algorithms ist ganz gena dersele wie im gerihteten Fall. Aildng 1 zeigt noh einmal den gerihteten

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichngen für Ingeniere WS 6/7 4. Vorlesng Michael Karow Themen hete:. Gewöhnliche Lineare Differentialgleichngen. Ordnng (a) Das gedämpfte Pendel als Beispiel (b) Fndamentalsysteme (Lösngsbasen)

Mehr

Theorie der Kondensierten Materie I WS 2014/2015

Theorie der Kondensierten Materie I WS 2014/2015 Karlsrher Institt für Technologie Institt für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS /5 Prof. Dr. A. Mirlin, Dr. I. Gorni Blatt 7: Lösngen U. Briskot, N. Kainaris, Dr.

Mehr

Spezielle Relativität

Spezielle Relativität Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

1.3 Transformation der Geschwindigkeit

1.3 Transformation der Geschwindigkeit [Griffiths 1.1.3, 1..1] 1.3 Transformation der Geschwindigkeit Seien S und S Inertialsysteme. S bewege sich gegenüber S mit der Geschwindigkeit V = V e 1. Es sei wieder β = V/c, γ = 1/ 1 β. Für ein Ereignis

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Magnetostatik. Ströme und Lorentzkraft

Magnetostatik. Ströme und Lorentzkraft Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme 3. Käfte auf bewegte Ladungen im Magnetfeld i. Käfte im Magnetfeld Loentzkaft ii. Käfte zwishen Leiten iii. Kaft auf eine bewegte Ladungen i.

Mehr

Einmassenschwinger Teil I.2 Herleitung der Bewegungsgleichung 15

Einmassenschwinger Teil I.2 Herleitung der Bewegungsgleichung 15 Einassenshwinger Teil I.2 Herleitng der Bewegngsgleihng 15 2 Herleitng der Bewegngsgleihng 2.1 Angreifende Kraft p(t) Für diese Erläterngen wird als Beispiel die Deplatte it Stützen von Abb.1-2 betrahtet.

Mehr

VORANSICHT II/D. Das Michelson-Morley-Experiment. Der Beitrag im Überblick. Spiegel. Strahlenteiler. Spiegel. Laser. Schirm. Interferenz- Muster

VORANSICHT II/D. Das Michelson-Morley-Experiment. Der Beitrag im Überblick. Spiegel. Strahlenteiler. Spiegel. Laser. Schirm. Interferenz- Muster 7. Das Mihelson-Morley-Experiment on 6 Das Mihelson-Morley-Experiment Axel Donges, Isny im Allgäu Mit dem Mihelson-Morley-Experiment sollte die Existenz des Äthers eines hypothetishen Mediums, in dem sih

Mehr

Planungsblatt Physik für die 8B

Planungsblatt Physik für die 8B Planungsblatt Physik für die 8B Wohe 5 (von 03.10 bis 07.10) Hausaufgaben 1 Bis Freitag 07.10: Lerne die Notizen von Dienstag! Aufgabe zum Nahdenken: Ein Raumshiff fliegt an der Erde vorbei; sein Geshwindigkeit

Mehr

11. David Bohm und die Implizite Ordnung

11. David Bohm und die Implizite Ordnung David Bohm und die Implizite Ordnung Mathematisher Anhang 1 11 David Bohm und die Implizite Ordnung Mathematisher Anhang Streng stetig, streng kausal, streng lokal Relativitätstheorie In der speziellen

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Relativitätstheorie und philosophische Gegenargumente II

Relativitätstheorie und philosophische Gegenargumente II Didaktik der hysik Frühjahrstagung Hannoer 00 Relatiitätstheorie und philosophishe Gegenargumente II J. Brandes* *Danziger Str. 65, D 76307 Karlsbad, e-mail: jg-brandes@t-online.de Kurzfassung.) Es werden

Mehr

Grundlagen der Physik 1 Mechanik und spezielle Relativität

Grundlagen der Physik 1 Mechanik und spezielle Relativität Grundlagen der Physik 1 Mechanik und spezielle Relativität 13. 01. 2006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 1/21 Relativistische Beschleunigung

Mehr

die Zielgröße. Für diesen gilt A = u v.

die Zielgröße. Für diesen gilt A = u v. VII Unterschng on Fnktionen 7 ptimieren Legen Sie mit gena 6 Streichhölzern möglichst iele erschiedene Rechtecke. Ermitteln Sie jeweils den Flächeninhalt ( LE = Streichholzlänge). Stellen Sie die Seitenlängen

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

IX. Relativistische Formulierung der Elektrodynamik

IX. Relativistische Formulierung der Elektrodynamik Kurzer Rückblick auf klass. relativ. Mechanik 1 IX. Relativistische Formulierung der Elektrodynamik Die Aufteilung des elektromagnetischen Felds (auch von Strom und Ladungsdichte) in elektrisches und magnetisches

Mehr

Darstellungstheorie der Lorentz-Gruppe

Darstellungstheorie der Lorentz-Gruppe Kai Walter 29. Juli 2008 Inhaltsverzeihnis 1 Einführung 2 2 Lie-Algebra der Lorentz-Gruppe 2 2.1 Minkowski-Raum............................. 2 2.2 Lorentz-Transformation......................... 3 2.3

Mehr

Allgemeine Relativitätstheorie, was ist das?

Allgemeine Relativitätstheorie, was ist das? , was ist das? 1905 stellte Albert Einstein die Spezielle Relativitätstheorie auf Beim Versuch die Gravitation im Rahmen der Speziellen Relativitätstheorie zu beschreiben stieß er allerdings schnell auf

Mehr

Thermische Zustandsgleichung : Thermodynamische Zustandsgrößen als Funktion weiterer Zustandsgrößen berechenbar, z.b.: p = p(v,t) = RT/v

Thermische Zustandsgleichung : Thermodynamische Zustandsgrößen als Funktion weiterer Zustandsgrößen berechenbar, z.b.: p = p(v,t) = RT/v Die Kalorishe Zstandsgleihng hermishe Zstandsgleihng : hermodynamishe Zstandsgrößen als Fnktion weiterer Zstandsgrößen berehenbar, z.b.: (,) R/ Kalorishe Zstandsgleihng: Kalorishe Zstandsgrößen als Fnktion

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG. 1. Bemerkungen: Klammern von innen nach aussen auflösen; Punkt vor Strich a) =

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG. 1. Bemerkungen: Klammern von innen nach aussen auflösen; Punkt vor Strich a) = Lösngen Montg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN MONTAG Blok. Bemerkngen: Klmmern von innen nh ssen flösen; Pnkt vor Strih nd 0. / /. π d 9 9 99 00 Bemerkng z d Geht h ohne TR! Kürzen

Mehr

32. Lebensdauer von Myonen 5+5 = 10 Punkte

32. Lebensdauer von Myonen 5+5 = 10 Punkte PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

Konsequenzen der Konstanz der Lichtgeschwindigkeit

Konsequenzen der Konstanz der Lichtgeschwindigkeit Konsequenzen der Konstanz der Lichtgeschwindigkeit Wir beginnen mit einer kurzen Zusammenfassung einiger Dinge, die am Ende des vorigen Semesters behandelt wurden. Neben dem Relativitätspostulat Die Gesetze

Mehr

Wiederholung: Gravitation in der klassischen Physik

Wiederholung: Gravitation in der klassischen Physik Gravitation II Wiederholung: Gravitation in der klassischen Physik Eigenschaften: Intrinsische (ladungsartige) Eigenschaft der schweren Masse (Gravitationsladung) Es gibt nur positive Gravitationsladungen

Mehr

Kamera-Kalibration. Einfache Abbildungsgeometrie. Koordinatensystem. Einfache Abbildungsgleichung

Kamera-Kalibration. Einfache Abbildungsgeometrie. Koordinatensystem. Einfache Abbildungsgleichung Kamea-Kalibation Inhalt Einfahe Abbildngsgeometie Camea Obsa Koodinatensstem Einfahe Abbildngsgleihng Kameakalibieng Methode nah Tsai Welt- nd Kameakoodinaten äßee ns innee Paamete Folie 2 Abbildngsssteme

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Thema: Bilaze, eizwert, Stadardbildgsethalpie fgabe: Bestimme Sie de obere, molare eizwert o eies Kohlewasserstoffgases as de a eiem Drhflss-Kalorimeter (Bild 1) gemessee Date. T 1, m w Gas Lft V g T G

Mehr

Lokale Eigenschaften des Hilbert-Symbols

Lokale Eigenschaften des Hilbert-Symbols Lokale Eigenschaften des Hilbert-Symbols (Nach J.P. Serre: A Corse in Arithmetic) Bettina Böhme, Karin Loch 24.05.2007 Im Folgenden bezeichnet k entweder den Körer R der reellen Zahlen oder den Körer Q

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Fabian Gundlah 13. Oktober 2010 Die spezielle Relativitätstheorie untersuht die vershiedenen Sihtweisen von Beobahtern in Inertialsystemen. Ein Inertialsystem ist dabei ein

Mehr

(10) View Transformation

(10) View Transformation () Vie Transformation Vorlesng Comtergrahik I S. üller KOBLENZ LNDU KOBLENZ LNDU S. üller - - Wiederholng I ffine Transformationen atrienmltilikation ist assoiati, aber nicht kommtati. Transformationsmatrien

Mehr

Klassische Ruintheorie

Klassische Ruintheorie Seminar Versiherngsrisiko n Rin Prof. Dr. H. Shmili 3.6 Ying Zho Klassishe Rintheorie 7.8 Die Laplae Transformation er Überlebenswahrshein lihkeit In iesem Abshnitt sehen wir, wie φ rh ie Laplae Transformation

Mehr

VIII. Lagrange-Formulierung der Elektrodynamik

VIII. Lagrange-Formulierung der Elektrodynamik VIII. Lagrange-Formulierung der Elektrodynamik In diesem Kapitel wird gezeigt, dass die Maxwell Lorentz-Gleihungen der Elektrodynamik sih aus einem Extremalprinzip herleiten lassen. Dabei wird einem System

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

5.3.3 Die Lorentz-Transformationen

5.3.3 Die Lorentz-Transformationen 5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte

Mehr

Allgemeine Mechanik Musterlo sung 13.

Allgemeine Mechanik Musterlo sung 13. Allgemeine Mehanik Musterlo sung 3. U bung. HS 23 Prof. R. Renner Beshleunigte Bewegung Im Rahmen der speziellen Relativita tstheorie lassen sih auh beshleunigte Bewegungen behandeln. Vorraussetzung ist

Mehr

Kausalität. Korrelation. Kovarianz. Kausalität, Korrelation und Kovarianz bei Messunsichercheitanalysen

Kausalität. Korrelation. Kovarianz. Kausalität, Korrelation und Kovarianz bei Messunsichercheitanalysen Kasalität, Korrelation nd Kovarianz bei essnsiherheitanalysen Kasalität Korrelation tandard Verfahren des GU Grndbegriffe hätzng der Korrelation Kombinieren der Unsiherheiten eispiele onte Carlo imlation

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngssysteme Lineare Gleichngssysteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; zm Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

Kapitel 2 Kovariante vierdimensionale Formulierungen

Kapitel 2 Kovariante vierdimensionale Formulierungen Kapitel Kovariante vierdimensionale Formulierungen Kovariante vierdimensionale Formulierungen.1 Ko- und kontravariante Tensoren... 39.1.1 Definitionen... 39.1. Rehenregeln... 43.1.3 Differentialoperatoren...

Mehr

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie Materialien für Unterriht und Studium Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie von Georg Bernhardt 5. Oktober 017 Beshreibt das Zwillingsparadoxon tatsählih eine logishe Inkonsistenz

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 13. Nov. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die Newtonschen Grundgesetze 1. Newtonsche Axiom (Trägheitsprinzip)

Mehr

Kompressible Strömungen

Kompressible Strömungen Komressible Strömngen Komressible Strömngen bisher : dihtebeständige Flide im folgenden : dihteveränderlihe bzw. komressible Flide Gasdynamik Beshränkng : stationäre -D reibngsfreie komressible Strömngen

Mehr

Lorentz-Transformationen und Invarianz

Lorentz-Transformationen und Invarianz Lorentz-Transformationen und Invarianz Wolfgang Lange. April 0 Einleitung Bei der Suche nach einer allgemeinverständlichen Erläuterung von Transformationen und Tensoren fand ich die besten Erklärungen

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

Themenkomplex Relativität. Superpositionsprinzip Galileische Bezugssysteme Faradaysche Induktion. Beobachter. Beobachter 1

Themenkomplex Relativität. Superpositionsprinzip Galileische Bezugssysteme Faradaysche Induktion. Beobachter. Beobachter 1 Themenkomle Relatiität eobachter Suerositionsrinzi Galileische ezugssysteme Faradaysche Induktion eobachter 1 Thema eobachter Suerositionsrinzi eobachter eobachter 3 Kinematik 3 Kinematische Gleichungen

Mehr

Polarisation, Interferenz, Beugung, Doppler-Effekt (Selbststudium)

Polarisation, Interferenz, Beugung, Doppler-Effekt (Selbststudium) Zusatz-Augaben 4 Grundlagen der Wellenlehre Polarisation, Intererenz, Beugung, Doppler-Eekt (Selbststudium) Lernziele - das Phänomen Polarisation kennen und verstehen. - wissen und verstehen, dass nur

Mehr

Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2

Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2 Klasse STa FrSe 4 ungr MAE Serie 6 Potenz und Taylorreihen Aufgabe a Bestimmen Sie die Grenzen des Konvergenzbereihs der Potenzreihe: p b Entwikeln Sie die Funktion f vier Summanden. k k 4 k k k in eine

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

4. Einsteins Gleichungen und das Standardmodell der Kosmologie

4. Einsteins Gleichungen und das Standardmodell der Kosmologie 4. Einsteins Gleihungen und das Standardmodell der Kosmologie 4.. Die Einsteinshen Gleihungen (EG) in obertson-walker- Metrik Wir haben die beiden Friedmann-Gleihungen bereits in Newtonsher Näherung abgeleitet.

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

x 2 mit a IR in der maximalen, Teilaufgabe 1.1 (8 BE) Ermitteln Sie die Art der Definitionslücke sowie die Anzahl der Nullstellen von f a

x 2 mit a IR in der maximalen, Teilaufgabe 1.1 (8 BE) Ermitteln Sie die Art der Definitionslücke sowie die Anzahl der Nullstellen von f a Abschlssprüfng Berfliche Oberschle 00 Mathematik Technik - A I - Lösng Teilafgabe.0 Gegeben sind die reellen Fnktionen f a ( x) von a nabhängigen Definitionsmenge D x ax a = x mit a IR in der maximalen,

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 1

Gravitation und Krümmung der Raum-Zeit - Teil 1 Gravitation und Krümmung der Raum-Zeit - Teil 1 Gauß hat gezeigt, daß es Möglichkeiten gibt, die Krümmung von Flächen durch inhärente Messungen auf der Fläche selbst zu bestimmen Gauß sches Krümmungsmaß

Mehr

Quellen und Senken als Feldursachen

Quellen und Senken als Feldursachen Kapitel 2 Qellen nd Senken als Feldrsachen Wir sprechen von Qellenfeldern nd Wirbelfeldern. Beide nterscheiden sich grndlegend voneinander. Wir wollen deswegen beide Feldarten getrennt besprechen, m deren

Mehr

Kontakt: Prof. Dr. Michael Düren Tel:

Kontakt: Prof. Dr. Michael Düren Tel: Kontakt: Prof. Dr. Mihael Düren Tel: 9933 Mihael.Dueren@uni-gieen.de www.phik.uni-gieen.de/dueren Zur Erinnerung: Die Vorleung beginnt um 4:00.t. Phikalihe Größen und Einheiten Beobahtung und Eperiment

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Flächen und Flächenintegrale Vorlesng: Analsis II für Ingeniere Wintersemester 9/ Michael Karow Themen: lächen nd lächenintegrale Parametrisierte lächen I Sei 2 eine kompakte Menge mit stückweise glattem and (d.h. der and ist as glatten

Mehr

ART 5. Kontravarianter und kovarianter Vierervektor

ART 5. Kontravarianter und kovarianter Vierervektor ART 5. Kontravarianter und kovarianter Vierervektor Wolfgang Lange. Oktober 205 B. Mathematische Hilfsmittel für die Aufstellung allgemein kovarianter Gleichungen. Über 5. Kontravarianter und kovarianter

Mehr

Analysis II für M, LaG/M, Ph

Analysis II für M, LaG/M, Ph Fachbereich Mathematik Prof Dr M Hieber Robert Haller-Dintelmann Horst Heck TECHNISCHE UNIVERSITÄT DARMSTADT ASS 008 195008 Analysis II für M, LaG/M, Ph 7 Übng mit Lösngshinweisen G 1 Grppenübngen Af der

Mehr

6. Aufgaben zur speziellen Relativitätstheorie

6. Aufgaben zur speziellen Relativitätstheorie 6. Aufgaben zur speziellen Relatiitätstheorie Aufgabe : Inertialsysteme Der Ursprung des Koordinatensystems S sitzt am hinteren Ende eines x m langen, unten dunkel gefärbten Zuges, welher mit 7 km/h in

Mehr

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben 1 E1 Lineare Transformationen: cc Aufgaben 1, 2 Aufgabe 1: Wenden Sie die Transformation T auf den Punkt P und auf den Vektor OP an. Beschreiben

Mehr

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und Übungsblatt 11 PHYS11 Grundkurs I Physik, Wirtshaftsphysik, Physik Lehramt Othmar Marti, othmar.marti@uni-ulm.de. 1. 6 und 3. 1. 6 1 Aufgaben 1. In Röhrenfernsehgeräten werden Elektronen typisherweise

Mehr

Experimentalphysik E1

Experimentalphysik E1 Eperimentalphysik E1 Spezielle Relativitätstheorie Relativisitische Impuls-Energie Beziehung Schwerpunktssysteme Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html

Mehr