Als Grundlage der nachstehenden

Größe: px
Ab Seite anzeigen:

Download "Als Grundlage der nachstehenden"

Transkript

1 AUF EINEN BLIK In dieser ehrteiligen Beitragsreihe gingen wir ausführlich auf die ge sa - te Grundlagenbreite ein die für eine Elektrofachplanung in Ge bäuden Voraussetzung sind. Die bereits i vierten Teil begonnene konkrete Gebäudeplanung anhand des Planungsbeispiels einer Lagerhalle wird hier zu Ende berechnet. Ein sechster Teil wird den Abschluss dieser Beitragsreihe bilden. (Fortsetzung aus»de«7/009 S. 8) Elektroinstallation Elektroanlagen planen und projektieren (5) Abschließende Berechnungen zu Projekt Lagerhalle Viele Berechnungsschritte sind notwendig u allein die Koponenten der Hauptstroversorgung eines Gebäudes zu eritteln. Insbesondere wenn es sich nicht u ein reines Standardwohngebäude handelt. Das bereits i vierten Beitragsteil begonnene Projekt Lagerhalle zeigt dies schon deutlich. Wir beschränken uns deshalb hier auf den Planungsansatz der Gebäudeenergieversorgung. Reelle Planungen füllen in der Praxis nicht selten viele Aktenordner. Als Grundlage der nachstehenden Berechnungen gelten die Werte geäß Bild 7 (vierter Beitragsteil in»de«7/009 S. 0). Die begonnenen Projektschritte 1 bis 7 werden hier nun vervollständigt. Projektschritt 8 Gesucht werden die Leitungsverluste und die Jahresverlustarbeit bei Voll - betrieb (8760h) gegeben: Arbeitspreis 18ct/kWh. Die berechnete Verlustleistung lautet: l PV I κ s 55 ( 1 7A ) 56 4 Ω 46 9VA Die Verlustarbeit berechnet sich wie folgt: W V P V t 469W 8760h 085kWh. Daraus ergeben sich Kos - ten von: 085kWh/a 018 /kwh 5469 /a. Hierzu noch die folgende Anerkung: U die Kosten für die Leitungsverluste zu verringern sollte der Kabelquerschnitt entsprechend größer ge - wählt werden soit wird auch der Spannungsfall geringer. Außerde hat die Wahl der Betriebsart einen entscheidenden Einfluss auf die Verlustleistungskosten. Berechnungen ohne Reserve und it Selektivitätsbetrachtung Wie bereits i vierten Teil erwähnt sind einige der bereits errrechneten Werte erneut zu bestien diesal ohne Reserve. Daher uss die Selektivität beachtet werden. Projektschritt 9 Gesucht wird der Betriebsstro und der ittlere vo UV.. Gege - ben: Gleichzeitigkeitsfaktoren der Mo - toren 1. a) Für die Motoren M1 und M wird die Leistung be rechnet: P U I 400V 17A kW. Die Blind leis tung be trägt soit: sin ϕ Q P 1 6kW kvar b) Für M bis M6 wird die Leistung be - rechnet: P U I 400V 11A kW. Die Blindleis - tung be trägt: sin ϕ Q P tan ϕ 6 576kW kvar c) Für Verbraucher ist die Leistung angegeben: P 15kW. Zunächst wird Bild 10: Ausschnitt aus der Anlage für die der Selektivitätsnachweis zu erbringen ist F 15A die Blindleis tung wird berechnet: sin ϕ Q P 15kW kvar d) Die Gesatleistung beträgt: P G 16kW +6576kW 4+15kW 665kW. Die Gesatblindleistung be - trägt: Q G 816kvar + 45kvar kvar 406kvar. Der ittlere errechnet sich dait zu: Qges 40 6kvar 061 P 66 5kW ges sin ϕ Nun wird der Betriebsstro berechnet: PG Ib U 66 5kW 400V A Es ergibt sich ein Betriebsstro von 114A der zu UV. fließt. F F4 F5 4A 45A 4A Q Q4 Q5 de 8/009 5

2 Elektroinstallation Projektschritt 10 Gesucht wird der Selektivitätsnachweis für die Sicherungen F bis F5 und die RD Q bis Q5 (Bild 10). Zu den Si cherungsgrößen berechnet an hierfür die Abschaltströe: F 15A F 6A (50A); 17A 44A F4 6A (50A); 4 11A 45A F5 6A (50A); 4A Q 6A/A Q4 6A/A Q5 6A/A Die Selektivität der Leistungsschutzschalter ist soit nachgewiesen. Projektschritt 11 Gesucht wird die Leistung zu UV. gegeben: Die zu Einsatz koende Verlegeart lautet und es soll keine PEN-Leiterreduzierung stattfinden. a) Der therisch erforderliche Querschnitt ergibt sich zu: I F I n 15A. Nach DIN VDE ergibt sich für Verlegeart : S 5 und I Z 16A und I b I n I Z ; I b 15A 16A. b) Nun berechnen wir den er - forderlichen Querschnitt unter Be - rück sichtigung des Spannungsfalls. Der zulässige Spannungsfall beträgt: Δu 05%. Dait wir der Querschnitt berechnet: l In cos ϕ 11 S κ 0 15A Ω V gewählt: 70 d.h. ein Kabel NYY-J 4x70 ohne PEN-Reduzierung. c) Anhand der gewählten Leitung bestien wir nun den tatsächlichen Spannungsfall: l In cos ϕ 11 κ S 0 15A V Ω 158 V Δu % % Un 400V 0 95% Projektschritt 1 Gesucht wird der Beessungsstro zu HV und der Sicherung F1. Der Betriebsstro a HV beträgt: I bhv I bf1 + I bf 15A + 50A 175A. Der Betriebsstro der Sicherung F1 be - trägt: I bf1 00A (gg). Die Selektivi - tät lässt sich nun berechnen it: I bf1 /I bhv 00A/175A 16. Hierzu folgende Anerkung: Der berechnete Wert 16 ist der Mindestwert u Selektivität erreichen zu können. Projekschritt 1 Gesucht wird die Leitung zu HV gegeben: Kabel it PEN-Reduzierung; Verlegungsart Rohr in Erde. a) Gesucht ist der therisch erforderliche Querschnitt bei eine Betriebsstro von: I AF1 I n 00A. Nun werden die Reduktionsfaktoren festgelegt. Für die Verlegeart D Rohrverlegung f Für den Dauerbetrieb: f Dait ergibt sich ein rechnerischer Gesatreduktionsfaktor von f ges f 1 f 077. Als Nächstes soll die Strobelastbarkeit bestit werden. Für einen Beessungsstro von: I r 75A beträgt die Strobelastbarkeit I z I r f ges 75A 077 1A. Hieraus eritteln wir noch den Querschnitt des Kabels NYWY x 95/50 (nach DIN VDE 010). Anerkung: Der kleinere Querschnitt hier 50 stellt die PEN-Reduzierung dar. b) Gesucht ist der unter Berücksichtigung des Spannungsfalls von 1% erforderliche Querschnitt. Folgende Berechnungsschritte sind hierzu erforderlich: l IAF1 cos ϕ 11 S κ 51 00A Ω V 79 5 gewählt wird ein Querschnitt von: 95. c) Die gewählte Leitung und der tatsächliche Spannungsfall werden nun berechnet: l IAF1 cos ϕ 11 κ S 51 00A V Ω 6 % V Δu 0 85% 400V Projekschritt 14 Gesucht wird der verfügbare Spannungsfall ab UV.. Der noch verfügbare Spannungsfall beträgt: Δu Anlage Δu HV Δu UV. 4% 085% 095% 77% Reserve. Quelle: DIN 115 Teil A Mit elektrischer Warwasserbereitung für Bade- oder Duschzwecke B Ohne elektrischer Warwasser - bereitung für Bade- oder Duschzwecke Anzahl der Wohnungen Bild 11: Erittlung des Leistungsbedarfs für Wohnungen it und ohne elektrischer Warwasserbereitung 50 In A *6 Projektschritt 15 Gesucht wird die Anzahl der zulässigen Wohneinheiten (WE) welche die HV1 versorgt. Gegeben: WE-Anzahl it und ohne Warwasserbereitung bei eine zur Verfügung stehenden Betriebsstro von: I n I F 15A. Der Leistungsbedarf beträgt: P G 86kVA. Abgelesen aus de angezeigten Diagra (Bild 11) für die Anzahl der Wohneinheiten (WE): ohne elektr. Warwasserbereitung 6WE it elektr. Warwasserbereitung WE. Projektschritt 16 Gesucht werden die Transforatordaten S rt I rt R T X T Z T sowie der Gesat- 6 de 8/009

3 betriebsstro der Anlage und Auslegung des Transforators. Gegeben ist hier: u kr 6%. Der Beessungsstro des Transforators be trägt: I bg I F1 + I F + I F5 15A + 00A + 5A 50A. Nun wird die Scheinleistung berechnet it: S rt U I 400V 50A 4kVA. Gewählt wird jetzt: S rt 50kVA 0/04kV 50Hz Y Z5 (Dyn5) Da - raus ergibt sich der tatsächliche Beessungsstro: SrT 50kVA IrT 60 8A U 400V Die Ipedanz des Transforators: n Z u U n T kr SrT ( V ) 8 4Ω 50kVA Aus Kasikci I:»Projektierung von Niederspannungsund Sicherheitsanlagen«Hüthig&Pflau Verlag 00 Bild werden folgende Werte erittelt: induktiver Widerstand X T 6Ω Wirkwiderstand X T 9Ω Die tatsächliche Ipedanz des Transforators: T T T Z R + X 9Ω + 6Ω 7 1Ω Hierzu noch die folgende Anerkung: Die Werte für den induktiven Widerstand und den Wirkwiderstand können auch aus eine Diagra für Wirk- und Blindwiderstände von Transforatoren abgelesen werden. Angaben direkt vo Hersteller sind jedoch genauer. Projektschritt 17 Gesucht wird der drei- und einpolige Kurzschlussstro sowie der Stoßkurzschlussstro a Transforator. Zu berechnen ist: dreipoliger Kurzschlussstro: I KD %/6% I rt 6000A 6kA zweipoliger Kurzschlussstro: I K1 / I KD / 6000A 5196A 5kA Stoßkurzschlussstro: i p κ I K. Aus de Diagra i Bild 1 entnehen wir den Faktor κ zur Berechnung des Stoßkurzschlussstros. Zu Ab lesen auf der x-achse berechnen wir den Wert: R T / X T 9Ω /6Ω 05. Hier it kann an jetzt ablesen: κ 14. Der Stoßkurzschlussstro be trägt i p κ I K 14 6kA 1187kA Anerkung: Der Stoßkurzschlussstro ist der axiale Kurzschlussstro der von der Anlage aufgenoen werden kann. Projektschritt 18 Gesucht wird jetzt die Schleifenipedanz. a) Die Schleifenipedanz des HV be trägt: SHV T L T Z ( R + R ) + ( X + XL ) Der Wert für R L ist nicht gegeben und uss noch berechnet werden: de 8/009

4 Elektroinstallation ERMITTLUNG DER VERTEILERGRÖSSE Anzahl (Stück) Einbauteil Teilungseinheiten Sue 5 D0 -P 45TE TE RD 4-P 4TE 1TE 1 LS 16A 1TE 1TE 4 MSS 4TE 16TE 1 Steckdosen TE TE 10 Kleen 1TE 10TE 4 Kleen 70 1 Reihe 1TE Sue 88TE Tabelle 9: Aus der Breite der Einbaugeräte zuzüglich der Reserve ergibt sich die Anzahl der Teilungseinheiten (TE) Z SUV ( RT + RLHV + RLUV ) + + ( X + X + X ) T LHV LUV Berechnet wird jetzt der Wert für R LUV : l RLUV κ s Ω 88Ω Der Wert für X LUV wird ebenfalls be - rechnet: ' Ω XLUV l xl Ω Die Schleifenipedanz des UV beträgt: 0 18 κ 16 κ Z SUV ( 9Ω+ 4 7Ω+ + 88Ω ) + + ( 6Ω+ 8 6Ω Ω + 49 Ω ) R/X X/R Bild 1: Diagra zur Erittlung des Stoßkurzschlussstros 70 Bild 1: Darstellung des Aufbauplans vo UV. l l RL + s s κ κ PEN Ω Ω 4 7Ω Der Wert für X L uss ebenfalls noch berechnet werden: ' Ω XL l xl Ω Benötigt wird nun noch X L dies ergibt sich aus DIN EN 60909: für 95 und NYWY 008Ω/. Die Schleifenipedanz beträgt: ZSHV ( 9 Ω+ 4 7 Ω) + + ( 6Ω+ 8 6Ω) 68 6Ω b) Schleifenipedanz des UV: Projektschritt 19 Gesucht werden die Werte für den Schutz durch Abschalten. Der Fehlerstro a HV beträgt: cu IFHV Z ka n SHV V 68 6Ω Der Spannungsfaktor c wird aus Tabellen erittelt. Kontrolle: aus der Zeit- Stro-Kennlinie für gg-sicherungen: Für die Angaben: Abschaltzeit t 5s und I bf1 00A ergibt sich I A5s 1500A I FHV > I A5s bis UV.. Ergibt sich ein Fehlerstro a HV von: cu n V IFUV ZSUV 90 79Ω 4 ka Aus der Zeit-Stro-Kenn linie für gg- Sicherungen ergeben sich Abschaltzeit t 5s und I bf1 15A I A5s 750A I FUV > I A5s. In beiden Fällen ist die Bedingung I K1in > I a erfüllt. Nun einige Vorschläge was an tun kann wenn der Schutz durch Abschalten nicht erfüllt wird: Transforator it Spannungsfall u k 4% wählen den Kabelquerschnitt erhöhen Leistungsschalter it RD statt Sicherungen 8 de 8/009

5 die Verteilung entsprechend schutzisoliert aufstellen. Projektschritt 0 Gesucht: Reihenanzahl i UV. it 0% Reserve. In Tabelle 9 ist dieser Schritt vollzogen. Projektschritt 1 Gesucht: Zeichnung des Bauplans für den UV.. Beessung des Verteilers: Anzahl der Teilungseinheiten: 88 Teilungseinheiten + 0% Reserve 115 Teilungseinheiten Anzahl der Reihen: 115 Teilungseinheiten : zwölf Teilungseinheiten/ Reihe zehn Reihen Gewählt: zwei Felder it je fünf Reihen Größe des Verteilers: B x H x T 550 x 0 x 00 Das Bild 1 zeigt die Darstellung des UV. Berechnungen auf TT-Syste anwendbar? Für eine Abschaltung i TN-Syste innerhalb der vorgegebenen Zeit uss ein hoher Kurzschlussstro fließen. Bei nicht erfüllter Abschaltbedingung uss der Beessungsstro der Überstro-Schutzeinrichtung (ÜSE) verringert werden oder eine RD bzw. ein zusätzlicher Potentialausgleich vorgesehen werden. I TT-Syste sind die Stroquelle und die Betriebsittel geerdet. Die Ab schaltung durch ÜSE ist schwierig (vorwiegend werden RD eingesetzt). Es gilt: Das TN-Syste darf nicht it de TT-Syste kobiniert werden. I TT-Syste üssen alle Strokreise it einer RD versehen werden. Der Erdungswiderstand des TT-Systes uss berechnet und geessen werden. Weitere Planungsschritte I letzten Beitragsteil werden wir uns it den Installations- und Übersichtsschaltplänen der vollzogenen Planungsschritte befassen und vergleichen die erzielten Rechenergebnisse it denen der Software»Siaris«. (Fortsetzung folgt) Prof. Dr. Isail Kasikci Hochschule Biberach MEHR INFOS Vorangegangene Beitragsteile Kasikci I.; Pantenburg N.: Elektroanlagen planen und projektieren Teil 1: Grundlagen und Ausgangs situation»de«19/008 S. 6 ff. Teil : HOAI das Grundgesetz des Planers»de«0/008 S. 8 ff. Teil : Anschlussdaten und Zähleranlagen»de«1/008 S. 0 ff. Teil 4: Projekt Lagerhalle»de«7/009 S. 8 ff. de 8/009

11.6 Maximal zulässige Stromkreislänge

11.6 Maximal zulässige Stromkreislänge Leitungen) ausgewählt wird, sowie Verlege- und Ugebungsbedingungen geäß DIN VDE 098-4 vorliegen und die Hinweise des Abschnitts 7.1 von DIN VDE 0100-430 beachtet werden (Schutz durch eine geeinsae Überstroschutzeinrichtung),

Mehr

Kurzschluss-Analyse. Orts netztrafo Kabeltyp:="NAYY 1 x 150 RM (Dreieck) (Erde) 0.6 / 1 kv" N1 N2 N3 HA P S. Kabel1. größten Spannungsfaktor c max

Kurzschluss-Analyse. Orts netztrafo Kabeltyp:=NAYY 1 x 150 RM (Dreieck) (Erde) 0.6 / 1 kv N1 N2 N3 HA P S. Kabel1. größten Spannungsfaktor c max Kurzschluss-Analyse Aufgabe: Erittlung der Kurzschlussleistung a Hausanschluss. Mit de vorgegebenen Netz soll eine Berechnung für den axialen Kurzschlussstro: a) Mit Cerberus b) Grafisch c) Rechnerisch

Mehr

Weiterbildungsseminar für Prüfsachverständige. Rechenbeispiele

Weiterbildungsseminar für Prüfsachverständige. Rechenbeispiele Weiterbildungsseminar für Prüfsachverständige Rechenbeispiele 22. Januar 2016 Brandenburgische Ingenieurkammer Potsdam Dipl.-Ing. Gero Gerber 01/2015 Folie 1 Erwärmungsrunde Leistungstransformator Bestimmen

Mehr

= 6V 5 A =1,2 ; U V=U ges. =18V 5 A=90W Der Widerstand liegt also in

= 6V 5 A =1,2 ; U V=U ges. =18V 5 A=90W Der Widerstand liegt also in Übungsaufgaben Ohsches Gesetz, elektrische Leistung 1) Eine Glühlape für eine Betriebsspannung von 6 Volt und einer Leistung von 30 W soll an eine Spannungsquelle it 4 Volt angeschlossen werden. Zeichne

Mehr

Übungsblatt E-Lehre. (A Kreis = r² ) 2. Ein Eisenkabel ( = 0,10 ) ist 0,80 km lang und hat einen Widerstand von

Übungsblatt E-Lehre. (A Kreis = r² ) 2. Ein Eisenkabel ( = 0,10 ) ist 0,80 km lang und hat einen Widerstand von Übungsblatt E-Lehre Arbeit, Energie, Leistung, Wirkungsgrad 1. Ein Wasserkocher trägt die Aufschrift 230 V / 1,2 kw. a) Welche Strostärke fließt, wenn der Wasserkocher eingeschaltet ist? b) Welchen Widerstand

Mehr

Berechnung von Kurzschluss-Strömen und Spannungsfällen

Berechnung von Kurzschluss-Strömen und Spannungsfällen VDE-Schriftenreihe Normen verständlich 118 Berechnung von Kurzschluss-Strömen und Spannungsfällen Überstrom-Schutzeinrichtungen, Selektivität, Schutz bei Kurzschluss, Berechnungen für die Praxis mit CALCKUS

Mehr

Maximale Leitungslängen

Maximale Leitungslängen Technische Information Maximale Leitungslängen Ermittlung der maximalen Leitungslängen in elektrischen Anlagen unter Berücksichtigung von: Schutz gegen elektrischen Schlag und der Abschaltzeiten gemäß

Mehr

6 Hauptstromversorgung

6 Hauptstromversorgung 6 Hauptstromversorgung 6.1 Aufbau und Betrieb Hauptstromversorgungssysteme umfassen alle Hauptleitungen und Betriebsmittel nach der Übergabestelle des VNB, die nicht gemessene elektrische Energie führen.

Mehr

Auslegungskriterien auf Grund der Verlegeart Schutzeinstellungen Kalkulationsmethoden und Hilfen

Auslegungskriterien auf Grund der Verlegeart Schutzeinstellungen Kalkulationsmethoden und Hilfen Dimensionierung der Niederspannungs- Kabelsysteme nach Vorgaben der (IEC 60364-5-52:2009,modifiziert+Corrigendum Feb.2011); Deutsche Übernahme HD 60364-5-52:2011 VDE 0100-520 und VDE 0298-4: 2013-06 Auslegungskriterien

Mehr

Bild 2.8 Tangentialkraftdiagramm der Gaskräfte

Bild 2.8 Tangentialkraftdiagramm der Gaskräfte Erittlung der Tangentialkräfte in eine Einzylinderotor Einfluss der Gaskräfte Die Gas- und Massenkraftverläufe bestien letztlich das Drehoent des Motors, das natürlich vo Kurbelwinkel φ stark beeinflusst

Mehr

Berechnung von Kurzschlussströmen mithilfe des Ersatzspannungsquellenverfahrens

Berechnung von Kurzschlussströmen mithilfe des Ersatzspannungsquellenverfahrens Berechnung von Kurzschlussströmen mithilfe des Ersatzspannungsquellenverfahrens nach DIN VDE 0102 mit ausführlichem Lösungsweg Aufgabe 6.4: In dem Bild ist ein Hochspannungsnetz dargestellt; darin sind

Mehr

Berechnung von Kurzschluss-Strömen und Spannungsfällen

Berechnung von Kurzschluss-Strömen und Spannungsfällen VDE-Schriftenreihe 118 Berechnung von Kurzschluss-Strömen und Spannungsfällen Überstrom-Schutzeinrichtungen, Selektivität, Schutz bei Kurzschluss, Berechnungen für die Praxis mit CALCKUS Bearbeitet von

Mehr

3 Potentialausgleich. Mehr Informationen zum Titel. 3.1 Einführung. 3.2 Standortbestimmung des Schutzpotentialausgleichs

3 Potentialausgleich. Mehr Informationen zum Titel. 3.1 Einführung. 3.2 Standortbestimmung des Schutzpotentialausgleichs Mehr Informationen zum Titel 3 Potentialausgleich 3.1 Einführung Der bisher übliche Begriff Hauptpotentialausgleich taucht in neueren Normen nicht mehr auf. Stattdessen wurde der Begriff Schutzpotentialausgleich

Mehr

Automatische Abschaltung in TN-Systemen

Automatische Abschaltung in TN-Systemen Automatische Abschaltung in TN-Systemen Prinzip Die automatische Abschaltung in TN-Systemen erfolgt durch Überstromschutzeinrichtungen oder Fehlerstrom- Schutzeinrichtungen (RCDs). In diesem Netzsystem

Mehr

9 Kurzschlussstromberechnung nach DIN EN (VDE 0102) einfach gespeiste drei- und zweipolige Kurzschlussströme ohne Erdberührung

9 Kurzschlussstromberechnung nach DIN EN (VDE 0102) einfach gespeiste drei- und zweipolige Kurzschlussströme ohne Erdberührung 9 Kurzschlussstromberechnung nach DIN EN 60909-0 (VDE 0102) einfach gespeiste drei- und zweipolige Kurzschlussströme ohne Erdberührung 9.1 Allgemeines Die Kurzschlussstelle auf der Niederspannungsseite

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2013 Grundlagen der Elektrotechnik II Datum: 09. September 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Projektierungshilfe elektrischer Anlagen in Gebäuden

Projektierungshilfe elektrischer Anlagen in Gebäuden Projektierungshilfe elektrischer Anlagen in Gebäuden Praxiseinführung und Berechnungsmethoden Bearbeitet von Roland Ayx, Ismail Kasikci 6., neu bearb. und erw. Aufl. 2011 2011. Taschenbuch. XII, 261 S.

Mehr

Inhalt. Vorwort zur 8. Auflage...5

Inhalt. Vorwort zur 8. Auflage...5 Vorwort zur 8. Auflage...5 1 Einheiten und Zeichen....13 1.1 Basiseinheiten...13 1.2 Ableitung der elektrischen Einheiten....13 1.3 Abkürzungen von Einheiten...14 1.4 Vorsätze von Einheiten...15 1.5 Umrechnung

Mehr

12 Schutz gegen Überspannungen und elektromagnetische Störungen (EMI)

12 Schutz gegen Überspannungen und elektromagnetische Störungen (EMI) Mehr Informationen zum Titel Schutz gegen Überspannungen und elektromagnetische Störungen (EMI) Auf die DIN VDE 0184 (VDE 0184):2005-10 Überspannungen und Schutz bei Überspannungen in Niederspannungs-Starkstromanlagen

Mehr

Leistungsberechnung Bei einem Laborversuch werden folgende Werte gemessen:

Leistungsberechnung Bei einem Laborversuch werden folgende Werte gemessen: 1 25 26 Leistungsberechnung Bei einem Laborversuch werden folgende Werte gemessen: U = 226V, I = 7, 5 A, cos ϕ = 0, 63. Wie gross ist a) die Scheinleistung, b) die Wirkleistung, c) die Blindleistung? d)

Mehr

Kompensation von Drehstrommotoren

Kompensation von Drehstrommotoren Technik Jens Schlender / Andreas Renner Kompensation von Drehstrommotoren Studienarbeit GBS Leipzig Kompensation von Drehstrommotoren Verfasser: Klasse: Jens Schlender Andreas Renner 01E2B Projektarbeit

Mehr

Elektroinstallation in Wohngebäuden - Teil 11: Stromkreisverteiler in Wohngebäuden - Teil 1

Elektroinstallation in Wohngebäuden - Teil 11: Stromkreisverteiler in Wohngebäuden - Teil 1 Elektroinstallation in Wohngebäuden - Teil 11: Stromkreisverteiler in Wohngebäuden - Teil 1 Die allgemeinen Anforderungen an die Planung und Errichtung von Stromkreisverteilern in Wohngebäuden sind in

Mehr

Projektierungshilfe elektrischer Anlagen in Gebäuden

Projektierungshilfe elektrischer Anlagen in Gebäuden VDE-Schriftenreihe 148 Projektierungshilfe elektrischer Anlagen in Gebäuden Praxiseinführung und Berechnungsmethoden Bearbeitet von Roland Ayx, Ismail Kasikci 07. Auflage 2012. Taschenbuch. XII, 289 S.

Mehr

Welche Energieformen gibt es? mechanische Energie elektrische Energie chemische Energie thermische oder Wärmeenergie Strahlungsenergie

Welche Energieformen gibt es? mechanische Energie elektrische Energie chemische Energie thermische oder Wärmeenergie Strahlungsenergie Was ist nergie? nergie ist: eine rhaltungsgröße eine Rechengröße, die es eröglicht, Veränderungen zwischen Zuständen zu berechnen eine Größe, die es erlaubt, dass Vorgänge ablaufen, z.b. das Wasser erwärt

Mehr

Elektrotechnik Schulprüfung, Samstag, 29. Januar 2005 Elektro-Sicherheitsberater

Elektrotechnik Schulprüfung, Samstag, 29. Januar 2005 Elektro-Sicherheitsberater Elektrotechnik Schulprüfung, Samstag, 29. Januar 2005 Elektro-Sicherheitsberater E-SB 03100 Kandidatennummer Name Vorname Datum Maximale Punkte 64 Erreichte Punkte Note Bemerkung zur Prüfung: Maximal 64

Mehr

Querschnittsbemessung von Leitungen und Kabeln - Teil 1

Querschnittsbemessung von Leitungen und Kabeln - Teil 1 Querschnittsbemessung von Leitungen und Kabeln - Teil 1 Teil 1 - Querschnittsermittlung nach unterschiedlichen Kriterien Hinweise zur Querschnittsbemessung von Leitungen und Kabeln Für die Querschnittsermittlung

Mehr

Repetitionen. Widerstand, Drosseln und Kondensatoren

Repetitionen. Widerstand, Drosseln und Kondensatoren Kapitel 16.1 epetitionen Widerstand, Drosseln und Kondensatoren Verfasser: Hans-udolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 1 1.702 Serieschaltung

Mehr

Auslösekennlinie elektr. a Überlastrelais 3RB105 4NED a Kennlinienüberarbeitung Weiß Zust. Änderung Datum Name Ers. F.: Er

Auslösekennlinie elektr. a Überlastrelais 3RB105 4NED a Kennlinienüberarbeitung Weiß Zust. Änderung Datum Name Ers. F.: Er 10 4 10 3 Auslösekennlinie elektr. a Überlastrelais 3RB105 4NED 969 0895 14 a Kennlinienüberarbeitung 27.11 Weiß Zust. Änderung Datum Name Ers. F.: Ers. Auslösekennlinie bei dreipoliger Belastung aus dem

Mehr

REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9

REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9 REGIONALE LEHRABSCHLUSSPRÜFUNGEN 199 9 AG BL, BS, BE 1-4, SO Pos.4 An einer Steckdose 1 x 230 V wird ein Kurzschluss verursacht. Der Wider - stand des gesamten Stromkreises wurde mit 150 ms2 ermittelt.

Mehr

Mittel- und Niederspannungs-Technik Technische Tabellen

Mittel- und Niederspannungs-Technik Technische Tabellen Mittel- und Niederspannungs-Technik Technische Tabellen uszug Tabelle 5 VDE 0298 Teil 4 Kupferleiter, Betriebstemp. am Leiter 90 C Umgebungstemp. 30 C. Die angegebenen Werte sind Richtwerte. In Grenzfällen

Mehr

Blitzschutz-Potentialausgleich und Überspannungsschutz

Blitzschutz-Potentialausgleich und Überspannungsschutz Blitzschutz-Potentialausgleich und Überspannungsschutz Bei einer vorhandenen äußeren Blitzschutzanlage müssen alle in eine zu schützende bauliche Anlage eingeführten Leitungen der elektrischen Energie-

Mehr

Aufgabe 2 Intel Leibnitz Challenge 08 Grundlagen der Elektrotechnik

Aufgabe 2 Intel Leibnitz Challenge 08 Grundlagen der Elektrotechnik TEAM GENESYS Aufgabe 2 ntel Leibnitz Challenge 08 Grundlagen der Elektrotechnik nhalt NHALT... 2 AFGABE A: ELEKTSCHE WDESTAND... A) Bauforen... A2) Waru gibt es so viele Bauforen?... A) Markierungen der

Mehr

Übung 3 - Musterlösung

Übung 3 - Musterlösung Experientalphysik 2 für Lehratskandidaten und Meteorologen 5. Mai 200 Übungsgruppenleiter: Heiko Dulich Übung 3 - Musterlösung Aufgabe 6: Wann funkt es? Eigene Koordinaten r 2, 2. Hohlkugel: Koordinaten

Mehr

1 ELEKTROTECHNIK UND ELEKTRONIK 1 ELEKTROTECHNIK 8 LEITUNGSBERECHNUNGEN. Repetitionsaufgaben. 1. Auflage 30. Dezember 2006.

1 ELEKTROTECHNIK UND ELEKTRONIK 1 ELEKTROTECHNIK 8 LEITUNGSBERECHNUNGEN. Repetitionsaufgaben. 1. Auflage 30. Dezember 2006. 8 LEITUNGS- BERECHNUNGEN Repetitionsaufgaben 1. Auflage 30. Dezember 006 Bearbeitet durch: Niederberger Hans-Rudolf dipl. Elektroingenieur FH/HTL/STV dipl. Betriebsingenieur HTL/NDS Vordergut 1 877 Nidfurn

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Lösungen zur Klausur: Grundlagen der Elektrotechnik am 3. Juli 06 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur

Mehr

Fehlerschutz oder Schutz bei indirektem Berühren

Fehlerschutz oder Schutz bei indirektem Berühren Fehlerschutz oder Schutz bei indirektem Berühren Schutzmaßnahmen: automatische Abschaltung der Stromversorgung (beim ersten oder zweiten Fehler, je nach Art des Netzsystems), sonstige zusätzliche Maßnahmen

Mehr

Merkblatt mit wichtigen Formeln rund um Starkstrom beim Einsatz von Stromerzeugern

Merkblatt mit wichtigen Formeln rund um Starkstrom beim Einsatz von Stromerzeugern Merkblatt mit wichtigen Formeln rund um Starkstrom beim Einsatz von Stromerzeugern 2 Inhaltsverzeichnis I. Berechnung der Last bei gleichmäßiger Belastung aller drei Phasen:... 3 1. Wirkleistung:... 3

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse Blatt 0 09.0.2008 Physik Departent E8 Seite Aufgabe : Plasaanalyse Nebenstehende Skizze zeigt eine Anordnung zur Plasaanalyse. Ein Zähler Z erzeugt bei Durchgang eines ionisierenden Teilchens (Masse, Ladung

Mehr

Hydromechanik (Nachklausur)

Hydromechanik (Nachklausur) Bauingenieur- und Uweltingenieurwesen wesen Universität Kassel K assel- D-34109 Kassel I nstit ut für Geot ec hnik und Geohydraulik Prof. Dr. rer. nat. Manfred Koch Universität Kassel Kurt-Wolters-Str.

Mehr

66041d Halogenstrahler (250V 500W) 3 mal Metrix MX (für Temperaturmessung) (Spannung am Pyranometer) (Strom der Solarzelle)

66041d Halogenstrahler (250V 500W) 3 mal Metrix MX (für Temperaturmessung) (Spannung am Pyranometer) (Strom der Solarzelle) Hochschule Breen Gruppe: A FB 4 Elektrotechnik und Inforatik Einführung I alltäglichen Leben werden Solarzellen bei vielen Geräten eingesetzt, wie z.b. die Stauelder an den Autobahnbrücken oder in den

Mehr

ABITURPRÜFUNG 2001 GRUNDFACH PHYSIK

ABITURPRÜFUNG 2001 GRUNDFACH PHYSIK ABITURPRÜFUNG 001 GRUNDFACH PHYSIK (HAUPTTERMIN) N i c h t f ü r d e n P r ü f u n g s t e i l n e h e r b e s t i t 1 H i n w e i s e z u r K o r r e k t u r Die Korrekturhinweise enthalten keine vollständigen

Mehr

5 Aufbau und Wirkweise von Schutzmaßnahmen in ungeerdeten IT-Systemen

5 Aufbau und Wirkweise von Schutzmaßnahmen in ungeerdeten IT-Systemen 5 Aufbau und Wirkweise von Schutzmaßnahmen in ungeerdeten IT-Systemen Die Anwendung von ungeerdeten Stromversorgungen (IT-Systemen) ist steigend. Diese Tendenz ist durch eine Reihe von Vorteilen dieser

Mehr

Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin

Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin Serie 2006 Berufskunde schriftlich Elektrotechnik / Elektronik Gewerbliche Lehrabschlussprüfungen Elektromonteur / Elektromonteurin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung

Mehr

Berechnung von Kurzschlussströmen mit dem Überlagerungsverfahren

Berechnung von Kurzschlussströmen mit dem Überlagerungsverfahren Berechnung von Kurzschlussströmen mit dem Überlagerungsverfahren und ausführlichem Lösungsweg Aufgabe 6.: In dem Bild ist ein Hochspannungsnetz dargestellt; darin sind die Abzweige zu den 110/10-kV-Umspannstationen

Mehr

Berechnung von Kurzschlussströmen - Teil 1

Berechnung von Kurzschlussströmen - Teil 1 Berechnung von Kurzschlussströmen - Teil 1 Die Dimensionierung einer elektrischen Anlage und der zu verwendenden Betriebsmittel sowie die Festlegung der Schutzeinrichtungen für Personen und Sachwerte erfordern

Mehr

Prüfungsvorbereitung für die handwerklichen Elektroberufe

Prüfungsvorbereitung für die handwerklichen Elektroberufe Markus Asmuth, Udo Fischer, Thomas Kramer, Markus Schindzielorz Prüfungsvorbereitung für die handwerklichen Elektroberufe Gesellenprüfung Teil 2 Energie- und Gebäudetechnik 4. Auflage Bestellnummer 404

Mehr

... Formelbuch, Taschenrechner ohne Datenbank, Massstab und Transporteur

... Formelbuch, Taschenrechner ohne Datenbank, Massstab und Transporteur Serie 2008 Berufskunde schriftlich Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung 75 Minuten Formelbuch, Taschenrechner

Mehr

4 Alphabetisches Stichwortverzeichnis

4 Alphabetisches Stichwortverzeichnis Abdeckungen 4 Alphabetisches Stichwortverzeichnis Hinweis: Verwendete Kurzbezeichnungen für Status und Teile-Nr. der DIN VDE 0100 sind in Tabelle 2.1 erklärt und zugehörige vollständige Schriftstücknummern

Mehr

,Cu-Seil) eines Streckenabschnittes der SBB von 1,75km. Länge kann die Belastung maximal 340 A betra-

,Cu-Seil) eines Streckenabschnittes der SBB von 1,75km. Länge kann die Belastung maximal 340 A betra- 1 RE 1.1041 9.9 10 SBB-Leitung Auf der Speiseleitung ( x 95mm,Cu-Seil) eines Streckenabschnittes der SBB von 1,75km Länge kann die Belastung maximal 340 A betra- gen. Der Leistungsfaktor ist 0, 75 ( ρ

Mehr

Technische Information. Maximale Leitungslängen. Schutz gegen elektrischen Schlag DIN VDE Schutz in Steuerstromkreisen 24 V DC EN

Technische Information. Maximale Leitungslängen. Schutz gegen elektrischen Schlag DIN VDE Schutz in Steuerstromkreisen 24 V DC EN Technische Information Maximale Leitungslängen Schutz gegen elektrischen Schlag DIN VDE 0100-410 Schutz in Steuerstromkreisen 24 V DC EN 60204-1 Schutz gegen elektrischen Schlag DIN VDE 0100-410. Maximale

Mehr

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 7 FH München, FB 03 Grundlagen der Elektrotechnik SS 2006 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Kapitel 3 Mathematik. Kapitel 3.8 Geometrie Trigonometrie REPETITIONEN. Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL

Kapitel 3 Mathematik. Kapitel 3.8 Geometrie Trigonometrie REPETITIONEN. Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Kapitel 3 Mathematik Kapitel 3.8 Geometrie Trigonometrie REPETITIONEN Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn Telefon 055 654 12 87 Telefax 055 654 12 88 E-Mail

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Schritt 1: Sammeln der notwendigen Daten

Schritt 1: Sammeln der notwendigen Daten Sind die Kenngrößen der Schnittstellen bekannt, kann die Schaltanlage dimensioniert werden: Aufstellungs- und Umgebungsbedingungen 4 Bedienen und Warten Anschluss an das 1 elektrische Netz 2 Stromkreise

Mehr

2. Physikschulaufgabe. - Lösungen -

2. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse 8 I - Lösungen - Thea: Mechanik der en und Gase 1.1 Versuchsaufbau In eine Präzisionsglasrohr it geschliffener Innenwand befindet sich eine fast reibungsfrei bewegliche

Mehr

Rechengang zum Beitrag Oberschwingungen im Inselbetrieb Oberschwingungen belasten Generatoren im Notstrombetrieb

Rechengang zum Beitrag Oberschwingungen im Inselbetrieb Oberschwingungen belasten Generatoren im Notstrombetrieb Ergänzng z Beitrag Oberschwingngen i Inselbetrieb Oberschwingngen belasten eneratoren i Notstrobetrieb in de /9, S. ff. echengang z Beitrag Oberschwingngen i Inselbetrieb Oberschwingngen belasten eneratoren

Mehr

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Serie 2006 Berufskunde schriftlich Elektrotechnik Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung 75 Minuten Formelbuch

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ

Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ Serie 05 Qualifikationsverfahren Elektroinstallateurin EFZ Elektroinstallateur EFZ Berufskenntnisse schriftlich Pos. 3 Technische Dokumentation: 3.. Regeln der Technik Name, Vorname Kandidatennummer Datum

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

e-mobilität Elektroinstallation ab Hausanschluss Variantenbetrachtung 2016

e-mobilität Elektroinstallation ab Hausanschluss Variantenbetrachtung 2016 e-mobilität Elektroinstallation ab Hausanschluss Variantenbetrachtung 2016 1 Inhalt: Elektroinstallation ab Hausanschlusskasten EVU im klassischen Wohnbau mit e-mobilität (gesteuertes Laden) Beispiele

Mehr

Einphasentransformatoren

Einphasentransformatoren Einphasentransformatoren Erläuterung unserer Typenbezeichung Das * auf den folgenden Seiten wird nach Bedarf durch folgende Buchstaben ersetzt: Netztransformator: Steuertransformator: Trenntransformator:

Mehr

HS SICHERUNGSEINSÄTZE

HS SICHERUNGSEINSÄTZE HS SICHERUNGSEINSÄTZE Die Hochspannungssicherungseinsätze der Reihe PL, PM, PQ werden für den Schutz der HS-Seite von Verteilungstransformatoren und weiteren Anlagen verwendet, die mit einer Spannung von

Mehr

Absorption. Physikalisches Grundpraktikum IV

Absorption. Physikalisches Grundpraktikum IV Physikalisches Grunpraktiku IV Universität Rostock :: Institut für Physik 1 Absorption Nae: Daniel Schick Betreuer: Dr. Enenkel & Dr. Holzhüter Versuch ausgeführt: 15.06.05 Protokoll erstellt: 19.06.05

Mehr

Schutz bei Überlast und Kurzschluss in elektrischen Anlagen

Schutz bei Überlast und Kurzschluss in elektrischen Anlagen VDE-Schriftenreihe Normen verständlich 143 Schutz bei Überlast und Kurzschluss in elektrischen Anlagen Erläuterungen zu DIN VDE 0100-430 und DIN VDE 0298-4 Dipl.-Ing. Heinz Nienhaus Dr. rer. nat. Ulrich

Mehr

Schriftliche Abiturprüfung 2008 Leistungskursfach Physik Ersttermin. Lösungen. Teil A: sin. cos

Schriftliche Abiturprüfung 2008 Leistungskursfach Physik Ersttermin. Lösungen. Teil A: sin. cos Aufgabe A: Mechanik / Elektrizitätslehre Schriftliche Abiturrüfung 008 eistungskursfach Physik Erstterin ösungen eil A: horizontaler Federschwinger geg.: t 8,4 s; n 40; y ax,6 c; y(t 0 s) +,6 c. ges.:

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Strahl. B r. d 60 d. = 2 1, As. Damit der α-strahl die zweite Blende trifft, muß er Kreisbahn mit Radius d beschreiben, d.h. es muß gelten.

Strahl. B r. d 60 d. = 2 1, As. Damit der α-strahl die zweite Blende trifft, muß er Kreisbahn mit Radius d beschreiben, d.h. es muß gelten. Freiwillige Aufgaben zur Vorlesung WS 00/003, Blatt 5 53) Ein Strahl von -Teilchen soll aus seiner ursprünglichen ichtung it Hilfe eines hoogenen Magnetfeles u 60 abgelenkt weren, so aß er zwei entsprechene,

Mehr

Übung 11 Physikalische Eigenschaften der Metalle

Übung 11 Physikalische Eigenschaften der Metalle Werkstoffe und Fertigung II Prof.Dr. K. Wegener Soerseester 2007 C1 Nae Vornae Legi-Nr. Übung 11 Physikalische Eigenschaften der Metalle Musterlösung usgabe: 29.05.2007 bgabe: 31.05.2007 Institut für Werkzeugaschinen

Mehr

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen:

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: Aufgabe Ü3 Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: R = 1 Ω L1 W1 W4 I 1 R X C = 3 Ω X L = 2 3 Ω L2 W2 I 2 jx L -jx C = 13 V = 13 V e j120 L3 W3 W5 I 3 = 13 V e j120 N 1. Zeichnen

Mehr

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87 a) Strom nach Betrag und Phase: Der Betrag des Stroms wird aus der Wirkleistung bestimmt: P = U cos ϕ = P U cos ϕ = 3,52 kw 220 V 0,8 = 20 A Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos

Mehr

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ +DXVDUEHLW $XIJDEH Wie groß muß der Abstand der Platten eines Plattenkondensators sein, wenn seine Kapazität 100pF betragen soll. Gegeben ist der Durchmesser der runden Platten (d = 5 cm) und das Isoliermaterial

Mehr

Energiesysteme. Kundendaten. Allgemeine Informationen CHECKLISTE SUNFARM. Name Verkäufer/in, Agent / in. Datum. Kontaktdaten.

Energiesysteme. Kundendaten. Allgemeine Informationen CHECKLISTE SUNFARM. Name Verkäufer/in, Agent / in. Datum. Kontaktdaten. Energiesystee Nae Verkäufer/in, Agent / in Datu Kundendaten Kontaktdaten Firennae Ansprechpartner/in Straße, Nr. PLZ/Ort Land Telefon/Telefax E-Mail Big Dutchan- oder BD PowerSystes-Kunde/in Kundennr.

Mehr

Übung 23: Schutz durch Schutztrennung

Übung 23: Schutz durch Schutztrennung Übung 3: Schutz durch Schutztrennung : Zum Thema Schutz durch Schutztrennung sollen: Bedingungen aufgeführt werden Wirksamkeit und Besonderheiten erläutert werden Schutz durch Schutztrennung Übung 3 47

Mehr

INSTITUT FÜR ELEKTROTECHNIK DEPARTMENT OF ELECTRICAL ENGINEERING

INSTITUT FÜR ELEKTROTECHNIK DEPARTMENT OF ELECTRICAL ENGINEERING INSTITUT FÜ ELEKTOTECHNIK DEPATMENT OF ELECTICAL ENGINEEING MONTANUNIVESITÄT LEOBEN UNIVESITY OF LEOBEN, AUSTIA Franz-Josef-Straße 18 A-8700 Leoben Österreich, Austria Tel.:+43/(0)3842/402/310 Fax: +43/(0)3842/402/318

Mehr

Moderne Theoretische Physik WS 2013/ Kraft auf Stromverteilung: (10 Punkte)

Moderne Theoretische Physik WS 2013/ Kraft auf Stromverteilung: (10 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 013/014 Prof. Dr. A. Shniran Blatt 4: Lösung Dr. B. Narozhny Besprechung.11.013 1. Kraft

Mehr

Schutz bei Uberlast und Kurzschluss in elektrischen Anlagen

Schutz bei Uberlast und Kurzschluss in elektrischen Anlagen VOE-Schriftenreihe Normen verständlich 143.. Schutz bei Uberlast und Kurzschluss in elektrischen Anlagen Erläuterungen zur neuen OIN VOE 0100-430:2010-10 und OIN VOE 0298-4:2003-08 Or. rer. nat. Oipl.-Phys.

Mehr

Website KOSTAL PIKO Plan

Website KOSTAL PIKO Plan Projektname: Hübner 1/9 Standort Ort Deutschland Nürnberg Längengrad 11,0775 Breitengrad 49,4542 Einstrahlung 1216 kwh/m²a Ø Temperatur 9 C Notiz Kundendaten Name Vorname Hübner Straße PLZ Ort Projektname:

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand C eines Kondensators soll mit Hilfe einer spannungsrichtigen Messschaltung (vergleiche Versuch 1) bei verschiedenen

Mehr

405. Ein Strommesser hat einen Messwiderstand von 200 Ohm und einen Endausschlag. Aufgaben zur E-Lehre (Widerstand)

405. Ein Strommesser hat einen Messwiderstand von 200 Ohm und einen Endausschlag. Aufgaben zur E-Lehre (Widerstand) ufgaben zur E-Lehre (Widerstand) 6. In eine aten Haus wurden die uiniueitungen durch Kupfereitungen ersetzt; insgesat wurden 50 Kabe veregt. Jedes Kabe besteht aus einer Hin- und einer ückeitung und hat

Mehr

C.A Anlagenprüfung nach ÖVE/ÖNORM E 8001

C.A Anlagenprüfung nach ÖVE/ÖNORM E 8001 C.A 6116 - Anlagenprüfung nach ÖVE/ÖNORM E 8001 Protokollnr.: Auftragnehmer: Anlage: Adresse: Adresse: Ort: Ort: Tel.: Tel.: Fax.: Anlagenbetreiber: Netzsystem: TN-C: TN-S: TN-CS: Netzbetreiber: Netzspannung

Mehr

Qualifikationsverfahren Telematikerin EFZ Telematiker EFZ

Qualifikationsverfahren Telematikerin EFZ Telematiker EFZ Serie 2012 Berufskenntnisse schriftlich Pos. 5 Elektrische Systemtechnik Qualifikationsverfahren Telematikerin EFZ Telematiker EFZ Name, Vorname Kandidatennummer Datum......... Zeit: Hilfsmittel: Bewertung:

Mehr

3. Übungen zum Kapitel Der Wechselstromkreis

3. Übungen zum Kapitel Der Wechselstromkreis n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote

Mehr

Inhalt. Mehr Informationen zum Titel. Vorwort... V

Inhalt. Mehr Informationen zum Titel. Vorwort... V Mehr Informationen zum Titel Vorwort... V 1 Elektrische Anlagen in der Energieverteilung... 1 1.1 Netzaufbau... 1 1.1.1 Netzfrequenz... 2 1.1.2 Spannungsebene... 2 1.1.3 Netzstruktur... 3 1.1.4 Erdverbindung

Mehr

B.Sc.-Modulprüfung Geotechnik II

B.Sc.-Modulprüfung Geotechnik II Fachbereich Bau- und Uweltingenieurwissenschaften Institut und Versuchsanstalt für Geotechnik Prof. Dr.-Ing. Rolf Katzenbach Franziska-Braun-Straße 7 6487 Darstadt Tel. +49 65 6 80 Fax +49 65 6 83 E-Mail:

Mehr

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min Abitur 009 hysik Klausur Hannover, 0403008 arei K Semester Bearbeitungszeit: 90 min Thema: Spule, Kondensator und Ohmscher Widerstand im Wechselstromkreis Aufgabe eite begründet her: Für den Gesamtwiderstand

Mehr

Surge-Trap Steckbarer Typ 2-40 ka

Surge-Trap Steckbarer Typ 2-40 ka Surge-Trap Steckbarer Typ 2-40 ka ÜBERSPANNUNGSSCHUTZGERÄTE NACH IEC TRAGSCHIENE IEC TYP 2 / KLASSE II PRODUKTVORTEILE STP T2 40 ist eine Reihe von Typ 2/Klasse II Geräten zur Ableitung von Spannungsspitzen,

Mehr

Serie Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ. Berufskenntnisse schriftlich Pos. 4.2 Elektrische Systemtechnik

Serie Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ. Berufskenntnisse schriftlich Pos. 4.2 Elektrische Systemtechnik Serie 2014 Qualifikationsverfahren Elektroplanerin EFZ Elektroplaner EFZ Berufskenntnisse schriftlich Pos. 4.2 Elektrische Systemtechnik Name, Vorname Kandidatennummer Datum Zeit: Hilfsmittel: Bewertung:

Mehr

1. Geschwindigkeit von Elektronen in Drähten (2+2+2)

1. Geschwindigkeit von Elektronen in Drähten (2+2+2) Lösungen zur Übungen zur Physik (Elektrodynaik) SS 5 6 Übungsblatt 955 Bearbeitung bis Mi 555 Geschwindigkeit on Elektronen in Drähten (++) Ein Kupferdraht it de Durchesse durchflossen Berechnen Sie a)

Mehr

Ü b u n g s a r b e i t z. Th. S c h a l t u n g e n

Ü b u n g s a r b e i t z. Th. S c h a l t u n g e n Ü b u n g s a r b e i t z. Th. S c h a l t u n g e n Aufgabe 1 An der Stromquelle liegt die Spannung 100 V an. Die Einzelwiderstände haben die folgenden Größen: R 1 20 Ω, R 2 30 Ω, R 3 25 Ω, R 4 48 Ω,

Mehr

Betriebserde des Netzes Leitungswiderstand Körperwiderstand des Menschen Übergangswiderstand zwischen Mensch und unbeeinflusster Erde

Betriebserde des Netzes Leitungswiderstand Körperwiderstand des Menschen Übergangswiderstand zwischen Mensch und unbeeinflusster Erde Aufgabe Ü1 Gegeben ist ein Vierleiter-Drehstromnetz (400/230 V) mit geerdetem Sternpunkt, an das eine elektrische Maschine angeschlossen ist. Das Gehäuse dieser Maschine ist zum Schutz gegen zu hohe Körperströme

Mehr

Hill' Schutzmaßnahmen gegen elektrischen Schlag. VDE-Schriftenreihe Normen verständlich. nach DINVDE , DINVDE , DINVDE

Hill' Schutzmaßnahmen gegen elektrischen Schlag. VDE-Schriftenreihe Normen verständlich. nach DINVDE , DINVDE , DINVDE VDE-Schriftenreihe Normen verständlich 9 Schutzmaßnahmen gegen elektrischen Schlag nach DINVDE 0100-410, DINVDE 0100-470, DINVDE 0100-540 Dipl.-Ing. Rolf Hotopp Dr.-Ing. Manfred Kammler Dipl.-Ing. Manfred

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Wechselstromtechnik

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Wechselstromtechnik 4 4. Wechselgrößen Nimmt eine Wechselgröße in bestimmten aufeinander folgenden Zeitabständen wieder denselben Augenblickswert an, nennt man sie periodische Wechselgröße. Allgemeine Darstellung periodischer

Mehr

Grundlagen der Physik 2 Lösung zu Übungsblatt 6

Grundlagen der Physik 2 Lösung zu Übungsblatt 6 Grundlagen der Physik Lösung zu Übungsblatt 6 Daniel Weiss 17. Mai 1 Inhaltsverzeichnis Aufgabe 1 - Helholtz-Spulen 1 a) agnetische Feldstärke.............................. 1 b) hoogenes Feld..................................

Mehr

Dachfläche. Sonstige: Eingesetzter Brennstoff (z.b. Erdgas, Biogas, Biomasse): bereits vorhandene Anschlusswirkleistung PA

Dachfläche. Sonstige: Eingesetzter Brennstoff (z.b. Erdgas, Biogas, Biomasse): bereits vorhandene Anschlusswirkleistung PA F Vordrucke Der Netzbetreiber legt die Inhalte der Vordrucke eigenverantwortlich fest. F.1 Datenblatt einer Erzeugungsanlage Mittelspannung Datenblatt einer Erzeugungsanlage Mittelspannung 1 (4) (vom Kunden

Mehr

1 Verketteter Spannungsabfall und Spannungsverlust (bei symetrischer Last)

1 Verketteter Spannungsabfall und Spannungsverlust (bei symetrischer Last) Seite 1 1 Verketteter Spannungsabfall und Spannungsverlust (bei symetrischer Last) Seite 2 2 Spannungsabfall bzw. Spannungsverlust pro Leiter 2.1 Spannungsabfall bei ohmischer Zuleitung Seite 3 2.2 Spannungsabfall

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr