Kausalität. Korrelation. Kovarianz. Kausalität, Korrelation und Kovarianz bei Messunsichercheitanalysen

Größe: px
Ab Seite anzeigen:

Download "Kausalität. Korrelation. Kovarianz. Kausalität, Korrelation und Kovarianz bei Messunsichercheitanalysen"

Transkript

1 Kasalität, Korrelation nd Kovarianz bei essnsiherheitanalysen Kasalität Korrelation tandard Verfahren des GU Grndbegriffe hätzng der Korrelation Kombinieren der Unsiherheiten eispiele onte Carlo imlation Zsammenfassng aryna Galovska, Volkswagen G maryna.galovska@volkswagen.de Kovarianz erehnng der essnsiherheit Empfehlngen für die Prais, erlin, 7. nd 8. ärz 06

2 . tandard Verfahren des GU Kasalität Korrelation. odellieren der essng. Einshätzng der Größen 3. Einshätzng der Korrelationen. Kombinieren der Werte nd Unsiherheiten nter der erüksihtigng der Korrelationen 5. hätzng der erweiterten essnsiherheit 6. ngeben des vollständigen essergebnisses Y=f,,, y ± U Kovarianz,,, r,.

3 . Kasalität nd Korrelation Kasalität: Veränderng ist Ursahe für Veränderng Wirkng Korrelation drh eine gemeinsame dritte Variable: 3 kasaler Effekt Korrelation Zsammenhang zwishen Zfallsgrößen innerhalb einer Verteilng fgrnd desselben Normals essgeräts Referenzwerts Korrelation zwishen nd darf niht als kasal interpretiert werden! Große änner verdienen mehr * Korrelation zwishen hokoladenkonsm nd nzahl an Nobelpreisträgern in einem Land ** * m 000 ero grosse maenner verdienen mehr a html ** 3

4 . Korrelation nd Kovarianz Varianz von Varianz von r Var Var Gemeinsame Varianz von nd Korrelationskoeffizient harakterisiert den Grad der Korrelation Cov, Im Kontet der essnsiherheit:, r, - r, hätzng der Kovarianz: Eperimentell as essreihen odellbasiert, as Erfahrng oder Vorkenntnissen..

5 .3 arstellng von zwei korrelierten Größen pplement : mltivariate Gaß Verteilngen ndere Verteilngen:. 5

6 . Korrelation. Etrembeispiel = essgerät Ohne erüksihtigng der Korrelation rm, m = 0 m = m + m m = m m = m it erüksihtigng der Korrelation m rm, m = = 0 m = m m hätzwert der essnsiherheit liegt im Intervall von 0 bis m abhängig von der erüksihtigng der Korrelation!

7 3. erehnng der Kovarianz Korrelation eobahtete Korrelation Logishe Korrelation Ermittlng tatistish Type Niht statistish Type Verfügbare Information eobahtngen bei den Wiederholmessngen: : :,,... n... n essgrößen sind von einer Größe abhängig: F q, F q Kovarianz, n n i i F q F q q r,,. 7

8 3. Kombinieren der Unsiherheiten Y=f,,,,,,,,, Kombinierte Varianz: y N i N ji ij i, j ensitivitätskoeffitienten: i f i. 8

9 3. Kombinieren der Unsiherheiten Y=f,,, r r, r, r, r, r, r, Kombinierte Varianz: y N i i i N i N ji i j i j r, i j. 9

10 . eispiel. eobahtete Korrelation essng des Widerstandes: R R U, V ru, U = 0.7 essgleihng: R U U V V U R U R Normalwiderstand: 00,0037 Ω; =0,000 Ω U, V Wiederholmessngen: U : 0,099; 0,005; 0,000; 0,005; 0,003; 0,05; 0,000; 0,00; 0,0; 0,0 V U : 0,035; 0.069; 0,07; 0,06; 0.063; 0,073; 0,09; 0,05; 0,060; 0,063 V Weil die hwankngen einer tromqelle af zwei Größen U, U wirken, kommt es zr Korrelation.. 0

11 . eispiel. eobahtete Korrelation Komponenten der Unsiherheit: / U 0,006 V 0,0008 V U 0,057 V 0,00 V R 00,0037 Ω 0,000 Ω Korrelation: r U U R U 0,7 0 U 0,7 0 R 0 0 Empfindlihkeitskoeffizienten: U Kombinierte Varianz: U U R U R U R U U R U U U U R R U U U U r U, U.

12 . eispiel. Logishe Korrelation * y y essng der Position von nd in einem anderen Koordinatensystem: nd sind korreliert afgrnd der gemeinsamen Transformation F : F : r,? * design.de/.

13 0,5, 0,05 r mm nnahme: essnsiherheiten der Koordinate von nd nd der Transformation sind gleih:, F F,, r. eispiel. Logishe Korrelation, mm, mm F : F :. 3 onte Carlo imlation

14 y ittelpnkt in Koordinatensystem: / bstand: 3, r, r. eispiel. Logishe Korrelation ittelpnkt: / bstand: erehnete im,y Koordinatensystem vor der Transformation Fnktionsmaßen y mm 035 0, mm 07 0,

15 y ittelpnkt in Koordinatensystem: / bstand: 3, r, r. eispiel. Logishe Korrelation ittelpnkt: / bstand: 0,06 mm 0,07 mm mm 035 0, mm 07 0,

16 5. onte Carlo imlation =0.05; N=00000; =[0 3; 0 3]'; N=00000; =0.05*sqrt; r=0.5; =; ov=[* r**; r** * ]; =0+normrnd0,,, N; =0+normrnd0,,, N; d= 3+normrnd0,,, N; s=+d; s=+d; plots, s, '.' r=orrs', s' F : F : r, for i=: R=mvnrnd, ov, N; plotr:,,r:,, '.'; hold on end s=r:, ; s=r:, ; s=s+s/; s=s s; _=stds _=stds, s=s+s/; s=s s; _=stds _=stds

17 5. Zsammenfassng Korrelation beshreibt den Zsammenhang zwishen den Variablen. Korrelation im Kontet der essnsiherheit ist drh eine dritte Variable verrsaht. Korrelation darf niht immer als kasal betrahtet. Kovarianz ishkomponente der Unsiherheit mss geshätzt oder eperimentell ermittelt werden. ie kombinierte Unsiherheit nter erüksihtigng der Korrelation kann nah GU oder onte Carlo ethode pplement berehnet werden. Korrelationen können die kombinierte essnsiherheit sowohl vergrößern als ah verringern.

18 anke für die fmerksamkeit!

Alles andere als Glücksspiel

Alles andere als Glücksspiel Alles andere als Glücksspiel Statistische Analysen von Kafwahrscheinlichkeiten nd Kndenaffinitäten werden zr Erfolgsgrndlage im Gewerbekndenvertrieb Von Oliver Hoidn (Kreissparkasse Esslingen-Nürtingen),

Mehr

=0 (vorzeichenbehaftet) =0 (vorzeichenbehaftet) + I 3 I 2 =0 I 1 +I 2 = I 3 R 1 R 3 U 1 =0 I 3 U 2 R 2

=0 (vorzeichenbehaftet) =0 (vorzeichenbehaftet) + I 3 I 2 =0 I 1 +I 2 = I 3 R 1 R 3 U 1 =0 I 3 U 2 R 2 Elektronishe Systeme -. Gleihspannngskreise ---------------------------------------------------------------------------------------------------- G. Shatter 6. Mai 004. Gleihspannngskreise. Knoten-Mashensatz

Mehr

Bewegungsgleichung der Speziellen Relativitätstheorie

Bewegungsgleichung der Speziellen Relativitätstheorie Ator: Walter islin on 6 walter.bislins.h/blog/.5.3 3:6 ewegngsgleihng der Seiellen Relatiitätstheorie Dienstag, 6. Jni - :4 Ator: wabis Themen: Wissen, Physik, Kosmologie Wenn es m Geshwindigkeiten ab

Mehr

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r. 5 4 8 6 2 8 G r e v e n T e l. 0 2 5 7 1 / 9 5 2 6 1 0 F a x. 0 2 5 7 1 / 9 5 2 6 1 2 e - m a i l r a i n e r. n i e u w e n h u i z e n @ c

Mehr

F r e i t a g, 3. J u n i

F r e i t a g, 3. J u n i F r e i t a g, 3. J u n i 2 0 1 1 L i n u x w i r d 2 0 J a h r e a l t H o l l a, i c h d a c h t e d i e L i n u x - L e u t e s i n d e i n w e n i g v e r n ü n f t i g, a b e r j e t z t g i b t e

Mehr

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch 1 L 3 P 1 L a 3 P a 1 L a m 3 P a l 1 L a m a 3 P a l m 2 P 3 P a l m e 2 P o 4 L 2 P o p 4 L a 2 P o p o 4 L a m 4 L a m p 6 N a 4 L a m p e 6 N a m 5 5 A A m 6 6 N a m e N a m e n 5 A m p 7 M 5 A m p

Mehr

Einmassenschwinger Teil I.2 Herleitung der Bewegungsgleichung 15

Einmassenschwinger Teil I.2 Herleitung der Bewegungsgleichung 15 Einassenshwinger Teil I.2 Herleitng der Bewegngsgleihng 15 2 Herleitng der Bewegngsgleihng 2.1 Angreifende Kraft p(t) Für diese Erläterngen wird als Beispiel die Deplatte it Stützen von Abb.1-2 betrahtet.

Mehr

Verteilungen mehrerer Variablen

Verteilungen mehrerer Variablen Kapitel 3 Verteilungen mehrerer Variablen 3. Eigenschaften von Verteilungen mehrerer Variablen Im allgemeinen muss man Wahrscheinlichkeiten für mehrere Variable, die häufig auch voneinander abhängen, gleichzeitig

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Spezielle Relativitätstheorie. Dynamik der Speziellen Relativitätstheorie

Spezielle Relativitätstheorie. Dynamik der Speziellen Relativitätstheorie Seielle Relatiitätstheorie Dnamik der Seiellen Relatiitätstheorie Dnamik Dnamik als Teilgebiet der Mehanik beshreibt die Änderng der Bewegngsgrößen Weg, Geshwindigkeit nd Beshlenigng nter Einwirkng on

Mehr

Zum Begriff der Paare: ab ordinalem Messniveau

Zum Begriff der Paare: ab ordinalem Messniveau Zum Begriff er Paare: ab orinalem Messniveau Begriffsefinition von Paaren: gleihe bzw. untershielihe Rangornung zwishen Untersuhungsobjekten (z. B. Personen) Paare können konkorant oer iskorant sein 1)

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

1. Theoretische Grundlagen

1. Theoretische Grundlagen Fachbereich Elektrotechnik / Informationstechnik Elektrische Mess- nd Prüftechnik Laborpraktikm Abgabe der Aswertng dieses Verschs ist Vorassetzng für die Zlassng zm folgenden ermin Grndlagen der Leistngsmessng

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

=!'04 #>4 )-:!- / )) $!# & $ % # %)6 ) + # 6 0 %% )90 % 1% $ 9116 69)" %" :"6. 1-0 &6 -% ' 0' )%1 0(,"'% #6 0 )90 1-11 ) 9 #,0. 1 #% 0 9 & %) ) '' #' ) 0 # %6 ;+'' 0 6%((&0 6?9 ;+'' 0 9)&6? #' 1 0 +& $

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeitreihenökonometrie Kapitel 8 Impuls-Antwort-Funktionen Interpretation eines VAR-Prozesses 2 Fall eines bivariaten Var(p)-Prozess mit 2 Variablen und ohne Konstante 1 1 p p 1,t α11 α 12 1,t-1 α11 α 12

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Moderne Methoden der Datenverarbeitung in der Physik I

Moderne Methoden der Datenverarbeitung in der Physik I Moderne Methoden der Datenverarbeitung in der Physik I Prof. Dr. Stefan Schael / Dr. Thomas Kirn I. Physikalisches Institut MAPLE II, Krypthographie Wahrscheinlichkeit Zufallszahlen, Wahrscheinlichkeitsdichten,

Mehr

Kontrolle Physik-Leistungskurs Klasse 11 Widerstände

Kontrolle Physik-Leistungskurs Klasse 11 Widerstände Kontroe hysik-eistngskrs Kasse 11 Widerstände..016 1. Es stehen zwei Gühapen 6 V/1,5 W nd V/1,5 W sowie eine Spannngsqee 9 V zr Verfügng. Was passiert, wenn an die beiden Gühapen nd die Spannngsqee in

Mehr

Labor Messtechnik Versuch 7 Drehmomentenmessung

Labor Messtechnik Versuch 7 Drehmomentenmessung F Ingenierwesen F Maschinenba Prof. r. Kröber Versch 7 rehmomentenmessng Seite 1 von 6 Versch 7: rehmomentenmessng, Gleichspannngsmessverstärker 1. Verschsafba 1.1. Umfang des Versches Im Versch werden

Mehr

Strahlhomogenisierung

Strahlhomogenisierung Strahlhomogenisierng Thomas Büttner 12.11.2008 Scheinseminar Wintersemester 2008/2009 Optische Lithographie Anwendngen Grenzen Perspetiven Optische Lithographie: Anwendngen Grenzen nd Perspetiven Strahlhomogenisierng

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Yield Management II. Das Zeitungsjungenproblem

Yield Management II. Das Zeitungsjungenproblem II Flie 1 Das Zeitngsjngenprblem Ein Zeitngsjnge kaft Zeitngen beim Verlag für f c je Stück ein nd verkaft sie für f p je Stück. Die Nachfrage nach Zeitngen x ist stchastisch. Der Zeitngsjnge kennt die

Mehr

Skriptum zur Vorlesung GASDYNAMIK

Skriptum zur Vorlesung GASDYNAMIK Tehnishe Uniersität ünhen Lehrsthl für Aerodynamik Uni. Professor Dr.-Ing.habil. N.A. Adams Skritm zr Vorlesng GASDYNAIK Sommersemester Steffen Shmidt Sommersemester Steffen Shmidt Umshlagbild Sae Shttle

Mehr

Mehrdimensionale Verteilungen und Korrelation

Mehrdimensionale Verteilungen und Korrelation Vorlesung: Computergestützte Datenauswertung Mehrdimensionale Verteilungen und Korrelation Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Streuungsmaße von Stichproben

Streuungsmaße von Stichproben Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 /

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 / Aufgabenblock 3 Aufgabe ) A sei das Ereignis: schwerer Verkehrsunfall B sei das Ereignis: Alkohol ist im Spiel Herr Walker betrachtet die Wahrscheinlichkeit P(B A) = 0.3 und errechnet daraus P(-B A) =

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

14 Allgemeines Gleichgewicht

14 Allgemeines Gleichgewicht 4 llgemeines Gleichgewicht Gleichgewicht af einem einzelnen Markt Unternehmen Geld Gt Hashalte llgemeines Gleichgewicht Faktoren Kosten + Gewinn = Einkommen Unternehmen Hashalte Erlös = Konsmasgaben Konsmgüter

Mehr

Der Einfluß thermischer Vorbehandlung auf die statische Festigkeit von Maiskörnern

Der Einfluß thermischer Vorbehandlung auf die statische Festigkeit von Maiskörnern Shrifttm Büher sind drh gekennzeihnet [ 1 ] Kafmann, W.. H. Hagemeister: Fütterngstehnik nd Verdangsablaf bei Milhkühen. Obersihten zr Tierernährng Bd. 1 (1973) S. 193/221. [ 2 ] Sholtysik, B.J. : Einflß

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

Der Gütermarkt. Prof. Dr. Volker Clausen Makroökonomik 1 Sommersemester 2008 Folie 1

Der Gütermarkt. Prof. Dr. Volker Clausen Makroökonomik 1 Sommersemester 2008 Folie 1 Der Gütermarkt Prof. Dr. Volker Clausen Makroökonomik Sommersemester 2008 Folie Der Gütermarkt 3. Die Zusammensetzung des BIP 3.2 Die Güternahfrage 3.3 Die Bestimmung der Produktion im Gleihgewiht 3.4

Mehr

7.5 Relativistische Bewegungsgleichung

7.5 Relativistische Bewegungsgleichung 7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt

Mehr

Grundlagen experimenteller Windkanaluntersuchungen: Hitzdrahtmesstechnik

Grundlagen experimenteller Windkanaluntersuchungen: Hitzdrahtmesstechnik Messtechnische Grndlagen 1. Anmerkngen zr Hitzdrahtanemometrie Die Vermessng der Grenzschicht wird mit Hitzdrahtsonden vom Typ 55P61 der Firma DANTEC vorgenommen. Die verwendeten Hitzdrahtsonden bestehen

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 6/7 Fachbereich Physik 5..6 Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke Übungsblatt : Bayesche Formel, charakteristische Funktionen und statistische Unabhängigkeit

Mehr

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom))

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom)) Prof. Dr.-Ing. Matthia Kind Intitut für hermihe Verfahrentehnik Dr.-Ing. homa Wetzel Wärmeübertragung I öung zur 4. Übung ( M (Rührkeel, Gleih-, Gegentrom Einführung Ein in der Wärmeübertragung häufig

Mehr

Lehrstuhl für Finanzierung Universitätsprofessor Dr. Jochen Wilhelm

Lehrstuhl für Finanzierung Universitätsprofessor Dr. Jochen Wilhelm Lehrstuhl für Finanzierung Universitätsprofessor Dr. Jochen Wilhelm A b s c h l u s s k l a u s u r z u r V o r l e s u n g K a p i t a l m a r k t t h e o r i e W i n t e r s e m e s t e r 1 9 9 9 / 2

Mehr

TU Ilmenau Chemisches Praktikum Versuch Photometrische Bestimmung der Fachgebiet Chemie. Komplexzusammensetzung

TU Ilmenau Chemisches Praktikum Versuch Photometrische Bestimmung der Fachgebiet Chemie. Komplexzusammensetzung TU Ilmenau Chemishes Praktikum Versuh Photometrishe Bestimmung der Fahgebiet Chemie Komplexzusammensetzung V20 1 Aufgabenstellung Bestimmen Sie von der folgenden Kombination CuSO 4 5 H 2 O und Ethylendiamin

Mehr

Intermediate Macroeconomics: Übungsveranstaltung

Intermediate Macroeconomics: Übungsveranstaltung Ziele der Übungsveranstaltung Umgang mit Daten, insbesondere Zeitreihen Intermediate Macroeconomics: Übungsveranstaltung MS Excel verwenden, einfache Datentransformationen und Berechnungen durchführen

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Multiple Regressionsanalyse - Kurzabriss

Multiple Regressionsanalyse - Kurzabriss Multiple Regressionsanalyse - Kurzabriss Ziele: Schätzung eines Kriteriums aus einer Linearkombination von Prädiktoren Meist zu Screening-Untersuchungen, um den Einfluß von vermuteten Ursachenvariablen

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Informationen zur KLAUSUR am

Informationen zur KLAUSUR am Wiederholung und Fragen 1 Informationen zur KLAUSUR am 24.07.2009 Raum: 032, Zeit : 8:00 9:30 Uhr Bitte Lichtbildausweis mitbringen! (wird vor der Klausur kontrolliert) Erlaubte Hilfsmittel: Alle Unterlagen,

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Die "Goldene Regel der Messtechnik" ist nicht mehr der Stand der Technik

Die Goldene Regel der Messtechnik ist nicht mehr der Stand der Technik Die "Goldene Regel der Messtechnik" Ator: Dipl.-Ing. Morteza Farmani Häfig wird von den Teilnehmern nserer Seminare zr Messsystemanalyse nd zr Messnsicherheitsstdie die Frage gestellt, für welche Toleranz

Mehr

Innovative Holzbauweisen unter Erdbebenlasten. Innovative Holzbauweisen unter Erdbebenlasten

Innovative Holzbauweisen unter Erdbebenlasten. Innovative Holzbauweisen unter Erdbebenlasten Innovative Holzbaweisen nter Erdbebenlasten 90 Jahre Verschsanstalt für Stahl, Holz nd Steine Festkolloqim am 29. nd 30. September 2011 HOLZBAU UND BAUKONSTRUKTIONEN kn mm KIT Universität des Landes Baden-Württemberg

Mehr

Lineare Programmierung

Lineare Programmierung asis Definition 3.38 Gegeben sei ein LP in der Normalform mit m als Rang der Matrix 2 R m n. x 2 R n mit x = b heißt asislösung gdw. n m Komponenten x i gleich Null und die zu den restlichen Variablen

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit des A-Moduls Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre, Kurs 0009, KE 4, 5 und 6, SS 00 Kurs 0009: Finanzierungs- und entscheidungstheoretische

Mehr

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem Definition nd Eigenschaften von elliptischen Fnktionen Thomas Regier. Verdoppelng des Lemniskatenbogens nd erweitertes Additionstheorem Elliptische Integrale berechnen die Krvenlänge von z.b. elliptischen

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser 1 Agenda Rendite- und Risikoanalyse eines Portfolios Gesamtrendite Kovarianz Korrelationen

Mehr

Dipl.-Ing. Walter Abel Management Consulting

Dipl.-Ing. Walter Abel Management Consulting Mit ns af dem Weg zr Spitze. Dipl.-Ing. Walter Abel Management Conslting Karl Czerny - Gasse 2/2/32 A - 1200 Wien +43 1 92912 65 7 +43 1 92912 66 office@walter-abel.at www.walter-abel.at www.itsmprocesses.com

Mehr

Regression und Korrelation (Gurtner)

Regression und Korrelation (Gurtner) Regression und Korrelation (Gurtner) Oft muss man Trends verlängern. Dazu nimmt man die Daten einer Entwicklung, legt eine passende Kurve durch und verlängert die Kurve in die Zukunft. Hier verwenden wir

Mehr

Formfunktionen (Interpolation): Bedeutung und praktischer Einsatz

Formfunktionen (Interpolation): Bedeutung und praktischer Einsatz Formfnktionen (Interpolation): Bedetng nd praktischer Einsatz Dr.-Ing. Martin Zimmermann Lehrsthl für Konstrktionslehre nd CAD Universität Bayreth Einleitng, Problem nd Motivation Knoten Steifigkeit Elemente

Mehr

Die Korrelation von Merkmalen

Die Korrelation von Merkmalen Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Schaltungen mit nichtlinearen Widerständen

Schaltungen mit nichtlinearen Widerständen HOCHSCHLE FÜ TECHNIK ND WITSCHAFT DESDEN (FH) niversity of Applied Sciences Fachbereich Elektrotechnik Praktikm Grndlagen der Elektrotechnik Versch: Schaltngen mit nichtlinearen Widerständen Verschsanleitng

Mehr

Beschreibende Statistik Zweidimensionale (bivariate) Daten

Beschreibende Statistik Zweidimensionale (bivariate) Daten Mathematik II für Biologen Beschreibende Statistik Zweidimensionale (bivariate) Daten 26. April 2013 Prolog Lineare Regression Transformationen Produktmomenten-Korrelation Rangkorrelation Warnung Artensterben

Mehr

Spiel Abgefahrene Vögel

Spiel Abgefahrene Vögel PDF Lernzirkel_Wintergaeste_Abgefahrene_Voegel Spiel Abgefahrene Vögel Dieses Spiel ist konzipiert für den Lernzirkel Wintergäste af dem Ammersee (vgl. PDF Lernzirkel_Wintergaeste_Projektbeschreibng),

Mehr

9 Strahlungsgleichungen

9 Strahlungsgleichungen 9-9 Strahlungsgleihungen Ein spontanes Ereignis bedarf keines nstoßes von außen, um ausgelöst zu werden. Das Liht thermisher Strahler, das wir visuell wahrnehmen, entsteht dadurh, dass eine Substanz bei

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Wie genial ist das denn?

Wie genial ist das denn? Werbng mit Wie genial ist das denn? rhig z! Wenn s mir zviel wird, leg ich eh af. Was ist das eigentlich? Ein Magazin für die Stadt Oerlinghasen - für alle OerlinghaserInnen nd solche, die es werden wollen.

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

S a m s t a g, 2 1. J a n u a r

S a m s t a g, 2 1. J a n u a r S a m s t a g, 2 1. J a n u a r 2 0 1 7 D e r e r s t e T a g d e s n e u e n D o n J a, d a v e r w e i s e i c h d o c h g e r n a u f : R e a l G a m e o f T h r o n e s : H a b e m u s D o n a l d

Mehr

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ PHYSIKALISCHE GRUNDLAGEN Wichtige Grndbegriffe: ermspannng, ermelement, ermkraft, Astrittsarbeit, Newtnsches Abkühlngsgesetz Beschreibng eines ermelementes: Ein ermelement besteht as zwei Drähten verschiedenen

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

ZUSAMMENFASSUNG CFX. 1 von 9

ZUSAMMENFASSUNG CFX. 1 von 9 von 9 ZUSAMMENFASSUNG CFX. Was ist nmerishe Strömngsberehnng? Welhes sind die lokalen Strömngseigenshaften? Geshwindigkeits-, Drk-, emeratrverteilngen eines Gases oder einer Flüssigkeit. Welhes sind die

Mehr

, Magenta= 0. , Weiss= 1. . Für a = 0 hat man Schwarz, für a = 1 Weiss. Dazwischen alle. möglichen Übergänge von dunkelstem Grau zu hellstem Grau.

, Magenta= 0. , Weiss= 1. . Für a = 0 hat man Schwarz, für a = 1 Weiss. Dazwischen alle. möglichen Übergänge von dunkelstem Grau zu hellstem Grau. Physik anwenden nd erstehen: Lösngen.4 Wellenoptik 004 Orell Füssli Verlag AG.4 Wellenoptik Farben 76 a) Eine reflektierende Flähe (z.b. ein Spiegel oder eine weisse Flähe) wrde gleihzeitig mit drei gleih

Mehr

Die Rücktransformation: Z = A t (Y µ) = Y = AZ + µ

Die Rücktransformation: Z = A t (Y µ) = Y = AZ + µ Die Rücktransformation: Z = A t (Y µ) = Y = AZ + µ Kleine Eigenwerte oder Eigenwerte gleich Null: k Eigenwerte Null = Rang(Σ) = m k Eigenwerte fast Null = Hauptkomponenten beinahe konstant Beschränkung

Mehr

Quantitatives Risikomanagement

Quantitatives Risikomanagement Quantitatives Risikomanagement Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften und Irrtümer von Jan Hahne und Wolfgang Tischer -Korrelation und Abhängigkeit im Risikomanagement: Eigenschaften

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psmet03.sowi.uni-mainz.de/

Mehr

Netzgeführte Stromrichterschaltungen

Netzgeführte Stromrichterschaltungen 4 Netzgeführte Stromrichterschaltngen In netzgeführten Stromrichtern wird die Wechselspannng des speisenden Netzes nicht nr zr Spannngsbildng af der Asgangsseite bentzt, sondern sie dient ach als treibende

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

SONNTAG OFFEN 599. undsparen! LACK LACK HOCH GLANZ HOCH GLANZ. Los je

SONNTAG OFFEN 599. undsparen! LACK LACK HOCH GLANZ HOCH GLANZ. Los je ß U U ß ß = ß % % % Ü U % ß % U U U U % U U U U U ß Ü U Ü ; % ß ß % % U Ü Ü & U Ü U Ü U Ü U Ü U Ü U Y Ä U Y Ä U ß Y Ä U Y Ä U ß ß ß ß Y Ä U U ß ß ß Y Ä U Y Ä U ß Y Ä U U ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß

Mehr

Glossar Statistik 2. Bivariate Verfahren: zwei nummerische Merkmale

Glossar Statistik 2. Bivariate Verfahren: zwei nummerische Merkmale Glossar Statistik 2 Bivariate Verfahren: zwei nummerische Merkmale Streudiagramm - Datenpaare (X, Y) als Punkte auf einem zweidimensionale Diagramm (Ordinate: Y, Abszisse: X) Lineare Regression - Optimierungsproblem

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Ermittlung der Unsicherheiten in der Werkstoffprüfung

Ermittlung der Unsicherheiten in der Werkstoffprüfung Bndesanstalt für Materialforschng nd -prüfng Unterschngen z Schäden an Radsatzlenkern nd lagern der BR 481, Fahrzege 5 nd 193 Erittlng der Unsicherheiten in der Werkstoffprüfng Ralf Häcker BAM Bndesanstalt

Mehr

ECKPROFIL. gerade *8001000001115* Art.Nr : 8001000001210. 60mm ECKPROFIL. gerade *8001000002115* Art.Nr : 8001000002210. 50mm ECKPROFIL.

ECKPROFIL. gerade *8001000001115* Art.Nr : 8001000001210. 60mm ECKPROFIL. gerade *8001000002115* Art.Nr : 8001000002210. 50mm ECKPROFIL. *8001000001110* 8001000001110 130x120 1a M1:4 *8001000001115* 8001000001115 *8001000001210* 8001000001210 85x60 1b M1:3 *8001000001215* 8001000001215 60mm 85mm *8001000002110* 8001000002110 108x100 2a

Mehr

Referenzliste für Sachverständigenwesen

Referenzliste für Sachverständigenwesen Diplom Betriebswirt Klas Ewald Referenzliste für Sachverständigenwesen Sachverständigentätigkeit mit langjähriger Erfahrng bei der Erstellng von betriebswirtschaftlichen, steer- nd familienrechtlichen

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Senkrechter freier Fall

Senkrechter freier Fall Senkrehter freier Fall Die Raumzeitkrümmung in der Shwarzshildmetrik [] zeigt sih unter anderem darin, dass die Zeit in der Nähe des Zentralkörpers langsamer läuft Um diesen Effekt zu veranshaulihen, soll

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Installationsanleitung Version 3.0.4

Installationsanleitung Version 3.0.4 Installationsanleitung Version 3.0.4 B i t t e b e a c h t e n S i e, d a s s a l l e T e i l s y s t e m e a k t u a l i s i e r t w e r d e n m ü s s e n u n d p l a n e n S i e g e n ü g e n d Z e i

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

3. Grad Ist die höchste vorkommende Potenz : y`, (y`)², (y`)³ y`: 1. Grad (linear), (y`)² : 2. Grad (quadrat) dx dt

3. Grad Ist die höchste vorkommende Potenz : y`, (y`)², (y`)³ y`: 1. Grad (linear), (y`)² : 2. Grad (quadrat) dx dt IV. Diffrnialglichngn: z.b. y d Klassifiaion von Diffrnialglichngn 1. Gwöhnlich / Parill Dgl. y f, 1 nabhängig Variabl gwöhnlich Dgl mhr Variabln : parill Dgl. Ordnng Is di höchs vorommnd bling y, y...

Mehr

Vorlesung: Lineare Modelle. Verschiedene Typen von Residuen. Probleme bei der Regression und Diagnose. Prof. Dr. Helmut Küchenhoff.

Vorlesung: Lineare Modelle. Verschiedene Typen von Residuen. Probleme bei der Regression und Diagnose. Prof. Dr. Helmut Küchenhoff. Vorlesung: Lineare Modelle Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München SoSe 205 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen.

Mehr

Statistische Software (R)

Statistische Software (R) Statistische Software (R) Paul Fink, M.Sc., Eva Endres, M.Sc. Institut für Statistik Ludwig-Maximilians-Universität München Verteilungen und Zufallszahlen Übersicht Statistik-Funktionen Funktion mean()

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Die multivariate Statistik behandelt statistische Eigenschaften und Zusammenhänge mehrerer Variablen, im Gegensatz zu univariaten Statistik, die in der Regel nur eine Variable untersucht.

Mehr

Monte Carlo Simulation und Varianzreduktion in Theorie und Praxis

Monte Carlo Simulation und Varianzreduktion in Theorie und Praxis Monte Carlo Silation nd Varianzredtion in Theorie nd Praxis Monte Carlo Silation nd Varianzredtion in Theorie nd Praxis Abstract: Es wird die Monte Carlo Silation beschrieben nd an zwei Beispielen veranschalicht.

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr