2.3 Klassische Variationsprobleme

Größe: px
Ab Seite anzeigen:

Download "2.3 Klassische Variationsprobleme"

Transkript

1 58 Kapitel. Variationsrechnung.3 Klassische Variationsprobleme Wir werden nun zwei klassische Variationsprobleme behandeln, die bei der Entwicklung der bisher vorgestellten Methoden eine wichtige Rolle gespielt haben. Minimale Rotationsflächen. Taucht man zwei Drahtringe in eine Seifenlauge und zieht dann den einen Ring vertikal nach oben, bildet die Seifenhaut zwischen den Ringen eine rotationssymmetrische Fläche von minimaler Oberfläche. Um diese minimale Fläche zu bestimmen, formulieren wir die Situation als Variationsproblem. Wir wählen die Symmetrieachse der Rotationsfläche als x-achse, plazieren den Nullpunkt in einen der Drahtringe und ergänzen zu einem rechtwinkligen Koordinatensystem. Die x-y-ebene schneidet die Fläche in zwei spiegelbildlichen Kurven. Die Kurve oberhalb der x-achse können wir als Graph einer glatten Funktion ϕ:[0,l] R >0 darstellen. Die Werte ϕ(0) = r 1, ϕ(l) = r geben die Radien der beiden Drahtringe an. Umgekehrt erzeugt jede solche Funktion eine Rotationsfläche in R 3. Zeichnen wir nämlich den Funktionsgraphen von ϕ in die x-y-ebene ein und lassen wir diese Kurve im Raum um die x-achse rotieren, so erhalten wir eine Fläche, die drehsymmetrisch ist bezüglich jeder Drehung um die x-achse. Wir betrachten also Funktionen aus der Teilmenge Z := {ϕ C ([0,L],R >0 ) ϕ(0) = r 1,ϕ(L) = r } (r 1,r > 0 fest gewählt) des Banachraums B = C ([0,L],R). Frage: Welche der durch die Funktionen aus Z erzeugten Rotationsflächen haben die kleinste Oberfläche? Oder gibt es möglicherweise gar keine solche Minimalfläche? Die Oberfläche der von ϕ Z erzeugten Rotationsfläche F (ohne die berandenden Kreisscheiben) beträgt I(ϕ) = L 0 πϕ(x) 1+ϕ (x) dx. Dennπϕ(x)gibtdenUmfangdesKreisesan,denwirerhalten,wennwirF miteiner EbenesenkrechtzurSymmetrieachse aufderhöhexschneiden, und 1+ϕ (x) dx = ds beschreibt ein infinitesimales Wegstück auf dem Funktionsgraphen von ϕ. Hat das Funktional I bei ϕ Z ein lokales Minimum, so erfüllt ϕ die zugehörige Euler-Lagrange-Gleichung f(x,ϕ(x),ϕ (x)) = d dx 3f(x,ϕ(x),ϕ (x)), wobei f(x,ϕ(x),ϕ (x)) = πϕ(x) 1+ϕ (x). Der Integrand f hängt also hier nicht explizit von x ab. In diesem Fall lässt sich die Euler-Lagrange-Gleichung auf eine Differentialgleichung erster Ordnung zurückführen..8 Lemma Sei f:[a,b] U R (U R ) eine zweimal stetig differenzierbare Funktion mit 1 f(x,y,z) = 0 für alle x,y,z. Ist ϕ C ([a,b],r) eine Lösung der entsprechenden Euler-Lagrange-Gleichung, dann gibt es eine Konstante c R mit: ϕ (x) 3 f(x,ϕ(x),ϕ (x)) f(x,ϕ(x),ϕ (x)) = c für alle x [a,b].

2 .3. Klassische Variationsprobleme 59 Beweis. Bestimmen wir die Ableitung nach x der linken Seite in der Gleichung, erhalten wir wegen der Voraussetzung: d dx (ϕ (x) 3 f(x,ϕ(x),ϕ (x)) f(x,ϕ(x),ϕ (x))) = ϕ (x) 3 f +ϕ (x) d dx 3f 1 f ϕ (x) f ϕ (x) 3 f = ϕ (x)( d dx 3f f). Gilt also die Euler-Lagrange-Gleichung, verschwindet die Ableitung, und daher ist die linke Seite wie behauptet konstant. q.e.d. Wenden wir dies Lemma nun auf das Problem der Minimalflächen an. Die vereinfachte Version der Euler-Lagrange-Gleichung lautet hier: πϕ (x) ϕ (x)ϕ(x) 1+ϕ (x) πϕ(x) 1+ϕ (x) = c. Daraus folgt ϕ (x) = ( π c ϕ(x)) 1. Wir setzen c 1 := π. Dann können wir diese Differentialgleichung auch in der Form c y = (c 1 y) 1 schreiben und durch Trennung der Variablen lösen. Die Trennung der Variablen liefert dy (c1 y) 1 = 1 arcosh(c 1 y) = x+c. c 1 Also lautet die allgemeine Lösung der Differentialgleichung ϕ(x) = 1 c 1 cosh(c 1 (x+c )) (x [0,L]) mit Konstanten c 1,c R, c 1 > 0. Es handelt sich also um eine passend skalierte und verschobene Form des Cosinus hyperbolicus. Ob es eine Lösung gibt, die auch die vorgegebenen Randbedingungen ϕ(0) = r 1, ϕ(l) = r, erfüllt, hängt (bei vorgegebenen Werten r 1,r > 0) von der Wahl von L ab. Dies entspricht der Beobachtung, dass die Seifenhaut beim Auseinanderziehen der Drahtringe zerreisst, sobald die Entfernung der Ringe eine kritische Marke überschreitet. Schauen wir uns dies genauer an für den Fall, dass die beiden Drahtringe denselben Radius haben, das heisst r 1 = r = r > 0. Dann muss gelten ϕ(0) = ϕ(l), und dies ist nur erfüllt, wenn wir c = L setzen. Die Kandidaten, die möglicherweise eine Minimalfläche erzeugen, sind also die Funktionen der Form wobei c > 0 so gewählt sein muss, dass ϕ(x) = 1 c cosh(c(x L )) (x [0,L]), ϕ(l) c = cosh( L c) = rc.

3 60 Kapitel. Variationsrechnung Geometrisch bedeutet dies: die Gerade G durch den Nullpunkt mit der Steigung r schneidet den Graphen der Funktion ψ L :c cosh( L c) im Punkt (c,rc). Aus dem Verlauf des Cosinus hyperbolicus ergeben sich nun drei Möglichkeiten. 1. Fall: DieGeradeGist einetangenteandenfunktionsgraphenvonψ L und(c,rc) ist der eindeutige Berührpunkt. In diesem Fall ist r = ψ L (c) = L sinh(l c) =: r 0 und r 0 c = ψ L (c) = cosh( L c). Das heisst also: L sinh( ( L ) r 0 r +1) = 1. 0 Das Verhältnis von r 0 zu L liegt etwa bei r 0 /L 0,76.. Fall: Die Gerade G schneidet den Funktionsgraphen von ψ L nicht und es gibt keine Lösung. Dieser Fall tritt ein, wenn r < r 0. Unter diesen Umständen gibt es keine Minimalfläche, das Funktional I nimmt auf Z kein Minimum an. 3. Fall: Die Gerade G schneidet den Funktiongraphen von ψ L in zwei Punkten. Dieser Fall tritt ein, wenn r > r 0. Hier gibt es zwei Lösungen der Euler-Lagrange- Gleichung, aber nur eine erzeugt tatsächlich eine Minimalfläche. Resultat: Das Variationsproblem hat eine eindeutige Lösung, wenn das Verhältnis von L zu r genügend klein ist. Problem der Brachistochrone. Hier geht es darum, eine optimale Rutschbahn zu finden. Sind p, q vorgegebene Punkte, suchen wir diejenige Bahnkurve, längs der ein Massenpunkt nur unter dem Einfluss der Schwerkraft in der kürzesten Zeit von p nach q gelangt. Dies Problem wurde 1696 von Johann Bernoulli gelöst, der dafür die Grundideen der Variationsrechnung entwickelte. Wir wählen den Punkt p als Ursprung des Koordinatensystems in der vertikalen Ebene durch p und q. Die y-achse orientieren wir(entgegen der üblichen Gewohnheit) nach unten, so dass q = (a,b) (a,b > 0) sei. Die Bahnkurve von p nach q, die der Massenpunkt zurücklegen soll, sei als Funktionsgraph beschrieben. In Frage kommen also Funktionen aus der Menge Z := {ϕ C ([0,a],R) ϕ(0) = 0,ϕ(a) = b}. Nehmen wir an, der Massenpunkt sei zu Beginn der Bewegung beim Startpunkt p in Ruhe und falle dann entlang der Bahn bis zum Punkt q. Das Energieerhaltungsprinzip liefert dann: Daraus folgt 0 = E kin +E pot = 1 mv mgϕ(x). v = gϕ(x) = ds dt. Weiter gilt für den längs der Bahn zurückgelegten Weg ds = 1+ϕ (x) dx.

4 .3. Klassische Variationsprobleme 61 Die Gesamtzeit der Bewegung können wir jetzt als Integralausdruck schreiben, nämlich: q q ds a T(ϕ) = dt = v = 1+ϕ (x) dx. gϕ(x) Wir müssen also folgende Frage beantworten: p p Frage: Nimmt das Funktional T auf der Menge Z ein Minimum an, und wenn ja an welchen Stellen? Auch hier hängt der Integrand nicht explizit von der Variablen x ab, wir können also wieder die vereinfachte Form der Euler-Lagrange-Gleichung verwenden: ϕ (x) gϕ(x)(1+ϕ (x) ) 1+ϕ (x) = c. gϕ(x) Daraus ergibt sich: ϕ(x)(1+ϕ (x) ) = C für eine weitere Konstante C R. Diese Differentialgleichung ist zwar elementar integrierbar, die Lösung sieht aber kompliziert aus und ist nicht leicht zu interpretieren. Deshalb verfolgen wir einen anderen Ansatz und schreiben den Funktionsgraphen als parametrisierte Kurve in der Form γ(t) = (x,ϕ(x)) = (x(t),y(t)) (t [0,T]). Dabei gebe γ(t) an, an welchem Punkt der Bahn sich der Massenpunkt zum Zeitpunkt t befindet. Dann gilt für die momentane Geschwindigkeit des Massenpunktes: Ausserdem liefert die Kettenregel: Daraus folgt: v(t) = gy(t) = ẋ(t) +ẏ(t). ẏ(t) = d dt ϕ(x(t)) = ϕ (x(t)) ẋ(t). ϕ (x(t)) = ẏ(t) ẋ(t). Setzen wir dies in die Differentialgleichung für ϕ ein, erhalten wir: y(t)(ẋ(t) +ẏ(t) ) = Cẋ(t). Mit der Gleichung für die Momentangeschwindigkeit wird daraus: und wir erhalten: ẏ(t) = gy(t) = C(gy(t) ẏ(t) ), g Cy(t) y(t) g und ẋ(t) = C c y(t). 0

5 6 Kapitel. Variationsrechnung In dieser Form ist die Differentialgleichung für y leicht lösbar, und die Lösung zur Anfangsbedingung y(0) = 0 lautet: y(t) = C (1 cos g C t). Daraus ergibt sich folgende Parametrisierung der gesuchten Bahnkurve: γ(t) = ( C g g ( C t sin( C t), C g (1 cos t)) (t [0,T]). C S := g C t und Um die Darstellung der Bahnkurve zu vereinfachen, setzen wir: s := CT. Bezogen auf den Parameter s lautet die Beschreibung der Kurve: g γ(s) = ( C (s sin(s), C ) (1 cos(s)) (s [0,S]). Dies ist ein Ausschnitt aus einer sogenannten Zykloide. So nennt man diejenige Kurve, die beim Abrollen einer Kreisscheibe mit konstanter Drehgeschwindigkeit entlang der x-achse entsteht, wenn man einen Punkt auf dem Rand des Kreises markiert. Der Parameter C gibt dabei den Durchmesser des Kreises an. Kehren wir wieder zurück zum ursprünglichen Variationsproblem, der Frage nach der optimalen Rutschbahn. Damit die Bahnkurve am vorgesehenen Punkt endet, muss folgende Bedingung erfüllt sein: ( C γ(s) = q = (a,b) = (S sin(s), C ) (1 coss). Daraus folgt insbesondere b a = 1 coss S sins. Durch diese Beziehung ist ein eindeutiger Wert S (0, π) festgelegt, denn die Ursprungsgerade mit der Steigung b > 0 schneidet den Abschnitt der Zykloide zum a Kreis von Radius 1 über [0,π] ausser im Nullpunkt in genau einem weiteren Punkt. Nun ist auch C eindeutig festgelegt, denn C = b. 1 cos(s) Resultat: Das Problem der Brachistochrone hat stets eine eindeutige Lösung, und es handelt sich dabei um einen Ausschnitt aus einer Zykloide. Es kann übrigens vorkommen, dass der tiefste Punkt der optimalen Bahnkurve tiefer liegt als der Endpunkt q. Und zwar ist dies immer dann der Fall, wenn b a < π..4 Variationsprobleme mit Nebenbedingung Man kann, ähnlich wie im Fall von Funktionen mehrerer Variabler, auch bei Funktionalen auf Banachräumen nach Extrema unter Nebenbedingungen fragen. Hier ist ein typisches Beispiel für so eine Fragestellung:

6 .4. Variationsprobleme mit Nebenbedingung 63.9 Beispiel Seien a > 0 und L > a vorgegeben, und sei B = C 0 ([,a],r). Weiter sei Z = {ϕ B C ((,a),r 0 ) ϕ() = 0 = ϕ(a)}. Unter den Kurven mit Weglänge L, die sich als Graph einer Funktion ϕ Z schreiben lassen, suchen wir nach derjenigen, die zusammen mit der x-achse die grösste Fläche umschliesst. Gesucht istalsodasmaximumdesfunktionalsa:z R,definiertdurchA(ϕ) = ϕ(x)dx, unter der Nebenbedingung L(ϕ) = 1+ϕ (x)dx = L. Es gilt folgende notwendige Bedingung für lokale Extremwerte unter einer Nebenbedingung..30 Satz Die Funktionale I,K:Z C ([a,b],r) seien definiert durch I(ϕ) = b a f(x,ϕ(x),ϕ (x))dx und K(ϕ) = b a g(x,ϕ(x),ϕ (x))dx, wobei f, g jeweils zweimal stetig differenzierbare Funktionen in drei Variablen seien. Nehmen wir jetzt an, das Funktional I habe bei ϕ Z ein lokales Extremum unter der Nebenbedingung K(ϕ) = L (L R vorgegeben). Dann gibt es einen Lagrange- Multiplikator λ R mit (f +λg)(x,ϕ(x),ϕ (x)) = d dx 3(f +λg)(x,ϕ(x),ϕ (x)) für alle x, es sei denn ϕ erfüllt die Differentialgleichung g(x,ϕ(x),ϕ (x)) = d dx 3g(x,ϕ(x),ϕ (x)) für alle x..31 Beispiel Kehren wir wieder zu unserem Beispiel zurück und wenden wir den Satz darauf an. In diesem Fall ist f(x,ϕ(x),ϕ (x)) = ϕ(x) und g(x,ϕ(x),ϕ (x)) = 1+ϕ (x). Die Differentialgleichung für (f +λg) lautet also hier: ( ) 1 = d ϕ (x) λ. dx 1+ϕ (x) Durch Integration folgt und daraus ergibt sich ϕ (x) x c 1 = λ 1+ϕ (x), ϕ (x) = (x c 1) λ (x c 1 ).

7 64 Kapitel. Variationsrechnung Nochmalige Integration liefert nun die allgemeine Lösung (x c 1 ) ϕ(x) = λ (x c 1 ) dx = λ (x c 1 ) +c mit Konstanten λ,c 1,c R. Der Graph von ϕ ist also ein Ausschnitt aus dem Kreis, gegeben durch (x c 1 ) +(y c ) = λ, von Radius λ um den Mittelpunkt (c 1,c ). Wegen der Randbedingungen ϕ() = ϕ(a) = 0 muss ausserdem gelten: c 1 = 0 und c = λ < 0. Schliesslich liefert die Nebenbedingung noch eine zusätzliche Beziehung: K(ϕ) = 1+ϕ (x) dx = λ λ x dx = λarcsin(a λ ) = L. Zu gegebenen L > a hat diese Gleichung eine eindeutige Lösung λ a, falls L πa. Resultat: Für L = πa erhält man als optimale Kurve den Halbkreisbogen; er umschliesst mit der x-achse die grösste Fläche; allerdings ist ϕ in diesem Fall in den Randpunkten nicht differenzierbar. Tatsächlich gilt folgendes:.3 Satz Unter allen einfach geschlossenen stetigen Kurven vorgegebener Länge berandet die Kreislinie die grösste Fläche. Daraus folgt die sogenannte isoperimetrische Ungleichung. Sie besagt, dass für die von einer einfach geschlossenen stetigen Kurve γ der Länge L umschlossene Fläche A(γ) stets gilt: A(γ) L 4π. Die obere Schranke wird nur genau dann angenommen, wenn γ eine Kreislinie ist.

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n - 1 - Variationsrechnung Die Variationsrechnung spielt in der Physik eine entscheidende Rolle. So kann man die Grundgleichungen der Newtonschen Mechanik aus einem Lagrangeschen Variationsprinzip herleiten.

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

*** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft)

*** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft) *** 2.2. Variation mit Nebenbedingung (Ergänzung: wird nicht geprüft) In manchen Problemen sind nicht alle möglichen Funktionen als Lösung erlaubt, sondern nur Funktionen, die zusätzliche Bedingungen erfüllen.

Mehr

Das isoperimetrische Problem

Das isoperimetrische Problem Das isoperimetrische Problem Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 18. Oktober 3 Das isoperimetrische Problem, auch bekannt als das Problem der Dido, ist es, unter allen geschlossenen ebenen

Mehr

d x 2 = 1 y ' x 2 d x 2

d x 2 = 1 y ' x 2 d x 2 2. Variationsrechnung 2.1. Variation ohne Nebenbedingungen Eine Funktion y = y(x) ordnet jedem x-wert eine Zahl (den y-wert) zu. In der Variationsrechnung betrachtet man Funktionale, die jeder Funktion

Mehr

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H

x(t) t x(t) = y(t) x(t) = v H t y(t) = h + v V t g 2 t2, x/v H Ebene Kurven Definition: Eine parametrisierte ebene Kurve ist eine stetige Abbildung x(t) t x(t) = y(t) eines Intervalls [a, b] nach R. Dabei heißt t [a, b] der Kurvenparameter. Beide Komponentenabbildungen

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen Mathematik für Physiker III WS 2012/2013 Freitag 211 $Id: implizittexv 18 2012/11/01 20:18:36 hk Exp $ $Id: lagrangetexv 13 2012/11/01 1:24:3 hk Exp hk $ 1 Umkehrfunktionen und implizite Funktionen 13

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

7.11. Extrema unter Nebenbedingungen

7.11. Extrema unter Nebenbedingungen 7.11. Extrema unter Nebenbedingungen Randextrema Wir haben schon bemerkt, daß die üblichen Tests mit Hilfe von (eventuell höheren) Ableitungen nur Kriterien für (lokale) Extrema im Inneren des Definitionsgebietes

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Kapitel 6 Vektoranalysis. 6.1 Glatte Kurven und Flächen in R 3

Kapitel 6 Vektoranalysis. 6.1 Glatte Kurven und Flächen in R 3 Kapitel 6 Vektoranalysis 6. Glatte Kurven und Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die

Mehr

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB KLAUSUR ZUR ATHEATIK FÜR PHYSIKER ODUL ATHB In jeder Aufgabe können Punkte erreicht werden Es zählen die 9 bestbewerteten Aufgaben Die Klausur ist mit 45 Punkten bestanden Die Bearbeitungszeit beträgt

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

Lösungen zu Übungsblatt 1

Lösungen zu Übungsblatt 1 Vorlesung Geometrie für Lehramt Gymnasium, Wintersemester 4/5 Lösungen zu Übungsblatt Aufgabe. ( Punkte Beweisen Sie: Jeder reguläre Weg besitzt eine orientierungsumkehrende Parametrisierung nach der Bogenlänge.

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Kapitel 6. Variationsrechnung

Kapitel 6. Variationsrechnung Kapitel 6 Variationsrechnung Die vorangegangenen Kapitel waren der relativistischen Kinematik gewidmet, also der Beschreibung der Bewegung von Teilchen, deren Geschwindigkeit nicht vernachlässigbar klein

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Lösungen zum Übungsblatt 1

Lösungen zum Übungsblatt 1 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Variationsrechnung ME), Prof Dr J Gwinner Übung: K Dvorsky 3 pril Lösungen zum Übungsblatt Das rachistochronenproblem

Mehr

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder

D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder D-MAVT & D-MATL Analysis I & II Sommer 2012 Prof. Dr. Giovanni Felder Prüfung WICHTIG: Die Prüfung dauert 4 Stunden (240 Minuten). Verwenden Sie bitte für jede Aufgabe ein neues Blatt und schreiben Sie

Mehr

Ferienkurs Theoretische Mechanik. Lagrangeformalismus

Ferienkurs Theoretische Mechanik. Lagrangeformalismus Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........

Mehr

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen

SoSe16 Arbeitsheft Blatt 7. Tutorium. Inhalt von berandeten Fla chen Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. P. Pawlaschyk www.math.uni-wuppertal.de/ herbort SoSe16 Arbeitsheft Blatt 7 Tutorium Inhalt

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Finite Elemente Methode für elliptische Differentialgleichungen

Finite Elemente Methode für elliptische Differentialgleichungen Finite Elemente Methode für elliptische Differentialgleichungen Michael Pokojovy 8. Oktober 2007 Das Ritzsche Verfahren Sei R n ein beschränktes offenes Gebiet mit abschnittsweise glattem Rand S. Betrachte

Mehr

11.3. Variablentrennung, Ähnlichkeit und Trajektorien

11.3. Variablentrennung, Ähnlichkeit und Trajektorien 3 Variablentrennung, Ähnlichkeit und Trajektorien Trennung der Veränderlichen (TdV) Es seien zwei stetige Funktionen a (der Variablen ) und b (der Variablen ) gegeben Die Dgl a( ) b( ) b( ) d d läßt sich

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

10 Variationsrechnung

10 Variationsrechnung 10 Variationsrechnung Gegenstand der Variationsrechnung sind Funktionale, also Abbildungen, die einer Funktion eine Zahl (den Wert des Funktionals) zuordnen. Beispiel eines Funktionals ist die Länge einer

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

Einfache Differentialgleichungen (algebraische Lösung)

Einfache Differentialgleichungen (algebraische Lösung) Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt

Mehr

(dφ) 2 + (dz) 2. φ 2 dφ mit z=z(φ).

(dφ) 2 + (dz) 2. φ 2 dφ mit z=z(φ). PD Dr. S. Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 5 WS 8/9.. 8. Strecke auf Zylinder. Bestimmen Sie die kürzeste Verbindung zwischen zwei Punkten auf Pkt.) dem Zylinder.

Mehr

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Übung (13) dx 3, 2x 1 dx arctan(x3 1).

Übung (13) dx 3, 2x 1 dx arctan(x3 1). Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

1.3 Flüsse. Y (t) = f(y(t))

1.3 Flüsse. Y (t) = f(y(t)) 18 Kapitel 1. Gewöhnliche Differentialgleichungen 1.3 Flüsse Sei jetzt F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes. Das

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 1. Übungsblatt Prof Dr M Gerdts Dr A Dreves J Michael Wintertrimester 216 Mathematische Methoden in den Ingenieurwissenschaften 1 Übungsblatt Aufgabe 1 : (Schwimmer Ein Schwimmer möchte einen Fluss der Breite b > überqueren,

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

6.2 Extremwertaufgaben mit Nebenbedingung

6.2 Extremwertaufgaben mit Nebenbedingung 6.. Extremwertaufgaben mit Nebenbedingung 87 6. Extremwertaufgaben mit Nebenbedingung Betrachten wir jetzt eine differenzierbare Funktion f:u R n R U offen in R n. Ist n = 3 und U eine glatte Fläche, dann

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 11. Differentialgeometrie. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 11. Differentialgeometrie Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Variation mit Nebenbedingungen

Variation mit Nebenbedingungen Variation mit Nebenbedingungen Lagrange-Multiplikatoren Welcher Punkt minimiert unter der Nebenbedingung (NB) absolutes Minimum Ohne NB wäre Antwort: 2 Gl. für 2 Unbekannte Aber: NB verknüpft x,y unabhängige

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Übungsaufgaben zu Kapitel 7 und 8

Übungsaufgaben zu Kapitel 7 und 8 Hochschule für Technik und Wirtschaft Dresden Sommersemester 016 Fakultät Informatik/Mathematik Prof. Dr.. Jung Übungsaufgaben zu Kapitel 7 und 8 Aufgabe 1: Für die rennweite einer einfachen, bikonvexen

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr