Impuls- und Energieerhaltungssatz, Stoßgesetze

Größe: px
Ab Seite anzeigen:

Download "Impuls- und Energieerhaltungssatz, Stoßgesetze"

Transkript

1 Impuls- und Energieerhaltungssatz, Stoßgesetze Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 6. Januar

2 Inhaltsverzeichnis 1 Impuls- und Energieerhaltungssatz, Stoßgesetze Messung von Geschwindigkeiten auf der Grundlage der Impulserhaltung Schiefe elastische Stöße auf einem Luftkissentisch Anhang Quellcode Versuch a Quellcode Versuch b

3 1 Impuls- und Energieerhaltungssatz, Stoßgesetze 1.1 Messung von Geschwindigkeiten auf der Grundlage der Impulserhaltung In diesem Versuch soll die Geschwindigkeit einer Luftgewehrkugel bestimmt werden. Dazu wird mit einem Luftgewehr auf ein Pendel geschossen, welches daraufhin anfängt zu schwingen. Folgende Skizze soll dabei den Aufbau verdeutlichen: Abbildung 1: Aufbau zur Bestimmung der Geschwindigkeit einer Luftgewehrkugel Aus der Periodendauer des Pendels kann nun die Geschwindigkeit der Kugel mit folgender Gleichung bestimmt werden: v M + m m 2π T s (1) Wwbei M die Masse des Pendelkörpers darstellt, m die Masse der Gewehrkugel, T die Periodendauer des Pendels und s die maximale Auslenkung des Pendels. Der Pendelkörper besteht aus einem mit Sand gefüllten Zylinder, der ein mit Klebeband verschlossenes Loch besitzt. Dieses befindet sich mittig im Zylinder und auf dieses Loch wird geschossen. Die Kugel trifft somit mittig auf den Pendelkörper und verharrt in ihm. Dadurch haben nach dem Eintritt Kugel und Pendelkörper die gleiche Geschwindigkeit und es handelt sich somit um einen vollkommenen zentralen inelastischen Stoß. Dabei ist es wichtig, den Zylinder jeweils mittig zu treffen, damit die gesamte Energie in eine gerade Pendelbewegung umgesetzt werden kann und der Zylinder nicht beginnt, seitwärts zu schwingen. Der Versuch wird 10 mal pro Pendelkörper durchgeführt, sodass 3

4 zehn Kugeln verschossen werden. Da sich das Gewicht des Zylinders im Laufe des gesamten Versuchs jeweils um eine Kugelmasse erhöhen würde, werden zu Anfang 9 Kugeln auf dem Pendelkörper befestigt. Nach dem ersten Schuss wird daraufhin eine Kugel vom Pendelkörper entfernt und in den Zylinder geschossen, sodass sich permanent 9 Kugeln im bzw. auf dem Zylinder befinden und eine auf ihn geschossen wird. Für die Masse M ergibt sich somit: M = M Pendelkoerper + 9m (2) Zur Bestimmung der Kugelmasse wurden 10 Kugeln gewogen, sodass sich eine mittlere Masse m = 0, 467g ergibt. Insgesamt wurde der Versuch mit zwei verschiedenen Pendelkörpern durchgeführt, sodass sich folgende Messergebnisse ergeben haben (die Periodendauer wurde jeweils über 10 Periodendauern gemittelt): M 1 / g T 1 / s s 1 / cm M 2 T 2 / s s 2 / cm 790,75 3,08 4,0 979,65 3,05 3,2 3,06 4,3 3,05 3,4 3,07 4,0 3,06 3,4 3,05 3,9 3,07 3,3 3,07 4,1 3,07 3,3 3,09 4,2 3,09 3,1 3,08 4,3 3,08 3,3 3,07 4,4 3,08 3,2 3,07 4,0 3,07 3,4 3,07 4,2 3,05 3,4 Tabelle 1: Messwerte zur Bestimmung der Geschwindigkeit einer Luftgewehrkugel Es ergeben sich daraus wiederum folgende Mittelwerte: T 1 = 3,07s (3) T 2 = 3,07s (4) s 1 = 4,1cm (5) s 2 = 3,3cm (6) woraus sich wiederum mit Gleichung (1) folgende Geschwindigkeiten ergeben: 790,75g + 0,467g 2π v 1 0, 467g 3,07s 4, m 142,2m/s (7) 979,65g + 0,467g 2π v 2 0, 467g 3,07s 3, m 141,8m/s (8) 4

5 Die ermittelten Geschwindigkeiten weisen keine große Differenz auf, allerdings weichen sie von der erwarteten Geschwindigkeit v = 150m/s um fast 10m/s ab. Eine mögliche Erklärung dafür ist die Zeitmessung, die durch einen Menschen durchgeführt wurde und so die Reaktionszeit des Zeitnehmers beinhaltet. Ein weiterer Punkt für eine Messungenauigkeit ist der Versuchsaufbau. Dadurch, dass sich nach dem ersten Schuss ein Loch im Klebestreifen befindet, fällt nach jedem weiteren Schuss etwas Sand aus dem Zylinder. Allerdings ist die Geschwindigkeit proportional zur Masse des Zylinders, d.h. würde man den verlorenen Sand berücksichtigen, würde man eine noch geringere Geschwindigkeit erhalten. 1.2 Schiefe elastische Stöße auf einem Luftkissentisch Nachdem im vorherigen Kapitel der vollkommen unelastische Stoß behandelt wurde, geht es in diesem Versuchsteil darum, elastische Stöße zu untersuchen. Ein vollkommen elastischer Stoß kennzeichnet sich dadurch aus, dass die kinetische Energie vor und nach dem Stoß identisch ist, also keine Energie in Wärme oder Verformung umgewandelt wird. Um dieses zu untersuchen, werden zwei Versuche mit jeweils zwei magnetischen Airhockey Pucks (m 1 = 169,62g m 2 = 169,51g) auf einem Luftkissentisch durchgeführt. Versuch a: Ein Puck wird auf dem Luftkissentisch in eine Ruhelage gebracht, während man einen anderen, nahezu gleichschweren, Puck auf diesen zustößt: Abbildung 2: Zwei gleiche Massen, eine ruht, die andere bewegt sich auf diese zu. Dabei muss darauf geachtet werden, dass der Puck nicht zu stark gestoßen wird, da sich die beiden Pucks nicht berühren sollten, sondern lediglich durch ihr Magnetfeld abgestoßen werden sollten. Versuch b: Ein Puck wird mit zwei Gewichten bestückt. Nun werden die zwei, unterschiedlich schweren, Pucks aufeinander zugestoßen: 5

6 Abbildung 3: Zwei unterschiedliche Massen werden aufeinander zu bewegt Auch hierbei sollten beide Pucks nur so stark bewegt werden, dass sie sich lediglich durch ihr Magnetfeld vonander abstoßen. Um die Stöße auswerten zu können, wird unter Stroboskoplicht jeweils ein Foto des Versuchs gemacht. Dabei wird das Bild solange belichtet, wie der Versuch andauert. Es ergeben sich so folgende Bilder: Abbildung 4: Zwei unterschiedliche Massen werden aufnander zu bewegt Abbildung 5: Zwei unterschiedliche Massen werden aufnander zu bewegt Das Stroboskop wurde dabei mit Hilfe eines Oszilloskops so eingestellt, dass es eine Periodendauer von T = 120ms hat. Das bedeutet die Aufnahmen der einzelnen Pucks in den Bildern liegen jeweils 120ms auseinander. Mit Hilfe eines 6

7 Bildbearbeitungsprogramms wie MS Paint und der Periodendauer T können nun aus den Fotos die Impulse der einzelnen Pucks bestimmt werden. Da der Versuch in der Theorie einen elastischen Stoß beschreibt, müssen die Summe der Impulse vor und nach dem Stoß identisch sein. Die Bestimmung der Impulse wird mit Hilfe von Matlab durchgeführt. Im folgenden wird die Bestimmung des Impulses vom roten Puck aus Bild?? exemplarisch gezeigt, der komplette Quellcode ist im Anhang zu finden. Zunächst muss ein Umrechnungsfaktor bestimmt werden, mit dem eine Pixellänge in eine Meterangabe umgerechnet werden kann. Dazu wird in MS Paint der Pixeldurchmesser eines Pucks bestimmt. Dieser beträgt exakt 100 Pixel und in Wirklichkeit gemessene 8,9cm, sodass sich als Umrechnungsfaktor M ergibt: M = Pixel Meter = 100 = 8,9 (9) 0,089 Als nächstes werden die Koordinaten zweier Puckaufnahmen vor dem Stoß auf den ruhenden Puck bestimmt: x 11 = 1366 (10) y 11 = 1302 (11) x 12 = 1169 (12) y 12 = 1200 (13) Daraus kann nun der jeweilige Ortsvektor r bestimmt werden (in Meter umgerechnet): r 11 = r 12 = ( x11 y 11 ( x12 y 12 ) 1,2157 : M = 1, 1588 ) 1,0404 : M = 1, 0680 (14) (15) und aus dem Ortsvektor wiederum der entsprechende Impuls p, wobei m die Masse des Pucks darstellt, T die Periodendauer des Stroboskoplichts und n die Anzahl Stroboskopblitze, die zwischen den beiden Puckaufnahmen liegen. In diesem Fall ist die zweite Puckaufnahme, von der die Koordinaten bestimmt wurden, 2 Blitze später: p 1 = r 12 nt r 11 m = So ergibt sich der Impuls des roten Pucks als Vektor. 0,1239 kg m s 1 (16) 0,

8 Insgesamt haben sich in diesem Versuch (Versuch a, zwei gleiche Massen, ein Puck ruht) folgende Werte ergeben: 0,1239 p 1 = kg m s 1 (17) 0, p 2 = kg m s 1 (18) 0 0,0503 p 1 = kg m s 1 (19) 0, ,0616 p 2 = kg m s 1 (20) 0, 0944 Die Gesamtimpulse vor und nach dem Stoß unterscheiden sich somit um 0, , 0069 Für den Versuch b (zwei unterschiedliche Massen, beide bewegen sich aufnander zu) ergeben sich folgende Werte: woraus sich wiederum eine Differenz von 0,0855 p 1 = kg m s 1 (21) 0, ,1022 p 2 = kg m s 1 (22) 0, ,0365 p 1 = kg m s 1 (23) 0, ,1281 p 2 = kg m s 1 (24) 0, ,0131 kg m s 0, ergibt. Wie man erkennen kann, ist bei beiden Versuchen Energie in Reibung oder Verformung umgewandelt worden, was zeigt, dass ein vollkommen elastischer Stoß kaum realisierbar ist. Eine weitere Auswertmöglichkeit von Versuch a bietet der Streuwinkel φ der resultierenden Impulse. Wie im Bild schon zu erkennen ist, ist dieser näherungsweise 90. Bei einem vollkommenen schiefen elastischem Stoß wäre dieser exakt 90. Da das Skalarprodukt zweier senkrecht aufeinander stehenden Vektoren 0 ergibt, kann die Auswertung ebenfalls über das Skalarprodukt erfolgen. Dieses wird in Matlab mit der Funktion dot() errechnet und liefert für Versuch a folgenden Wert: p 1 p 2 = (25) woraus sich folgender Winkel ergibt: 8

9 φ = arccos p 1 p 2 p 1 p = 86,74 (26) 1 Der tatsächliche Streuwinkel weicht also 3,26 vom theoretischen Winkel ab. 9

10 2 Anhang 2.1 Quellcode Versuch a close all; clear all; %Gleiche Massen, ein Puck ruht, Referenzdatei: gleichemassen1.jpg % Periodendauer Stroboskop T = 120*10^(-3); % Anzahl Stroboskopblitze n = 2; % Umrechnung Pixel --> Meter M = 100/0.089; % Masse der Puks m = ; % X-Komponente vor dem Stoß von Puck 1 x11 = 1366; % X-Komponente vor dem Stoß von Puck 1 nt Zeitpunkte später x12 = 1169; % Y-Komponente vor dem Stoß von Puck 1 y11 = 1302; % Y-Komponente vor dem Stoß von Puck 1 nt Zeitpunkte später y12 = 1200; % X-Komponente vor dem Stoß von Puck 2 x21 = 948; % X-Komponente vor dem Stoß von Puck 2 nt Zeitpunkte später x22 = 948; % Y-Komponente vor dem Stoß von Puck 2 y21 = 1033; % Y-Komponente vor dem Stoß von Puck 2 nt Zeitpunkte später y22 = 1033; % X-Komponente nach dem Stoß von Puck 1 x11s = 946; % X-Komponente nach dem Stoß von Puck 1 nt Zeitpunkte später x12s = 866; % Y-Komponente nach dem Stoß von Puck 1 y11s = 1149; % Y-Komponente nach dem Stoß von Puck 1 nt Zeitpunkte später y12s = 1208; % X-Komponente nach dem Stoß von Puck 2 x21s = 885; % X-Komponente nach dem Stoß von Puck 2 nt Zeitpunkte später 10

11 x22s = 787; % Y-Komponente nach dem Stoß von Puck 2 y21s = 945; % Y-Komponente nach dem Stoß von Puck 2 nt Zeitpunkte später y22s = 795; r11 = [x11;y11]/m; r12 = [x12;y12]/m; p1 = ((r12-r11)/(n*t))*m; r21 = [x21;y21]/m; r22 = [x22;y22]/m; p2 = ((r22-r21)/(n*t))*m; r11s = [x11s;y11s]/m; r12s = [x12s;y12s]/m; p1s = ((r12s-r11s)/(n*t))*m; r21s = [x21s;y21s]/m; r22s = [x22s;y22s]/m; p2s = ((r22s-r21s)/(n*t))*m; pges = p1 + p2; psges = p1s + p2s; delta_p = pges-psges ska = dot(p1s,p2s) 11

12 2.2 Quellcode Versuch b close all; clear all; %Verschiedene Masse, beide Pucks bewegen sich aufnander zu; Referenzdatei: %verschiedenemassen3.jpg % Periodendauer Stroboskop T = 120*10^(-3); % Anzahl Stroboskopblitze n = 2; % Umrechnung Pixel --> Meter M = 100/0.089; % Masse des schwarzen Puks (Puck 1) m1 = ; % Masse des roten Puks + Gewichte (Puck 2) m2 = ; % X-Komponente vor dem Stoß von Puck 1 (schwarz) x11 = 1416; % X-Komponente vor dem Stoß von Puck 1 nt Zeitpunkte später x12 = 1280; % Y-Komponente vor dem Stoß von Puck 1 y11 = 1282; % Y-Komponente vor dem Stoß von Puck 1 nt Zeitpunkte später y12 = 1208; % X-Komponente vor dem Stoß von Puck 2 x21 = 1380; % X-Komponente vor dem Stoß von Puck 2 nt Zeitpunkte später x22 = 1235; % Y-Komponente vor dem Stoß von Puck 2 y21 = 918; % Y-Komponente vor dem Stoß von Puck 2 nt Zeitpunkte später y22 = 1017; % X-Komponente nach dem Stoß von Puck 1 (schwarz) x11s = 1134; % X-Komponente nach dem Stoß von Puck 1 nt Zeitpunkte später x12s = 1076; % Y-Komponente nach dem Stoß von Puck 1 y11s = 1219; % Y-Komponente nach dem Stoß von Puck 1 nt Zeitpunkte später y12s = 1284; % X-Komponente nach dem Stoß von Puck 2 x21s = 976; % X-Komponente nach dem Stoß von Puck 2 nt Zeitpunkte später 12

13 x22s = 780; % Y-Komponente nach dem Stoß von Puck 2 y21s = 1060; % Y-Komponente nach dem Stoß von Puck 2 nt Zeitpunkte später y22s = 1029; r11 = [x11;y11]/m; r12 = [x12;y12]/m; p1 = ((r12-r11)/(n*t))*m1 r21 = [x21;y21]/m; r22 = [x22;y22]/m; p2 = ((r22-r21)/(n*t))*m2 r11s = [x11s;y11s]/m; r12s = [x12s;y12s]/m; p1s = ((r12s-r11s)/(n*t))*m1 r21s = [x21s;y21s]/m; r22s = [x22s;y22s]/m; p2s = ((r22s-r21s)/(n*t))*m2 pges = p1 + p2; psges = p1s + p2s; delta_p = pges-psges ska = dot(p1s,p2s); 13

Trägheitsmoment - Steinerscher Satz

Trägheitsmoment - Steinerscher Satz Trägheitsmoment - Steinerscher Satz Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 13. Januar 2009 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 2................................

Mehr

Die Vektoren der Geschwindigkeit lassen sich zu einem Parallelogramm addieren, es gilt:

Die Vektoren der Geschwindigkeit lassen sich zu einem Parallelogramm addieren, es gilt: Stoßgesetze Stöße Ein Stoß ist eine zeitlich begrenzte Wechselwirkung zwischen zwei Teilchen. Vor und nach einem Stoß unterscheiden sich Geschwindigkeit, Impuls und Energie der einzelnen Stoßpartner. Je

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Impulserhaltung in zwei Dimensionen (M5)

Impulserhaltung in zwei Dimensionen (M5) Impulserhaltung in zwei Dimensionen (M5) Ziel des Versuches Der elastische Stoß zweier Scheiben mit sowohl gleicher als auch unterschiedlicher Masse, die sich auf einem Luftkissentisch nahezu reibungsfrei

Mehr

Experimentalphysik 1. Aufgabenblatt 2

Experimentalphysik 1. Aufgabenblatt 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2017/18 Aufgabenblatt 2 Annika Altwein Maximilian Ries Inhaltsverzeichnis 1 Aufgabe 1(zentraler Stoß elastisch, unelastisch)

Mehr

Versuch 2 - Elastischer und inelastischer Stoß

Versuch 2 - Elastischer und inelastischer Stoß UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 2 - Elastischer und inelastischer Stoß 26. überarbeitete Auflage vom 10. Mai 2016 Dr. Stephan

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 26/7 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 7 / 3..26. Wegintegral Gegeben sei das Vektorfeld A( r) = ay

Mehr

M3 Stoß zweier Kreisscheiben

M3 Stoß zweier Kreisscheiben Christian Müller Jan Philipp Dietrich I. Versuchsdurchführung a) Erläuterung b) Fehlerbetrachtung II. Auswertung a) Massenmittelpunktsatz b) Impulserhaltungssatz c) Drehimpulserhaltungssatz d) Relativer

Mehr

Lösungen Aufgabenblatt 6

Lösungen Aufgabenblatt 6 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 6 Übungen E Mechanik WS 07/08 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln ) Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander

Mehr

Impuls und Impulserhaltung

Impuls und Impulserhaltung Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Impuls und Impulserhaltung Impuls. Einführung und Definition Der Impuls (engl. momentum) eines Körpers ist das, was in der Umgangssprache als Schwung oder Wucht

Mehr

Joachim Stiller. Über die Stoßgesetze. Alle Rechte vorbehalten

Joachim Stiller. Über die Stoßgesetze. Alle Rechte vorbehalten Joachim Stiller Über die Stoßgesetze Alle Rechte vorbehalten Über die Stoßgesetze Der Impulssatz 1. Der Impulssatz für abgeschlossene Systeme Zwei Billardkugeln stoßen aufeinander. Will man die Geschwindigkeit

Mehr

Kapitel 2 Elastische Stoßprozesse

Kapitel 2 Elastische Stoßprozesse Kapitel Elastische Stoßprozesse In diesem Kapitel untersuchen wir die Auswirkungen von elastischen Kollisionen auf die Bewegungen der Kollisionspartner.. Kollision mit gleichen Massen Elastische Stöße

Mehr

Physik 1. Stoßprozesse Impulserhaltung.

Physik 1. Stoßprozesse Impulserhaltung. Physik Mechanik Impulserhaltung 3 Physik 1. Stoßprozesse Impulserhaltung. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik Impulserhaltung 5 Themen Stoßprozesse qualitativ quantitativ Impulserhaltungssatz

Mehr

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann: Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

Demonstrationsexperimente WS 05/06

Demonstrationsexperimente WS 05/06 Demonstrationsexperimente WS 05/06 Energie und Impuls (Versuche mit der Luftkissenbahn) Debora Berger 1Vorbemerkung Dieser Versuch wurde schon im Vorfeld durchgeführt und gefilmt. Mithilfe der Luftkissenbahn

Mehr

Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen

Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen 1. Eine Lore mit der Masse 800 kg fährt mit 1,5 m/s durch ein Bergwerk. Während der Fahrt fallen von oben 600 kg Schotter in die Lore. Mit welcher

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

1.12. Stoßgesetze. Ziel. Hinweise zur Vorbereitung. Versuchsdurchführung Stoßgesetze 143

1.12. Stoßgesetze. Ziel. Hinweise zur Vorbereitung. Versuchsdurchführung Stoßgesetze 143 1.12 Stoßgesetze 143 1.12. Stoßgesetze Ziel Überprüfung der Gesetzmäßigkeiten beim elastischen Stoß in zwei Dimensionen. Hinweise zur Vorbereitung Die Antworten auf diese Fragen sollten Sie vor der Versuchdurchführung

Mehr

SG Stoßgesetze. Inhaltsverzeichnis. Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

SG Stoßgesetze. Inhaltsverzeichnis. Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 SG Stoßgesetze Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Stöße............................ 2 2.2 Schwerpunktsystem....................

Mehr

Lösung VIII Veröentlicht:

Lösung VIII Veröentlicht: 1 Impulse and Momentum Bei einem Crash-Test kollidiert ein Auto der Masse 2kg mit einer Wand. Die Anfangs- und Endgeschwindigkeit des Autos sind jeweils v = (- 2 m/ s) e x und v f = (6 m/ s) e x. Die Kollision

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Lösung 12 Klassische Theoretische Physik I WS 15/16

Lösung 12 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung 1 Klassische Theoretische Physik I WS 1/16 Prof. Dr. G. Schön + Punkte Sebastian Zanker, Daniel Mendler

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

Aufgabe 3 wird für unsere weiteren Betrachtungen komplett gestrichen.

Aufgabe 3 wird für unsere weiteren Betrachtungen komplett gestrichen. Charlotte-Wolff-Kolleg A40, Q-Phase, Kurs: LK-Physik Fachlehrer: Lothar Winkowski Zeit: Dienstag, den 23.08.11, 3. Block ( 12.00 13.30 Uhr Thema: Elastischer und unelastischer Stoß Protokollant: Benjamin

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 04.12.2017 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Physikpraktikum. Gruppenarbeit zum Thema: Federn, Kräfte und Vektoren. Von Michael Fellmann Manuel Mazenauer Claudio Weltert

Physikpraktikum. Gruppenarbeit zum Thema: Federn, Kräfte und Vektoren. Von Michael Fellmann Manuel Mazenauer Claudio Weltert Physikpraktikum Gruppenarbeit zum Thema: Federn, Kräfte und Vektoren Von Michael Fellmann Manuel Mazenauer Claudio Weltert Dozent: Dr. O. Merlo Studiengang: SBCH 10_01 Abgabedatum: 19.10.2010 Inhaltsverzeichnis

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung Labor zur Vorlesung Physik Versuch : Energie- und Impulserhaltung Abb : Luftkissen-Fahrbahn. Zur Vorbereitung Die folgenden Begriffe müssen Sie kennen und erklären können: Impuls, Energie, kinetische und

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt?

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt? Aufgabe 32: Impuls Bei einem Crash-Test kollidiert ein Auto der Masse 2000Kg mit einer Wand. Die Anfangsund Endgeschwindigkeit des Autos sind jeweils v 0 = (-20m/s) e x und v f = (6m/s) e x. Die Kollision

Mehr

Grundpraktikum M6 innere Reibung

Grundpraktikum M6 innere Reibung Grundpraktikum M6 innere Reibung Julien Kluge 1. Juni 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 215 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT Inhaltsverzeichnis

Mehr

3. Kapitel Der Compton Effekt

3. Kapitel Der Compton Effekt 3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Agio Department Physik Klausur Physik I für Chemiker Lösung zu Aufgabe 1: Kurzfragen Lösung zu Aufgabe 2:

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel

Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel Protokoll zum Versuch M1 Bestimmung der Fallbeschleunigung g am Fadenpendel Norman Wirsik Matrikelnr: 1829994 8. November 2004 Gruppe 5 Dienstag 13-16 Uhr Praktikumspartner: Jan Hendrik Kobarg 1 1. Ziel

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

Protokoll zum Versuch: Atwood'sche Fallmaschine

Protokoll zum Versuch: Atwood'sche Fallmaschine Protokoll zum Versuch: Atwood'sche Fallmaschine Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 11.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack. Betreuerin: Natalia Podlaszewski 11. November 2008

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack. Betreuerin: Natalia Podlaszewski 11. November 2008 Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 11. November 2008 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 7................................ 3

Mehr

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28.

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28. Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha Betreuerin: Natalia Podlaszewski 28. Oktober 2008 1 Inhaltsverzeichnis 1 Versuche mit dem Digital-Speicher-Oszilloskop 3

Mehr

E1 Mechanik Musterlösung Übungsblatt 6

E1 Mechanik Musterlösung Übungsblatt 6 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

Impulserhaltung. einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss viel grösser

Impulserhaltung. einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss viel grösser Impulserhaltung Raketenersuch (Vorlesung) einmal mit Luft als Treibstoff, einmal mit Wasser bei Wasser ist der Rückstoss iel grösser Elastischer Stoss zweier Massen m 1 und m 2 Versuche: Hammerschlag,

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

B!G B4NG challenge, Aufgabe 1: Beispiellösung einer Schülergruppe a)1. Rechnerische Bestimmung des Proportionalitätsfaktors C T ~ L

B!G B4NG challenge, Aufgabe 1: Beispiellösung einer Schülergruppe a)1. Rechnerische Bestimmung des Proportionalitätsfaktors C T ~ L B!G B4NG challenge, Aufgabe 1: Beispiellösung einer Schülergruppe a)1. Rechnerische Bestimmung des Proportionalitätsfaktors C T ~ L ()² T² ~ L T² = C L Gleichung (1) f = 1/T T /f T = 1/f Gleichung (2)

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Schwerpunktfach Physik und Anwendungen der Mathematik

Schwerpunktfach Physik und Anwendungen der Mathematik Schriftliche Maturitätsprüfung 2014 Kantonsschule Reussbühl Luzern Schwerpunktfach Physik und Anwendungen der Mathematik Prüfende Lehrpersonen Klasse Hannes Ernst (hannes.ernst@edulu.ch) Luigi Brovelli

Mehr

Kinematik und Dynamik eines Massepunktes GK

Kinematik und Dynamik eines Massepunktes GK Kinematik und Dynamik eines Massepunktes GK Sto ße Interpretiere obiges v/t Diagramm eines Stoßes (v in m/s und t/s) Lösung: Wagen (oben) fährt mit v = 0,4 m/s gegen Wagen (unten) Nach dem unelastischen

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

2 Mechanik des Massenpunktes

2 Mechanik des Massenpunktes 2 Mechanik des Massenpunktes Wir beginnen deshalb in Kapitel 2 mit der Beschreibung der Bewegung von Massenpunkten, kommen dann in Kapitel 4 zum starren Körper und schließlich in Kapitel 5 zur Mechanik

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

Übung zu Mechanik 3 Seite 61

Übung zu Mechanik 3 Seite 61 Übung zu Mechanik 3 Seite 61 ufgabe 105 Ein Massenpunkt om Gewicht G fällt aus der Höhe h auf eine federnd gestützte Masse om Gewicht G. Um welchen etrag h wird die Feder (Federkonstante c) maximal zusammengedrückt

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

Versuchsprotokoll. Aufnahme einer Schwingung zur Untersuchung des Dämpfungsverhaltens mithilfe einer Schattenprojektion

Versuchsprotokoll. Aufnahme einer Schwingung zur Untersuchung des Dämpfungsverhaltens mithilfe einer Schattenprojektion Versuchsprotokoll Jan Hedder Datum: 20.02.04 Physik LK 12/2 - Schwingungen und Wellen Fachlehrer: Herr Konrad Mitarbeiter: Sooke Janssen, Niko Steinhäuser Thema: Aufnahme einer Schwingung zur Untersuchung

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuch P1-15 Pendel Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze 3.1.11 1 Inhaltsverzeichnis 1 Reversionspendel 3 1.0 Eichmessung................................... 3 1.1 Reduzierte Pendellänge.............................

Mehr

Stoß zweier Kreisscheiben

Stoß zweier Kreisscheiben Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/2015 M3 Stoß zweier Kreisscheiben Für den Stoß zweier Kreisscheiben auf einem Luftkissentisch wird geprüft, wie gut der Impulserhaltungssatz

Mehr

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2: Aufgabe 1: Ein Autoreifen habe eine Masse von 1 kg und einen Durchmesser von 6 cm. Wir nehmen an, dass die gesamte Masse auf dem Umfang konzentriert ist (die Lauffläche sei also viel schwerer als die Seitenwände

Mehr

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Klausur zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Leibniz Universität Hannover 03.02.2010 Barthold Name, Vorname: Matrikelnummer:

Mehr

S1 Bestimmung von Trägheitsmomenten

S1 Bestimmung von Trägheitsmomenten Christian Müller Jan Philipp Dietrich S1 Bestimmung von Trägheitsmomenten Versuch 1: a) Versuchserläuterung b) Messwerte c) Berechnung der Messunsicherheit ud u Versuch 2: a) Erläuterungen zum Versuchsaufbau

Mehr

Lösung zur 1. Probeklausur

Lösung zur 1. Probeklausur EI PH3 2010-11 PHYSIK Lösung zur 1. Probeklausur Diese Lösung ist ein Vorschlag, es geht oft auch anders die Ergebnisse sollten aber die gleichen sein! 1. Aufgabe Im Praktikum hast du eine Feder mit einer

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kreisbewegung Ein Massepunkt bewege sich auf einer Kreisbahn mit der konstanten Geschwindigkeit

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 3 Energie, Arbeit und Leistung 3 3.1 Energie.................................. 3 3.2 Arbeit...................................

Mehr

Klausur Physik für Chemiker

Klausur Physik für Chemiker Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Winter Semester 2018 Prof. Dr. Mario Agio Klausur Physik für Chemiker Datum: 18.3.2019-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

Versuch 11 Einführungsversuch

Versuch 11 Einführungsversuch Versuch 11 Einführungsversuch I Vorbemerkung Ziel der Einführungsveranstaltung ist es Sie mit grundlegenden Techniken des Experimentierens und der Auswertung der Messdaten vertraut zu machen. Diese Grundkenntnisse

Mehr

Pool für das Jahr 2018

Pool für das Jahr 2018 Gemeinsame Abituraufgabenpools der Länder Pool für das Jahr 18 Aufgaben für das Fach Mathematik Kurzbeschreibung Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis WTR 1

Mehr

Protokoll zum Versuch M2 Messwerterfassung und -auswertung mit dem Computer Interface System am Pendel

Protokoll zum Versuch M2 Messwerterfassung und -auswertung mit dem Computer Interface System am Pendel Protokoll zum Versuch M2 Messwerterfassung und -auswertung mit dem Computer Interface System am Pendel Norman Wirsik Matrikelnr: 1829994 6. November 2004 Gruppe 5 Dienstag 13-16 Uhr Praktikumspartner:

Mehr

Impulserhaltung beim zentralen elastischen Stoß mit der Rollenfahrbahn und Zeitmessgerät 4 4

Impulserhaltung beim zentralen elastischen Stoß mit der Rollenfahrbahn und Zeitmessgerät 4 4 Einleitung Als Kraftstoß auf einen Körper wird die durch eine Kraft F in einer kurzen Zeit t bewirkte Impulsänderung bezeichnet. Der Impuls p ist dabei als das Produkt aus Kraft und Zeit definiert und

Mehr

Physikalisches Praktikum Uhr. Untersuchung des nicht zentralen elastischen Stoßes

Physikalisches Praktikum Uhr. Untersuchung des nicht zentralen elastischen Stoßes www.schlurcher.de.u Edited by Schlurcher Physikalisches Praktikum..3 3. 5. Uhr Untersuchung des nicht zentralen elastischen Stoßes Aufbau der Versuchsanordnung Die Versuchsanordnung wurde so aufgebaut,

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

Klausur zur Experimentalphysik I für Geowissenschaftler und Geoökologen (Prof. Philipp Richter)

Klausur zur Experimentalphysik I für Geowissenschaftler und Geoökologen (Prof. Philipp Richter) Übungsgruppenleiter: Universität Potsdam Institut für Physik und Astronomie 14.02.2012 Klausur zur Experimentalphysik I für Geowissenschaftler und Geoökologen (Prof. Philipp Richter) Gesamtpunktzahl: 52

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Ein Idealer Generator - Variante

Ein Idealer Generator - Variante Ein Idealer Generator - Variante Dein Freund Luis möchte bei einem schulischen Wettbewerb mit folgender genialer antreten: Er hat einen Wechselspannungsgenerator entworfen, der, einmal angeworfen, für

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt

Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Aufgabe 3 Prof. Dr. Schön und Dr. Eschrig Wintersemester 004/005 Durch Trennung der Veränderlichen und anschließende Integration ergibt sich aus

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Bestimmung der Erdbeschleunigung g

Bestimmung der Erdbeschleunigung g Laborbericht zum Thema Bestimmung der Erdbeschleuni Erdbeschleunigung g Datum: 26.08.2011 Autoren: Christoph Winkler, Philipp Schienle, Mathias Kerschensteiner, Georg Sauer Friedrich-August Haselwander

Mehr

IM3. Modul Mechanik. Maxwell sches Rad

IM3. Modul Mechanik. Maxwell sches Rad IM3 Modul Mechanik Maxwell sches Rad In dem vorliegenden Versuch soll die Energieerhaltung anhand des Maxwell schen Rades untersucht werden. Das Maxwell sche Rad ist ein Metallrad mit grossem Trägheitsmoment,

Mehr

Laborversuche zur Physik I. I-01 Pendelversuche. Versuchsleiter:

Laborversuche zur Physik I. I-01 Pendelversuche. Versuchsleiter: Laborversuche zur Physik I I-01 Pendelversuche Versuchsleiter: Autoren: Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum:?.? 2005 1 Inhaltsverzeichnis 2 Aufgaben und Hinweise 2 2.1 Federpendel.....................................

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI Versuch 1.5 Erzwungene Schwingungen und Dämpfungen (Drehpendel nach Pohl) MI2AB Prof. Ruckelshausen MI2AB Prof. Ruckelshausen Seite 1 von 6 Inhaltsverzeichnis 1.) Versuch 1:

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder ) Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall

Mehr

Feder-, Faden- und Drillpendel

Feder-, Faden- und Drillpendel Dr Angela Fösel & Dipl Phys Tom Michler Revision: 30092018 Eine Schwingung (auch Oszillation) bezeichnet den Verlauf einer Zustandsänderung, wenn ein System auf Grund einer Störung aus dem Gleichgewicht

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

IMPULS UND IMPULSERHALTUNG AM BEISPIEL DES BILLARDS

IMPULS UND IMPULSERHALTUNG AM BEISPIEL DES BILLARDS IMPULS UND IMPULSERHALTUNG AM BEISPIEL DES BILLARDS Autoren: Katharina Diederichs 2015 WWW.KNSU.DE Seite 1 Übersicht Einleitung Der Impuls o Definition und theoretische Grundlagen o Impulserhaltungssatz

Mehr

1. Klausur ( )

1. Klausur ( ) EI K1PH-4 2012-13 PHYSIK 1. Klausur (15.10.2012) 1. Aufgabe (2 Punkte) Gib ein Beispiel für eine Bewegung an, bei der die Geschwindigkeit negativ, die Beschleunigung aber positiv ist. Skizziere ein entsprechendes

Mehr

Klausur 3 Kurs 11Ph1e Physik

Klausur 3 Kurs 11Ph1e Physik 2011-03-16 Klausur 3 Kurs 11Ph1e Physik Lösung 1 An einem Masse-Feder-Pendel und an einem Fadenpendel hängt jeweils eine magnetisierbare Masse. urch einen mit jeweils konstanter (aber möglicherweise unterschiedlicher)

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 05.12.2016 http://xkcd.com/1248/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen 05.12.16

Mehr