FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Wechselstromtechnik

Größe: px
Ab Seite anzeigen:

Download "FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Wechselstromtechnik"

Transkript

1 4 4. Wechselgrößen Nimmt eine Wechselgröße in bestimmten aufeinander folgenden Zeitabständen wieder denselben Augenblickswert an, nennt man sie periodische Wechselgröße. Allgemeine Darstellung periodischer Wechselgrößen: v( t) = v( t + k T ) mit: k = 0, ±, ±,... (4.) 4. Sinusförmige Wechselgrößen Sinusförmige Wechselgrößen ändern sich zeitlich sinusförmig: v( t) = v$ sin( ωt + ϕ) (4.)

2 4.3 Klassifikation von Wechselgrößen Arithmetischer Mittelwert Gleichanteil der Größe: T T 0 v = v( t) dt (4.3) Gleichrichtwert: T T 0 v = v( t) dt (4.4) Beispiel: Brückengleichrichter u = u$ π Effektivwert: Unter dem Effektivwert (quadratischer Mittelwert) einer Wechselgröße versteht man den Wert, der die gleiche Leistung am gleichen Ohmschen Widerstand R erbringt wie eine ebenso große Gleichgröße. eff T [ ( )] T (4.5) 0 V = v t dt V eff v$ v$ = Veff = (4.6)

3 4.4 Darstellung von sinusförmigen Wechselgrößen durch Zeiger Sinusförmige Wechselspannungen und Wechselströme lassen sich als sog. rotierende Zeiger darstellen, d.h. die Sinusschwingung wird im Zeigerdiagramm durch einen mit der Kreisfrequenz ω im Gegenuhrzeigersinn um den Nullpunkt rotierenden Zeiger der Länge $ v beschrieben. Transformation einer sinusförmigen Zeitfunktion in einen rotierenden Zeiger: Die Projektion des rotierenden Zeigers v( t ) auf die imaginäre Achse ist der Augenblickswert v( t ) der sinusförmigen Wechselgröße. Die sinusförmige Wechselgröße v( t ) wird somit in eine entsprechende komplexe Zeitfunktion v( t ) eindeutig abgebildet (sog. Transformation ins Komplexe). 3

4 4.5 Komplexer Widerstand und komplexer Leitwert Komplexer Widerstand (Impedanz): Unter dem komplexen Widerstand versteht man das Verhältnis zwischen den komplexen Momentanwerten von Spannung und Strom. Er ist gleich dem Verhältnis der komplexen Amplituden. u$ j( u i ) Z = e = Z e $ i ϕ ϕ jϕ (4.) jϕ Z = Z e = Z cos( ϕ) + j Z sin( ϕ) = R + jx (4.) ( ) Z = R + X ; ϕ = arctan X R (4.3) Z nennt man Scheinwiderstand, R den Wirk- und X den Blindwiderstand. Widerstandsdreieck für die Reihenschaltung eines Wirkwiderstandes mit einem induktiven (a) bzw. kapazitiven Blindwiderstand (b): jx c Z = R + jx c 4

5 Komplexer Leitwert (Admittanz): Der komplexe Leitwert Y ist der Kehrwert des komplexen Widerstandes. Y I = = = = Y e j jϕ U Z Z e ϕ (4.4) jϕ Y = Y e = Y cos( ϕ) j Y sin( ϕ) = G + jb (4.5) ( ) Y = G + B ; ϕ = arctan B G (4.6) Y nennt man Scheinleitwert, G den Wirk- und B den Blindleitwert. Parallelschaltung eines Wirkleitwertes mit einem kapazitiven (a) bzw. induktiven Blindleitwert (b): jb L Y = G + jb L Beispiel 4.: Die Reihenschaltung eines Wirkwiderstandes mit R R =00Ω und eines induktiven Blindwiderstandes mit X L,R =00Ω soll in eine äquivalente Parallelschaltung mit R P und X L,P umgerechnet werden. 5

6 4.6 Ohmscher, kapazitiver und induktiver Widerstand im Wechselstromkreis Ohmscher Widerstand: Bei einem Ohmschen Widerstand gibt es zwischen Spannung und Strom keine Phasenverschiebung. Im Zeigerdiagramm liegen Stromzeiger I und Spannungszeiger U in gleicher Richtung. u$ = R $ i bzw. U = R I (4.8) ϕu = ϕi (4.9) Linien- und Zeigerdiagramm des Ohmschen Widerstandes: Kapazitiver Widerstand: Der kapazitive (Blind-)Widerstand X C als Quotient der Amplituden von Spannung und Strom ist gleich dem Kehrwert des Produktes ω C, also frequenzabhängig. Der Strom durch die Kapazität C eilt der Spannung um π/ voraus. u$ XC = = ωc $ i (4.0) $ i = ωc u$ bzw. I = ωc U (4.) π π ϕ = ϕu ϕi = bzw. ϕi = ϕu + (4.) 6

7 Linien- und Zeigerdiagramm des kapazitiven Widerstandes: Induktiver Widerstand: Der induktive (Blind-)Widerstand X L als Quotient der Amplituden von Spannung und Strom ist gleich dem Produkt ω L, also ebenfalls frequenzabhängig. Die Spannung an der Induktivität L eilt dem Strom um π/ voraus. X L u$ = ωl = $ i (4.3) u$ = ωl $ i bzw. U = ωl I (4.4) π π ϕ = ϕu ϕi = bzw. ϕu = ϕi + (4.5) Linien- und Zeigerdiagramm des induktiven Widerstandes: 7

8 4.7 Leistung im Wechselstromkreis In einem Gleichstromkreis ist die Leistung zeitlich konstant, weil die Spannung und der Strom zeitlich konstant sind: P = U I In Wechselstromkreisen sind Spannung und Strom sinusförmige Größen, d.h. auch das Produkt die Augenblicksleistung ist zeitlich veränderlich: $ sin( ω ϕ ) $ sin( ω ϕ ) p = u i = u t + i t + = p + p (4.6) u i w B Die Augenblicksleistung setzt sich aus zwei Komponenten zusammen: Leistungskomponente, die mit ω pulsiert, dabei aber ihr Vorzeichen nicht wechselt. Die durch sie beschriebene Leistung fließt also in einer Richtung und kann somit als dauernde Energieentnahme bzw. -aufnahme, d.h. als irreversible Leistungsumwandlung, gedeutet werden. Sie wird als Wirkleistung p w bezeichnet. Leistungskomponente, die mit ω um die Nulllinie pendelt, d.h. ihr Vorzeichen periodisch wechselt. Das bedeutet, dass sich auch die Richtung des Leistungsflusses periodisch umkehrt. Es wird in dem Verbraucher lediglich Energie gespeichert, die dann wieder abgegeben wird. Im Mittel wird dem Verbraucher von dieser Leistungskomponente keine Energie zugeführt. Man spricht von der Blindleistung p B. u$ $ i p = cos ( ϕ ϕ ) ( ω + ϕ ) w u i cos t u (4.7) u$ $ i pb = sin ( ϕu ϕi ) sin ( ωt + ϕu ) (4.8) 8

9 Scheinleistung: Die Scheinleistung P S ist die Leistung, die scheinbar zur Verfügung steht, wenn man z.b. mit einem Messgerät getrennt zuerst die Spannung und dann den Strom misst (Effektivwerte), also die Phasenlage nicht berücksichtigt. Die Scheinleistung lässt sich auch über das Leistungsdreieck ermitteln. u$ $ i PS = = Ueff Ieff = Pw + P B (4.3) P S α P B P W Wirk-, Blind- und Scheinleistung am komplexen Widerstand (nur Impedanz): Die Wirkleistung P w ist ein Maß für die im Ohmschen Widerstand umgesetzte Leistung. Die Blindleistung P B ist ein Maß für die gespeicherte Leistung. Die Scheinleistung P S ist ein Maß für die gesamte Leistung, d.h. die im Ohmschen Widerstand umgesetzte und die in den induktiven und kapazitiven Widerständen gespeicherte Leistung. I Rr U R jx r U X Zges = Rr + jx r U { } Re ges P = I Z (4.3) w { } Im ges P = I Z (4.33) B 9

10 induktiver Widerstand: B = I ω r mit: r = ω r P L X L kapazitiver Widerstand: P B I mit: X r ωcr ωcr = = ges r r U = Z I = R + X I U I P = = R + X S I r r induktiver Widerstand: kapazitiver Widerstand: S = I r + ω r P R L P S I Rr ω C r = + 0

Kapitel 6: Grundlagen der Wechselstromtechnik

Kapitel 6: Grundlagen der Wechselstromtechnik Inhalt Kapitel 6: Grundlagen der technik Sinusförmige Signale Zeigerdarstellung Darstellung mit komplexen Zahlen komplexe Widerstände Grundschaltungen Leistung im kreis Ortskurven Übertragungsfunktion

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Wechselstromwiderstände Wirkwiderstand, ideale Spule und idealer Kondensator im Wechselstromkreis Wirkwiderstand R In einem Wirkwiderstand R wird elektrische Energie in Wärmeenergie umgesetzt. Er verursacht

Mehr

Elektrotechnik für Studierende Inhalt. Vorwort...11

Elektrotechnik für Studierende Inhalt. Vorwort...11 5 Inhalt Vorwort...11 1 Signale...13 1.1 Definitionen zu Signalen...13 1.2 Klassifizierung von Signalen...15 1.2.1 Klassifizierung nach dem Signalverlauf...15 1.2.1.1 Determinierte Signale...15 1.2.1.2

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null.

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. WECHSELSTROMLEHRE Wechselgrössen Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. Zeigerdarstellung Mittelwerte (Gleichwert, Gleichrichtwert

Mehr

Kleine Formelsammlung für IuK

Kleine Formelsammlung für IuK Kleine Formelsammlung für IuK Florian Franzmann 17. März 4 Inhaltsverzeichnis 1 Dezimale Vielfache und Teile von Einheiten Konstanten 3 Shannon 3.1 Informationsgehalt...................................

Mehr

Reihenresonanz - C8/ C8/9.2 -

Reihenresonanz - C8/ C8/9.2 - Versuch C8/9: - C8/9. - Wechselstromwiderstände und Reihenresonanz - C8/9.2 - Wechselstromkreis mit induktiven und kapazitiven Elementen Spannung und Strom im allgemeinen nicht die gleiche Phase haben

Mehr

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v. Lernprogramm Wechselstromtechnik Themenübersicht Wechselstromtechnik Einführung und Begriffe Wechselgrößen Merkmale Wechselgröße Vorteile der Wechselspannung Momentanwert-Scheitelwert-Periodendauer-Frequenz

Mehr

Wechselstrom und Zeigerdiagramme ohne Ballast. von. Wolfgang Bengfort ET-Akademie.de / ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials

Wechselstrom und Zeigerdiagramme ohne Ballast. von. Wolfgang Bengfort ET-Akademie.de / ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Wechselstrom und Zeigerdiagramme ohne Ballast von Wolfgang Bengfort ET-Akademie.de / ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses

Mehr

3.5. Prüfungsaufgaben zur Wechselstromtechnik

3.5. Prüfungsaufgaben zur Wechselstromtechnik 3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung

Mehr

Komplexe Zahlen in der Elektrotechnik. ohne Ballast. von. Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials

Komplexe Zahlen in der Elektrotechnik. ohne Ballast. von. Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Komplexe Zahlen in der Elektrotechnik ohne Ballast von Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses Buch darf ohne

Mehr

Anwendungen zu komplexen Zahlen

Anwendungen zu komplexen Zahlen HM an der HWS. Hj 08/9 Dr. Timo Essig, Dr. Marinela Wong timo.essig@kit.edu, wong@hw-schule.de Aufgabenblatt 7 Anwendungen zu komplexen Zahlen Achtung: Auf diesem Blatt schreiben wir die komplexe Einheit

Mehr

1.1.3 Bruchrechnung. Sätze: Produkte: a n b n = (a b) n n a n. b = n. a b Quotienten: a n : a m = a n m a n : b n = ( a _ b) n a :

1.1.3 Bruchrechnung. Sätze: Produkte: a n b n = (a b) n n a n. b = n. a b Quotienten: a n : a m = a n m a n : b n = ( a _ b) n a : Sätze: Produkte: a n a m = an + m a n n = (a ) n n a n = n a Quotienten: a n : a m = a n m a n : n = ( a _ ) n n n a : = n Klammern: (a n ) m = a nm = (a m ) n ( n a ) m = n a m = kn a km rationaler Eponent:

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

Wechselstromkreis. lässt sich mit der Eulerschen Beziehung. darstellen als Realteil einer komplexen Größe:

Wechselstromkreis. lässt sich mit der Eulerschen Beziehung. darstellen als Realteil einer komplexen Größe: E04 Wechselstromkreis Es soll die Frequenzabhängigkeit von kapazitiven und induktiven Widerständen untersucht werden. Als Anwendung werden Übertragungsverhältnisse und Phasenverschiebungen an Hoch-, Tief-

Mehr

Versuch 15 Wechselstromwiderstände

Versuch 15 Wechselstromwiderstände Physikalisches Praktikum Versuch 15 Wechselstromwiderstände Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 06.02.2007 Katharina Rabe Assistent: Tobias Liese

Mehr

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung C. FEPEL 3 Ortskurven 3. Einleitung Durch ein Zeigerbild wird ein bestimmter Betriebszustand eines Wechselstromnetzes bei konstanten Parametern (Amplitude und Frequenz der einspeisenden sinusförmigen Quellspannungen

Mehr

Elektrotechnik I Formelsammlung

Elektrotechnik I Formelsammlung Elektrotechnik I Formelsammlung Andreas itter und Marco Weber. Dezember 009 Inhaltsverzeichnis Physikalische Gesetze Physikalische Konstanten...................................... Physikalische Zusammenhänge..................................

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen nstitut für Elektrotechnik Übungen zu Elektrotechnik Version 3.0, 02/2002 2 Wechselstromkreise 2. Einführung komplexer eiger 2.. Komplexe Spannung, komplexer Strom ur Vereinfachung der mathematischen Behandlung

Mehr

4.1.0 Widerstand im Wechselstromkreis. Das Verhalten eines Ohmschen Widerstandes ist im Wechselstromkreis identisch mit dem im Gleichstromkreis:

4.1.0 Widerstand im Wechselstromkreis. Das Verhalten eines Ohmschen Widerstandes ist im Wechselstromkreis identisch mit dem im Gleichstromkreis: 4.0 Wechselstrom 4.1.0 Widerstand im Wechselstromkreis 4.2.0 Kondensator im Wechselstromkreis 4.3.0 Spule im Wechselstromkreis 4.4.0 Wirk-, Blind- und Scheinleistung 4.5.0 Der Transformator 4.6.0 Filter

Mehr

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab!

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab! Mathematik 1 - Übungsblatt 12 und nicht vergessen: Täglich einmal Scilab! Aufgabe 1 (Zuordnung reeller Größen zu komplexen Größen) Der Vorteil der komplexen Rechnung gegenüber der reellen besteht darin,

Mehr

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments.

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Musterlösung zur Klausur Grundlagen der Elektrotechnik I im SoSe 18 Aufgabe 1 Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Aufgabe 2 1. R 1 = R a und R b = R 2 R L R 2 +R L 2. R 1 + R 2 = 1

Mehr

HM an der HWS 2. Hj 2018/19 Dr. Timo Essig, Dr. Marinela Wong Harmonische Schwingungen und komplexe Zahlen

HM an der HWS 2. Hj 2018/19 Dr. Timo Essig, Dr. Marinela Wong  Harmonische Schwingungen und komplexe Zahlen HM an der HWS 2. Hj 208/9 Dr. Timo Essig, Dr. Marinela Wong timo.essig@kit.edu, wong@hw-schule.de Beispielblatt 7 Harmonische Schwingungen und komplexe Zahlen Achtung: Auf diesem Blatt wird die komplexe

Mehr

GRUNDLAGEN ELEKTROTECHNIK, WECHSELSTROMTECHNIK Universitätslehrgang Energiemanagement

GRUNDLAGEN ELEKTROTECHNIK, WECHSELSTROMTECHNIK Universitätslehrgang Energiemanagement INHALTSVERZEICHNIS I. EINFLUSS ZEITLICH VERÄNDERLICHER GRÖßEN I.1. KONDENSATOR IM WECHSELFELD I.2. SPULE IM WECHSELFELD, INDUKTIONSGESETZ I.3. BEWEGUNGSINDUKTION I.4. SELBSTINDUKTION, GEGENINDUKTION I.5.

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

E 4 Spule und Kondensator im Wechselstromkreis

E 4 Spule und Kondensator im Wechselstromkreis E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm

Mehr

2 Komplexe Rechnung in der Elektrotechnik

2 Komplexe Rechnung in der Elektrotechnik Komplexe echnung in der Elektrotechnik. Einleitung Wechselstromnetwerke sind Netwerke, in denen sinusförmige Spannungen oder ströme gleicher Frequen auf ohmsche, induktive und kapaitive Widerstände wirken.

Mehr

Inhaltsverzeichnis. Arbeitshinweise zu diesem Buch

Inhaltsverzeichnis. Arbeitshinweise zu diesem Buch Dieter Zastrow Elektrotechnik Lehr- und Arbeitsbuch 13., überarbeitete Auflage Mit 496 Abbildungen, 134 Lehrbeispielen und 221 Übungen mit Lösungen vieweg VI Inhaltsverzeichnis Arbeitshinweise zu diesem

Mehr

Repetitionen. Widerstand, Drosseln und Kondensatoren

Repetitionen. Widerstand, Drosseln und Kondensatoren Kapitel 16.1 epetitionen Widerstand, Drosseln und Kondensatoren Verfasser: Hans-udolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 1 1.702 Serieschaltung

Mehr

Elektrotechnik. Dieter Zastrow

Elektrotechnik. Dieter Zastrow Dieter Zastrow Elektrotechnik Ein Grundlagenlehrbuch 17., überarbeitete und ergänzte Auflage Mit 527 Abbildungen, 142 Beispielen und 225 Übungsaufgaben mit Lösungen sowie 27 Übersichten als Wissensspeicher

Mehr

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar.

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar. Übung /Grundgebiete der Elektrotechnik 3 (WS7/8 Frequenzabhängiges Übertragungsverhalten Dr. Alexander Schaum, Lehrstuhl für vernetzte elektronische Systeme Christian-Albrechts-Universität zu Kiel Aufgabe

Mehr

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden.

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E 13 Reihenschwingkreis In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis

Mehr

9. RLC-Schaltungen. Wechselstrom-Netzwerke

9. RLC-Schaltungen. Wechselstrom-Netzwerke . LC-Schaltungen Wechselstrom-Netzwerke ichtungskonvention nicht genauso wie in Gleichstromnetzwerken: ichtung kehrt sich ständig um. Polarität von Spannung und Strom ist bei Phasenverschiebung nicht immer

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

4.5 Wechselstromkreise

4.5 Wechselstromkreise 4.5 Wechselstromkreise Wechselstrom in vielen Punkten praktischer: ransformatoren Elektromotoren Frequenz als Referenz... Prinzip der Erzeugung einer sinusförmigen Wechselspannung: V: Wechselstromgenerator

Mehr

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R.

Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem Ohm'schen Gesetz: I(t) = U(t)/R. Wechselspannung Eine zeitlich sich periodisch bzw. sinusförmig verändernde Spannung heißt Wechselspannung. Liegt die Spannung U(t) über einen Ohm'schen Widerstand R an, so fließt ein Strom I(t) nach dem

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L.

Amateurfunkkurs. Themen Übersicht. Erstellt: Landesverband Wien im ÖVSV. 1 Widerstand R. 2 Kapazität C. 3 Induktivität L. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 20. Februar 2016 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ein Widerstand... u i Ohmsches Gesetz

Mehr

Elektrotechnik II Formelsammlung

Elektrotechnik II Formelsammlung Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

Elektrotechnik. 16., verbesserte und aktualisierte Auflage

Elektrotechnik. 16., verbesserte und aktualisierte Auflage Dieter Zastrow Elektrotechnik Ein Grundlagenlehrbuch 16., verbesserte und aktualisierte Auflage Mit 526 Abbildungen, 142 Beispielen und 225 Übungsaufgaben mit Lösungen sowie 27 Übersichten als Wissensspeicher

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 3 - Übungsblatt 7 Wechselstrom In der Zeichnung ist ein Stromkreis mit reellen (Ohmschen) sowie

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Elektrische Antriebe und Anlagen

Elektrische Antriebe und Anlagen Elektrische Antriebe und Anlagen Kapitel 3: Grundlagen der Leistungselektronik 5.Jhrg KOHE 1 Bsp. Glühbirne Ziel: Helligkeitssteuerung einer Glühbirne. 1) Mit einstellbarem Vorwiderstand Spannungsteiler.

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,

Mehr

Grundlagen der Wechselstromtechnik

Grundlagen der Wechselstromtechnik Grundlagen der Wechselstromtechnik W. Kippels 2. Januar 2018 Inhaltsverzeichnis 1 Grundgrößen der Wechselstromtechnik 3 1.1 Definitionen einiger Grundgrößen...................... 3 1.2 Mittelwert und Effektivwert.........................

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001

Elektrotechnik Protokoll - Wechselstromkreise. André Grüneberg Mario Apitz Versuch: 16. Mai 2001 Protokoll: 29. Mai 2001 Elektrotechnik Protokoll - Wechselstromkreise André Grüneberg Mario Apitz Versuch: 6. Mai Protokoll: 9. Mai 3 Versuchsdurchführung 3. Vorbereitung außerhalb der Versuchszeit 3.. Allgemeine Berechnungen

Mehr

Messtechnische Ermittlung der Größen komplexer Bauelemente

Messtechnische Ermittlung der Größen komplexer Bauelemente TFH Berlin Messtechnik Labor Seite 1 von 9 Messtechnische Ermittlung der Größen komplexer Bauelemente Ort: TFH Berlin Datum: 08.12.03 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00 bis 11.30 Uhr Prof. Dr.-Ing.

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophysik Tutorübungen zu Elektromagnetische Feldtheorie Prof. Wachutka Wintersemester 08/09 Lösung Blatt 0 Allgemeines zum Thema komplexe Wechselstromrechnung

Mehr

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 Lösungsvorschläge

Elektro- und Informationstechnik. Mathematik 1 - Übungsblatt 12 Lösungsvorschläge Mathematik - Übungsblatt Lösungsvorschläge Aufgabe (Zuordnung reeller Größen zu komplexen Größen) Der Vorteil der komplexen Rechnung gegenüber der reellen besteht darin, dass die erforderlichen Rechnungen

Mehr

Elektrotechnik. ~ Springer Vieweg. Ein Grundlagenlehrbuch. Dieter Zastrow. 19., korrigierte Auflage

Elektrotechnik. ~ Springer Vieweg. Ein Grundlagenlehrbuch. Dieter Zastrow. 19., korrigierte Auflage Dieter Zastrow Elektrotechnik Ein Grundlagenlehrbuch 19., korrigierte Auflage Mit 547 Abbildungen, 140 Beispielen und 224 Übungsaufgaben mit Lösungen sowie 27 Übersichten als Wissensspeicher ~ Springer

Mehr

5.5 Ortskurven höherer Ordnung

5.5 Ortskurven höherer Ordnung 2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder

Mehr

Grundlagen der Elektrotechnik I

Grundlagen der Elektrotechnik I Prof. Dr.-Ing. B. Schmülling Musterlösung zur Klausur Grundlagen der Elektrotechnik I im Wintersemester 27 / 28 Aufgabe : Die Lösungen zu Aufgabe folgen am Ende. Aufgabe 2:. U q = 3 V 2. R i = Ω 3. P =

Mehr

Leistungen im Wechselstromkreis

Leistungen im Wechselstromkreis Leistungen im Wechselstromkreis Hannes Zinnbauer 1. Dezember 005 - gesetzt in L A TEX Inhaltsverzeichnis 1 Momentanleistung im Wechselstromkreis 1.1 Einführung.............................. 1. Z ist rein

Mehr

Elektrotechnik II Wechselstrom Magnetisches Feld

Elektrotechnik II Wechselstrom Magnetisches Feld Elektrotechnik II Wechselstrom Magnetisches Feld Studium Plus // WI-ET SS 2016 Prof. Dr. Sergej Kovalev 1 Ziele 1. Wechselstrom: 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in

Mehr

8. Schwingkreise. Reihenschwingkreis

8. Schwingkreise. Reihenschwingkreis . Schwingkreise Moeller et.al.: Grundlagen der Elektrotechnik,. Auflage, Teubner Verlag 996, Seite ff Paul,.: Elektrotechnik, Springer Verlag, 3. Auflage 993, Seite 5 ff, Pregla,.: Grundlagen der Elektrotechnik,

Mehr

Inhaltsverzeichnis. Vorwort...

Inhaltsverzeichnis. Vorwort... Inhaltsverzeichnis Vorwort... V 1 Elektrische Ladung... 1 1.1 Beobachtungen und Grundannahmen... 1 1.2 Atomistische Deutung... 2 1.3 Ladungstrennung und elektrisches Feld... 3 1.4 Ladungsträger... 5 1.5

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

Elektrotechnik 3. Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe. Studium Plus // WI-ET. SS 2016 Prof. Dr.

Elektrotechnik 3. Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe. Studium Plus // WI-ET. SS 2016 Prof. Dr. Elektrotechnik 3 Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe Studium Plus // WI-ET SS 06 Prof. Dr. Sergej Kovalev Drehstromsystems Themen: Einführung Zeitverläufe Mathematische

Mehr

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06

RE - Elektrische Resonanz Praktikum Wintersemester 2005/06 RE - Elektrische Resonanz Praktikum Wintersemester 5/6 Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 8. November 5 Einführung Ziel dieses Versuches ist es, elektrische Resonanz

Mehr

Inhalt dieses Vorlesungsteils - ROADMAP

Inhalt dieses Vorlesungsteils - ROADMAP AKUSTISCHE WELLEN Inhalt dieses Vorlesungsteils - ROADMAP MECHANISCHE SCHWINGUNGEN ELEKTRO- MAGNETISCHE WELLEN WECHSELSTROM KREISE E Elemente E11 Mechanische Schwingungen E12 Akustische Schwingungen E13

Mehr

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten

17. Wechselströme. me, 18.Elektromagnetische Wellen. Wechselstromtransformation. = = (gilt bei Ohm schen Lasten Wechselstromtransformation Idee: Anwendung der Induktion und der Feldführung in einem Eisenkern zur verlustarmen Transformation der Amplitude von Wechselspannungen Anwendung (n >>n 1 ): Hochspannungserzeugung

Mehr

Kapitel 7 Der Übergang zu den zeitabhängigen Stromund Spannungsformen 15

Kapitel 7 Der Übergang zu den zeitabhängigen Stromund Spannungsformen 15 Vorwort zur 1. Auflage 11 Vorwort zur 2. Auflage 13 Kapitel 7 Der Übergang zu den zeitabhängigen Stromund Spannungsformen 15 7.1 Vorbetrachtungen............................................ 16 7.2 Modellbildung..............................................

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Lösungen zur Klausur: Grundlagen der Elektrotechnik am 3. Juli 06 Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 4 Summe Note Punkte Die Klausur

Mehr

Filter und Schwingkreise

Filter und Schwingkreise FH-Pforzheim Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5: Filter und Schwingkreise 28..2000 Sven Bangha Martin Steppuhn Inhalt. Wechselstromlehre Seite 2.2 Eigenschaften von R, L und C

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 7: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 4 4. Mittelwerte bei Wechselstrom

Mehr

Wechselstromkreis E 31

Wechselstromkreis E 31 E 3 kreis kreis E 3 Aufgabenstellung. Bestimmung von Phasenverschiebungen zwischen Strom und Spannung im kreis.2 Aufbau und ntersuchung einer Siebkette 2 Physikalische Grundlagen n einem kreis (Abb.) befinde

Mehr

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom

Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Experimentalphysik II Zeitlich veränderliche Felder und Wechselstrom Ferienkurs Sommersemester 009 Martina Stadlmeier 09.09.009 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 1.1 Faradaysches Induktionsgesetz.....................

Mehr

3. Grundlagen des Drehstromsystems

3. Grundlagen des Drehstromsystems Themen: Einführung Zeitverläufe Mathematische Beschreibung Drehstromschaltkreise Anwendungen Symmetrische und unsymmetrische Belastung Einführung Drehstrom - Dreiphasenwechselstrom: Wechselstrom und Drehstrom

Mehr

St.Ursula-Schule Hannover, 2006/ Leistungsfach Physik 12/2 Klausur Nr. 2

St.Ursula-Schule Hannover, 2006/ Leistungsfach Physik 12/2 Klausur Nr. 2 StUrsula-Schule Hannover, 006/07 05007 Leistungsfach Physik / Klausur Nr Aufgabe : Der kapazitive Widerstand Der Widerstand eines Kondensators im Wechselstromkreis soll experimentell untersucht werden

Mehr

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 7. April 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung DIN

Mehr

9 Lineare Netze im eingeschwungenen Zustand

9 Lineare Netze im eingeschwungenen Zustand Lineare Netze im eingeschwungenen Zustand Seite 63 9 Lineare Netze im eingeschwungenen Zustand Netzwerke aus R, L und C werden im quasistationären Fall beschrieben durch die linearen Kirchhoff schen Gleichungen

Mehr

Grundlagen der Elektrotechnik 2

Grundlagen der Elektrotechnik 2 Grundlagen der Elektrotechnik 2 von Wolf-Ewald Büttner Oldenbourg Verlag München Wien V 1 Einleitung 1 2 Grundbegriffe der Wechselstromtechnik 3 2.1 Kenngrößen periodisch zeitabhängiger Größen 3 2.1.1

Mehr

Elektrotechnik für Ingenieure 2

Elektrotechnik für Ingenieure 2 Elektrotechnik für Ingenieure 2 Wilfried Weißgerber Elektrotechnik für Ingenieure 2 Wechselstromtechnik, Ortskurven, Transformator, Mehrphasensysteme. Ein Lehr- und Arbeitsbuch für das Grundstudium 8.,

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Themengebiet E: Komplexe Zahlen Aufgabe 1: echnen mit komplexen Zahlen Stellen Sie die folgenden komplexen Zahlen in der arithmetischen Form (z = x + jy und der exponentiellen

Mehr

Musterlösungen zu Grundlagen der Wechselstromtechnik

Musterlösungen zu Grundlagen der Wechselstromtechnik Musterlösungen zu Grundlagen der Wechselstromtechnik W. Kippels 2. September 2016 Inhaltsverzeichnis 1 Grundgrößen der Wechselstromtechnik 2 1.1 Übungsfragen zu Grundgrößen der Wechselstromtechnik..........

Mehr

Inhaltsverzeichnis. Gleichstromlehre

Inhaltsverzeichnis. Gleichstromlehre Inhaltsverzeichnis I Gleichstromlehre 1 Elektrische Grundgrößen... 12 1.1 Elektrische Ladung... 12 1.2 Elektrische Stromstärke... 13 1.3 Elektrische Spannung... 15 1.4 Elektrischer Gleichstromkreis......

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

Physikalisches Praktikum I. Wechselstromwiderstände: Serienschwingkreis Matrikelnummer:

Physikalisches Praktikum I. Wechselstromwiderstände: Serienschwingkreis Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I E10 Name: Wechselstromwiderstände: Serienschwingkreis Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat:

Mehr

Aufgabe 1: Aufgabe 2: Berechnen Sie für den unten abgebildeten periodischen Spannungsverlauf. 1. den arithmetischen Mittelwert, 2.

Aufgabe 1: Aufgabe 2: Berechnen Sie für den unten abgebildeten periodischen Spannungsverlauf. 1. den arithmetischen Mittelwert, 2. Aufgabe 1: Berechnen Sie für den unten abgebildeten periodischen Spannungsverlauf 1. den arithmetischen Mittelwert, 2. den Effektivwert, 3. den Scheitelfaktor, 4. den Formfaktor. ū=5v, U = 6,45V, k s =

Mehr

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87 a) Strom nach Betrag und Phase: Der Betrag des Stroms wird aus der Wirkleistung bestimmt: P = U cos ϕ = P U cos ϕ = 3,52 kw 220 V 0,8 = 20 A Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos

Mehr

Leistungsanpassung mit Anpassgeräten

Leistungsanpassung mit Anpassgeräten Arbeitsblatt Amateurfunk: Leistungsanpassung Seite 1 von 7 Leistungsanpassung mit Anpassgeräten Ein funktechnisches Anpassgerät sorgt für eine möglichst verlustarme Abstrahlung elektromagnetischer Wellen

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Elektrotechnik für Studium und Praxis: Lösungen Lösungen zu Kapitel Aufgabe.1 Aus der Maschengleichung ergibt sich: I 4 = U q1 + U q R 1 I 1 R I R I R 4 I 4 = 4 V + 1 V Ω 5 A Ω, A 5 Ω 4 A Ω I 4 = (4 +

Mehr

Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach. Musterprüfung

Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach. Musterprüfung Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach Prof. Dr. Jürgen Weber Einführung in die Elektrotechnik I Name Matrikelnummer Hinweise zur Prüfung Neben der Prüfungsordnung

Mehr

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung Aufgabe 1. Komplexe Impedanz von Zweipolen Bestimmen Sie für die nachfolgenden Schaltungen

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Physikalisches A-Praktikum Versuch 14 Wechselstromwiderstände Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 18.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Inhaltsverzeichnis. Rainer Ose. Elektrotechnik für Ingenieure. Grundlagen. ISBN (Buch): ISBN (E-Book):

Inhaltsverzeichnis. Rainer Ose. Elektrotechnik für Ingenieure. Grundlagen. ISBN (Buch): ISBN (E-Book): Inhaltsverzeichnis Rainer Ose Elektrotechnik für Ingenieure Grundlagen ISBN (Buch): 978-3-446-43244-4 ISBN (E-Book): 978-3-446-43955-9 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43244-4

Mehr

Antennen Technik. Einfluss der Phase auf die Dimensionierung von Leitungen

Antennen Technik. Einfluss der Phase auf die Dimensionierung von Leitungen Einfluss der Phase bei der Dimensionierung von Leitungen Antennen Technik Einfluss der Phase auf die Dimensionierung von Leitungen Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler-Saar Dr. rer.

Mehr

3. Übungen zum Kapitel Der Wechselstromkreis

3. Übungen zum Kapitel Der Wechselstromkreis n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote

Mehr