9. RLC-Schaltungen. Wechselstrom-Netzwerke

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "9. RLC-Schaltungen. Wechselstrom-Netzwerke"

Transkript

1 . LC-Schaltungen Wechselstrom-Netzwerke ichtungskonvention nicht genauso wie in Gleichstromnetzwerken: ichtung kehrt sich ständig um. Polarität von Spannung und Strom ist bei Phasenverschiebung nicht immer in gleicher ichtung. ückspeisung der Quelle

2 Hz Frequenz Hz Funktion C = 22 nf = 720 Ω u e u C u i Messung der Phasenverschiebung zwischen der Eingangsspannung u e und dem Strom i Grundschaltelemente, L, C im Wechselstromkreis U L U L C U C Bezugszeiger für alle Zeigerdiagramme ist der Strom mit ϕ i = 0 ϕ ui = -0 ϕ ui =0 ϕ ui = 0 Z = Z L = j ωl Z C = - j ωc U = e j0 U L = ωl e j0 U C = /ωce -j0 P = 2 Q L = ωl 2 Q C = - (/ωc) 2 Blindleistungen

3 Grundschaltelemente, L, C im Wechselstromkreis: Bei der Zusammenschaltung der Grundschaltelemente entstehen: komplexe pedanzen Z = + X bzw. Z = + jx komplexe Admittanzen Y = G + B bzw. Y = G + jb Die in diesen Schaltungen umgesetzte Scheinleistung S besteht aus: Wirkleistung P und Blindleistung Q S = P + Q bzw. S = P + jq Serien- und Parallelschaltungen Serienschaltung ) Widerstand und Kondensator 2) Widerstand und Spule Berechung jeweils von Einzel- und Gesamtspannungen und Leistung (komplex!) Parallelschaltung 3) Widerstand und Kondensator 4) Widerstand und Spule Berechung jeweils von Einzel- und Gesamtspannungen und Leistung (komplex!)

4 ihenschaltung von pedanzen Vorgehensweise zur Analyse von Wechselstromnetzwerken analog zu Gleichstromnetzwerken, aber: komplexer Strom ist Bezugsgröße für die Phase einzelne Spannungen zu Gesamtspannung in komplexer Ebene addieren (komplexe chnung oder Zeigerdiagramm) komplexe Scheinleistung aus komplexem Strom und komplexer Spannung berechnen(komplexe chnung oder Zeigerdiagramm) ihenschaltung von und L im Wechselstromkreis U ges U U L Gesucht sind die pedanz Z ges, die Spannungen U, U L und U ges mit ihren Phasenwinkeln. Wie schon bei Gleichstromnetzwerken ist bei ihenschaltungen die Bezugsgröße für alle Berechnungen der Strom mit ϕ i = 0 Für ihenschaltungen gilt: Z ges = + j X Z ges = + j ωl Wirkwiderstand Blindwiderstand X L = ωl

5 Die pedanz Z ges in der komplexen Zahlenebene Z ges = + j ωl Z ges jωl Berechnung der Spannungen: U = e j0 = U L = jx L e j0 = jωl = ωl e j0 e j0 = cos(0 ) + j sin(0 ) = 0 + j() = j Z ges = 2 + (ωl) 2 ωl ϕ Z = arctan( ) jϕ Z ges = e Z Z ges Uges U L U ges = U + U L U ges = e j0 ϕ ( + jωl) ui = ϕ Z = e j0 Z e jϕ Z ges U ihenschaltung von und L im Wechselstromkreis: Berechnung der Leistungen U U ges Wirkleistung in : Blindleistung in X L : Scheinleistung in Z: U L P = 2 Q = 2 ωl S = P + jq S Q S = P 2 + Q 2 S = U ges P = S cos(ϕ Z ) Q = S sin(ϕ Z ) Leistungsfaktor = cos(ϕ Z ) ϕ Z P

6 ihenschaltung von und C im Wechselstromkreis Wie schon bei Gleichstromnetzwerken ist bei ihen- U U schaltungen die Bezugsgröße C U für alle Berechnungen der ges Strom mit ϕ i = 0 Gesucht sind die pedanz Z ges, die Spannungen U, U C und U ges mit ihren Phasenwinkeln. Für ihenschaltungen gilt: Z ges = + j X C Z ges = + jωc Wirkwiderstand Blindwiderstand X C = - = - j ωc ωc Die pedanz Z ges in der komplexen Zahlenebene Z ges = - j ωc Z ges Berechnung der Spannungen: U = e j0 = U C = jx C e j0 = -j /ωc = [/ωc]e -j0 -j /ωc e j 0 = cos( 0 ) + j sin( 0 ) = 0 + j( ) = j Z ges = 2 + (/ωc) 2 ϕ Z = -arctan( ) ωc jϕ Z ges = Z ges e Z ϕ ui = ϕ Z U U ges = U + U C U ges = e j0 ( - j /ωc) = e j0 jϕ Z ges e Z U ges U C

7 ihenschaltung von und C im Wechselstromkreis Berechnung der Leistungen U U C U ges P Wirkleistung in : P = 2 Blindleistung in X C : Q = 2 {-j(/ωc)} Scheinleistung in Z: S = P + jq S = P 2 + Q 2 S = U ges P = S cos(ϕ Z ) Q = S sin(ϕ Z ) Leistungsfaktor = cos(ϕ Z ) ϕ Z S Q Parallelschaltung von pedanzen Vorgehensweise zur Analyse von Wechselstromnetzwerken analog zu Gleichstromnetzwerken, aber: komplexe Spannung ist Bezugsgröße für die Phase einzelne Ströme zu Gesamtstrom in komplexer Ebene addieren (komplexe chnung oder Zeigerdiagramm) komplexe Scheinleistung aus komplexem Strom und komplexer Spannung berechnen (komplexe chnung oder Zeigerdiagramm)

8 Parallelschaltung von und L im Wechselstromkreis U ges L L Y = G + jb = / + /jωl = Wie schon bei Gleichstromnetzwerken ist bei Parallelschaltungen die Bezugsgröße für alle Berechnungen die Spannung U mit ϕ u = 0 Gesucht sind die Admittanz Y, die Ströme, L und ges mit ihren Phasenwinkeln. Admittanz Y = komplexer Leitwert: Y = Wirkleitwert G = -j ωl Z Blindleitwert B = - ωl Die Admittanz Y in der komplexen Zahlenebene Y = -j / ωl Y = / 2 + (/ωl) 2 Y Berechnung der Ströme: = G Ue j0 = U/ L = jb L Ue j0 = U/ωL e -j0 -j /ωl ϕ Y = -arctan( ) ωl Y = Y e Y U ϕ iu = ϕ Y ges = + L ges = Ue j0 (G + jb) = Ue j0 Ye jϕ Y ges L

9 Parallelschaltung von und L im Wechselstromkreis ges L Berechnung der Leistungen P ϕ Y U L Wirkleistung in G: P = U 2 / Blindleistung in B L : Q L = U 2 /jωl = -j U 2 /ωl Scheinleistung in Y: S = U 2 (/ - j /ωl) S Q Parallelschaltung von und C im Wechselstromkreis Wie schon bei Gleichstromnetzwerken ist bei Parallel- ges schaltungen die Bezugsgröße für alle Berechnungen die C Spannung U mit ϕ u = 0 U C Gesucht sind die Admittanz Y, die Ströme, C und ges mit ihren Phasenwinkeln. Admittanz Y = komplexer Leitwert: Y = Z Y = G + jb = / + jωc = + jωc Wirkleitwert G = Blindleitwert B = ωc

10 Die Admittanz Y in der komplexen Zahlenebene Y = + jωc Y jωc Y = / 2 + (ωc) 2 / Berechnung der Ströme: ϕ Y = arctan(ωc) Y = Y e jϕ Y = G Ue j0 = U/ ges C C = jb Ue j0 = UωC e j0 ges = + C ges = Ue j0 (G + jb) = Ue j0 Ye jϕ Y ϕ i = ϕ Y U Parallelschaltung von und C im Wechselstromkreis Berechnung der Leistungen ges C S Q U C Wirkleistung in G: P = U 2 / Blindleistung in B L : Q C = U 2 jωc Scheinleistung in Y: S = U 2 (/ + jωc) ϕ Z P

11 aler Transformator Als Beispiel für ein Wechselspannungs-Netzwerk mit verschiedenen pedanzen dient der reale Transformator unter Berücksichtigung der Drahtwiderstände und der magnetischen Streuverluste. u i 2 i 2 u 2 L L 2 Die Gegeninduktivität ist M 2 = M 2 = M. Die Spannung lassen sich schreiben als di u = L dt + i + M di 2 dt Vorzeichen: laut Definition u = L di/dt und di u 2 = L 2 2 dt + i + M di 2 2 dt Streuverluste im realen Transformator Da die magnetischen Streufelder nicht zur Gegeninduktivität beitragen, können wir die nduktivitäten in je zwei Anteile aufteilen: Die Streuinduktivität L σ und die Hauptinduktivität L h, L = L σ + L h und L 2 = L 2σ + L 2h wobei die Hauptinduktivitäten einen idealen Trafo ohne Verluste (Kupfer, Streuung) bilden und zur Gegeninduktivität beitragen: M = L mit L h = ü 2 h L 2h L h2 ist M = L h L h /ü 2 = L h /ü = ül 2h di u = L σ dt + L di h dt + i + L h ü di u 2 = L 2 2σ dt + L h di 2 ü 2 dt + i + L h 2 2 ü di 2 dt = L di σ dt + L h di dt = L di 2 2σ dt + L h ü di dt + ü di 2 dt + i di 2 ü dt + di dt + i 2 2

12 Ersatzschaltbild mit Streuverlusten i 2 /ü i L σ L 2σ 2 i 2 u u u L 2 h h u h2 ü Man kann zusammenfassen di u h = L h dt + di 2 u ü dt h 2 = L h und ü in einem neuen Ersatzschaltbild di 2 ü dt + di dt i L σ L 2σ 2 i 2 u u L 2 h u h in u h = üu h 2 u' 2 = üu 2 i' 2 = i 2 /ü ' 2 = ü 2 2 L' 2σ = ü 2 L 2σ Ersatzschaltbild mit Eisenverlusten i L σ L 2σ 2 i 2 u u L 2 u h h FE Durch L h und FE fließt der Strom i 0 =i µ +i FE. Dabei beschreibt i FE die Ummagnetisierungsverluste im Eisenkern und i µ den Magnetisierungsstrom. Für das Wechselstromersatzschaltbild ersetzen wir die nduktivitäten durch ihre pedanzen X=ωL

13 Blindstromkompensation ihenschaltung von und L im Wechselstromkreis U N = 0Ω, L = 38 mh, U N = 230V, 50 Hz U U L Z ges = 2 + (ωl) 2 U N U L Z ges = (0Ω) 2 + (2π 50 0,38) 2 ϕ ui = ϕ Z U = U/Z = 2,3 A Z ges = 00,4 Ω ωl ϕ Z = arctan( ) 2π 50 0,38 ϕ Z = arctan( ) 0 ϕ Z = 84,28 Welche Maßnahme kann ergriffen werden, damit die Netzspannung U N und der Strom in Phase liegen? U N L ichtung von C, senkrecht auf U N, 0 voreilend U C C U N L U L ϕ ui = ϕ Z Der Strom teilt sich jetzt auf in L und C, dadurch kann - bei geeigneter Dimensionierung von C - die Phasenverschiebung zwischen U N und Null werden. U N und sind jetzt in Phase, d.h. dem Netz wird nur Wirkleistung entnommen.

14 ichtung von C, senkrecht auf U N, 0 voreilend U N ϕ ui = ϕ Z Aus dem Betrag von C kann die Größe der Kapazität berechnet werden. C = L + C C = U N ωc C = C /U N ω L unterkompensiert, die Schaltung verhält sich noch induktiv überkompensiert, die Schaltung verhält sich jetzt kapazitiv. U N U N = L + C C = L + C C L L

15 Blindstromkompensation Zusammenfassung C-Parallel und ihenschaltung Zeigerdiagramm Leistung, Leistungsfaktor cosφ L-Parallel und ihenschaltung Zeigerdiagramm Leistung, Leistungsfaktor cosφ aler Transformator Blindstromkompensation Nächste Vorlesung Ortskurven

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen nstitut für Elektrotechnik Übungen zu Elektrotechnik Version 3.0, 02/2002 2 Wechselstromkreise 2. Einführung komplexer eiger 2.. Komplexe Spannung, komplexer Strom ur Vereinfachung der mathematischen Behandlung

Mehr

1. Wie groß ist der Strom, der durch den Verbraucher fließt (Betrag und Phase), wenn die Generatorspannung als Bezugszeiger gewählt wird?

1. Wie groß ist der Strom, der durch den Verbraucher fließt (Betrag und Phase), wenn die Generatorspannung als Bezugszeiger gewählt wird? Übung 10 Ein Generator (R i = 0, Klemmenspannung 230 V, f = 50 Hz) ist mit einem Verbraucher mit dem Leistungsfaktor cos ϕ = 0, 8 (induktiv) zusammengeschaltet. Der Verbraucher nimmt dabei die Wirkleistung

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Grundschaltungen im Wechselstromkreis

Grundschaltungen im Wechselstromkreis 0.03.009 Grundschaltunen im Wechselstromkreis 1. eihenschaltun von Wirkwiderstand und idealer nduktivität. eihenschaltun von Wirkwiderstand und idealer Kapazität 3. Parallelschaltun von Wirkwiderstand

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Elektrotechnik II Wechselstrom Magnetisches Feld

Elektrotechnik II Wechselstrom Magnetisches Feld Elektrotechnik II Wechselstrom Magnetisches Feld Studium Plus // WI-ET SS 2016 Prof. Dr. Sergej Kovalev 1 Ziele 1. Wechselstrom: 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in

Mehr

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87 a) Strom nach Betrag und Phase: Der Betrag des Stroms wird aus der Wirkleistung bestimmt: P = U cos ϕ = P U cos ϕ = 3,52 kw 220 V 0,8 = 20 A Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos

Mehr

Repetitionen. Widerstand, Drosseln und Kondensatoren

Repetitionen. Widerstand, Drosseln und Kondensatoren Kapitel 16.1 epetitionen Widerstand, Drosseln und Kondensatoren Verfasser: Hans-udolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 1 1.702 Serieschaltung

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

6 Netze an Sinusspannung

6 Netze an Sinusspannung Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München 6 Netze an Sinusspannung Aufgabe 6.19 Ein Verstärker-Zweitor wird durch die Leitwert-Parameter Y 11 = 490 µs ; Y 12 = 0,05 µs ; Y 21 =

Mehr

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung Aufgabe 1. Komplexe Impedanz von Zweipolen Bestimmen Sie für die nachfolgenden Schaltungen

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

21. Wechselstrom 22. Elektromagnetische Wellen

21. Wechselstrom 22. Elektromagnetische Wellen 1. Vorlesung EP III Elektrizität und Magnetismus 1. Wechselstrom. Elektromagnetische Wellen Versuche: Steckdose Phase bei RC-, RL- Kreis E07.09, -10 Hörnerblitz (E07.13) Überlandleitung E07.1 Teslatransformator

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Elektrotechnik für Studierende Inhalt. Vorwort...11

Elektrotechnik für Studierende Inhalt. Vorwort...11 5 Inhalt Vorwort...11 1 Signale...13 1.1 Definitionen zu Signalen...13 1.2 Klassifizierung von Signalen...15 1.2.1 Klassifizierung nach dem Signalverlauf...15 1.2.1.1 Determinierte Signale...15 1.2.1.2

Mehr

3. Übungen zum Kapitel Der Wechselstromkreis

3. Übungen zum Kapitel Der Wechselstromkreis n n n n n n n n n n n n n n n n n n n n n n n Fachhochschule Köln University of Applied Sciences ologne ampus Gummersbach 18 Elektrotechnik Prof. Dr. Jürgen Weber Einführung in die Mechanik und Elektrote

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 3 - Übungsblatt 7 Wechselstrom In der Zeichnung ist ein Stromkreis mit reellen (Ohmschen) sowie

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 1. Oktober 2015 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und L

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und

Mehr

Grundlagen der Elektrotechnik für Maschinenbauer

Grundlagen der Elektrotechnik für Maschinenbauer Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 12 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 3. Februar 2005 Klausurdauer : 2 Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

E 4 Spule und Kondensator im Wechselstromkreis

E 4 Spule und Kondensator im Wechselstromkreis E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm

Mehr

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ +DXVDUEHLW $XIJDEH Wie groß muß der Abstand der Platten eines Plattenkondensators sein, wenn seine Kapazität 100pF betragen soll. Gegeben ist der Durchmesser der runden Platten (d = 5 cm) und das Isoliermaterial

Mehr

4.1.0 Widerstand im Wechselstromkreis. Das Verhalten eines Ohmschen Widerstandes ist im Wechselstromkreis identisch mit dem im Gleichstromkreis:

4.1.0 Widerstand im Wechselstromkreis. Das Verhalten eines Ohmschen Widerstandes ist im Wechselstromkreis identisch mit dem im Gleichstromkreis: 4.0 Wechselstrom 4.1.0 Widerstand im Wechselstromkreis 4.2.0 Kondensator im Wechselstromkreis 4.3.0 Spule im Wechselstromkreis 4.4.0 Wirk-, Blind- und Scheinleistung 4.5.0 Der Transformator 4.6.0 Filter

Mehr

3.5. Aufgaben zur Wechselstromtechnik

3.5. Aufgaben zur Wechselstromtechnik 3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn

Mehr

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat?

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat? Aufgabe 1: Widerstand einer Leitung In einem Flugzeug soll eine Leitung aus Kupfer gegen eine gleich lange Leitung aus Aluminium ausgetauscht werden. Die Länge der Kupferleitung beträgt 40 m, der Durchmesser

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Messtechnische Ermittlung der Größen komplexer Bauelemente

Messtechnische Ermittlung der Größen komplexer Bauelemente TFH Berlin Messtechnik Labor Seite 1 von 9 Messtechnische Ermittlung der Größen komplexer Bauelemente Ort: TFH Berlin Datum: 08.12.03 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00 bis 11.30 Uhr Prof. Dr.-Ing.

Mehr

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik)

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik) Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lössungen Serie 3 Komplexe Zahlen in der Elektrotechnik) Dozent: Roger Burkhardt Klasse: Studiengang

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82) 3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild

Mehr

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen:

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: Aufgabe Ü3 Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: R = 1 Ω L1 W1 W4 I 1 R X C = 3 Ω X L = 2 3 Ω L2 W2 I 2 jx L -jx C = 13 V = 13 V e j120 L3 W3 W5 I 3 = 13 V e j120 N 1. Zeichnen

Mehr

2 Komplexe Rechnung in der Elektrotechnik

2 Komplexe Rechnung in der Elektrotechnik Komplexe echnung in der Elektrotechnik. Einleitung Wechselstromnetwerke sind Netwerke, in denen sinusförmige Spannungen oder ströme gleicher Frequen auf ohmsche, induktive und kapaitive Widerstände wirken.

Mehr

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung

3 Ortskurven. 3.1 Einleitung. 3.2 Spannungs-/Widerstandsdiagramme in der Reihenschaltung C. FEPEL 3 Ortskurven 3. Einleitung Durch ein Zeigerbild wird ein bestimmter Betriebszustand eines Wechselstromnetzes bei konstanten Parametern (Amplitude und Frequenz der einspeisenden sinusförmigen Quellspannungen

Mehr

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min Abitur 009 hysik Klausur Hannover, 0403008 arei K Semester Bearbeitungszeit: 90 min Thema: Spule, Kondensator und Ohmscher Widerstand im Wechselstromkreis Aufgabe eite begründet her: Für den Gesamtwiderstand

Mehr

Elektrische Filter und Schwingkreise

Elektrische Filter und Schwingkreise FB ET / IT Elektrische Filter und Schwingkreise Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 003 Erstellt von: G. Schley, B. Drollinger Mat.-Nr.: 90933, 9339 Datum: 3.05.003 G. Schley,

Mehr

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null.

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. WECHSELSTROMLEHRE Wechselgrössen Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. Zeigerdarstellung Mittelwerte (Gleichwert, Gleichrichtwert

Mehr

Grundlagen der Elektrotechnik 2

Grundlagen der Elektrotechnik 2 Grundlagen der Elektrotechnik 2 von Wolf-Ewald Büttner Oldenbourg Verlag München Wien V 1 Einleitung 1 2 Grundbegriffe der Wechselstromtechnik 3 2.1 Kenngrößen periodisch zeitabhängiger Größen 3 2.1.1

Mehr

ELEKTRISCHE ENERGIEVERSORGUNG

ELEKTRISCHE ENERGIEVERSORGUNG JOHN A. HARRISON ELEKTRISCHE ENERGIEVERSORGUNG IM KLARTEXT >>> NEW TECH ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam

Mehr

7. Wechselspannung und Wechselstrom

7. Wechselspannung und Wechselstrom Bisher wurden nur Gleichspannungen und Gleichströme und die zugehörigen Ein- und Ausschaltvorgänge behandelt. In diesem Kapitel werden Spannungen und Ströme eingeführt, die ihre Richtung zyklisch ändern.

Mehr

Aufbau eines Oszillators Theorie und Beispiele

Aufbau eines Oszillators Theorie und Beispiele Aufbau eines Oszillators Theorie und Beispiele Inhaltsverzeichnis 1 Theoretischer Aufbau eines Oszillators 2 Kenngrößen eines Schwingkreises 3.1 Beispiel1: Meissner-Schaltung 3.2 Beispiel2: Wien-Robinson

Mehr

Versuchsprotokoll. Kondensator und Spule im Wechselstromkreis. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 9

Versuchsprotokoll. Kondensator und Spule im Wechselstromkreis. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 9 Montag, 17.11.1997 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 9 Kondensator und Spule im Wechselstromkreis 1 Inhaltsverzeichnis 1 Problemstellung

Mehr

Wechselstrom und Zeigerdiagramme ohne Ballast. von. Wolfgang Bengfort ET-Akademie.de / ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials

Wechselstrom und Zeigerdiagramme ohne Ballast. von. Wolfgang Bengfort ET-Akademie.de / ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Wechselstrom und Zeigerdiagramme ohne Ballast von Wolfgang Bengfort ET-Akademie.de / ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand C eines Kondensators soll mit Hilfe einer spannungsrichtigen Messschaltung (vergleiche Versuch 1) bei verschiedenen

Mehr

3. Grundlagen des Drehstromsystems

3. Grundlagen des Drehstromsystems Themen: Einführung Zeitverläufe Mathematische Beschreibung Drehstromschaltkreise Anwendungen Symmetrische und unsymmetrische Belastung Einführung Drehstrom - Dreiphasenwechselstrom: Wechselstrom und Drehstrom

Mehr

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016

Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II Elektrodynamik) SS 206 Prof. Dr. T. Müller Dr. F. Hartmann 2tes und letztes Übungsblatt - Spulen, Wechselstrom mit komplexen

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~)

WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~) WECHSELSTROM 1. Messung von Wechselspannungen, Blindwiderstand a) Maximalspannung Spannungsmessgerät (~) Miss 3 unterschiedliche Spannungen der Wechselspannungsquelle (

Mehr

Leistungsberechnung Bei einem Laborversuch werden folgende Werte gemessen:

Leistungsberechnung Bei einem Laborversuch werden folgende Werte gemessen: 1 25 26 Leistungsberechnung Bei einem Laborversuch werden folgende Werte gemessen: U = 226V, I = 7, 5 A, cos ϕ = 0, 63. Wie gross ist a) die Scheinleistung, b) die Wirkleistung, c) die Blindleistung? d)

Mehr

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i

1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i Leistungsanpassung Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6 ) gegeben. Welchen Wert muss die Innenimpedanz Z i der Quelle annehmen, dass an Z L a) die maximale Wirkleistung b) die maximale

Mehr

Hochschule Bremerhaven

Hochschule Bremerhaven Hochschule Bremerhaven NSTTUT FÜ AUTOMATSEUNGS- UND EEKTOTEHNK Name: Matr Nr: ProfDr-ngKaiMüller Übungsklausur ETT2 / PT/VAT/SBT SS04 Bearbeitungszeit 20 Minuten --- Unterlagen gestattet --- Note: 2 3

Mehr

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte

Aufgabe Summe Note Mögliche Punkte Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 7. April 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung DIN

Mehr

Versuch 14: Wechselstromwiderstände

Versuch 14: Wechselstromwiderstände Versuch 14: Wechselstromwiderstände Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grundlagen................................... 3 2.2 Bauteile..................................... 3 2.3 Stromkreise...................................

Mehr

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 06.09.2010 Grundlagen der Elektrotechnik II (M, EUT, LUM) Seite 1 von 5 Aufgabe 1 (4 Punkte) Name: Mit Matr.-Nr.: Lösung r = 30 cm d = 1 mm Q = 7,88 10-6 As ε 0 = 8,85 10-12 As/Vm ε r = 5 Der dargestellte

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GRUNDLAGEN DER ELEKTROTECHNIK Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand X C eines Kondensators

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

Inhalt. 2.2.9 Leistungsanpassung...63 2.2.10 Die Ersatzspannungsquelle...65

Inhalt. 2.2.9 Leistungsanpassung...63 2.2.10 Die Ersatzspannungsquelle...65 1 Physikalische Größen, Einheiten, Gleichungen...1 1.1 Physikalische Größen...1 1.2 Das internationale Einheitensystem...1 1.3 Gleichungen...5 2 Gleichstromkreise...6 2.1 Grundbegriffe der elektrischen

Mehr

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag

rtllh Grundlagen der Elektrotechnik Gert Hagmann AULA-Verlag Gert Hagmann Grundlagen der Elektrotechnik Das bewährte Lehrbuch für Studierende der Elektrotechnik und anderer technischer Studiengänge ab 1. Semester Mit 225 Abbildungen, 4 Tabellen, Aufgaben und Lösungen

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Themengebiet E: Komplexe Zahlen Aufgabe 1: echnen mit komplexen Zahlen Stellen Sie die folgenden komplexen Zahlen in der arithmetischen Form (z = x + jy und der exponentiellen

Mehr

Übungen zur Komplexen Rechnung in der Elektrotechnik

Übungen zur Komplexen Rechnung in der Elektrotechnik Übungen zur Komplexen Rechnung in der Elektrotechnik Aufgabe 1 Gegeben ist nebenstehende Schaltung. Berechnen Sie den Komplexen Ersatzwiderstand Z der Schaltung sowie seinen Betrag Z und den Phasenverschiebungswinkel

Mehr

Antwort hier eintragen R 2 = 10 Ω

Antwort hier eintragen R 2 = 10 Ω Klausur 22.02.2011 Grundlagen der Elektrotechnik I (MB, SB, EUT, LUM, VT, BVT) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Mit Lösung Aufgabe 1 (8 Punkte) Gegeben ist folgendes Netzwerk Gegeben: 1 = 25

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Die folgenden Bilder zeigen den grundsätzlichen Aufbau eines Transformators mit Eisenkern und verschiedene gebräuchliche Kernformen.

Die folgenden Bilder zeigen den grundsätzlichen Aufbau eines Transformators mit Eisenkern und verschiedene gebräuchliche Kernformen. HS EL / Fachb. Technik / Studiengang Medientechnik Seite 6-1 6.) Übertrager 6.1) Bauweisen von Übertragern Die folgenden Bilder zeigen den grundsätzlichen Aufbau eines Transformators mit Eisenkern und

Mehr

Elektrotechnik 3. Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe. Studium Plus // WI-ET. SS 2016 Prof. Dr.

Elektrotechnik 3. Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe. Studium Plus // WI-ET. SS 2016 Prof. Dr. Elektrotechnik 3 Drehstrom Industrielle Stromversorgung Elektrische Maschinen / Antriebe Studium Plus // WI-ET SS 06 Prof. Dr. Sergej Kovalev Drehstromsystems Themen: Einführung Zeitverläufe Mathematische

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Elektrotechnik für Studium und Praxis: Lösungen Lösungen zu Kapitel Aufgabe.1 Aus der Maschengleichung ergibt sich: I 4 = U q1 + U q R 1 I 1 R I R I R 4 I 4 = 4 V + 1 V Ω 5 A Ω, A 5 Ω 4 A Ω I 4 = (4 +

Mehr

19 Idealer Wirkwiderstand im Wechselstromkreis

19 Idealer Wirkwiderstand im Wechselstromkreis 36 9 Idealer Wirkwiderstand im Wechselstromkreis Der ideale Widerstand besitzt einen konstanten Widerstandswert. Die Wirkungen seines magnetischen und elektrischen Feldes sind null. Zugeführte Energie

Mehr

Komplexe Zahlen in der Elektrotechnik. ohne Ballast. von. Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials

Komplexe Zahlen in der Elektrotechnik. ohne Ballast. von. Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Komplexe Zahlen in der Elektrotechnik ohne Ballast von Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses Buch darf ohne

Mehr

RLC-Schaltungen Kompensation

RLC-Schaltungen Kompensation EST ELEKTRISCHE SYSTEMTECHNIK Kapitel 16 RLC-Schaltungen Kompensation Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 Ich bin das

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Spule an Wechselspannung

Spule an Wechselspannung 1 1.2 Spule an Wechselspannung Wie gross ist der Strom (in ma ), der in einer Spule von 1,56kΩ Impedanz fliesst? 21,2V Spannung und 13,5mA 2 1.3 Reale Spule an Wechselspannung Die Spannungsspule eines

Mehr

LW7. Wechselstrom Version vom 16. November 2015

LW7. Wechselstrom Version vom 16. November 2015 Wechselstrom Version vom 16. November 2015 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Wechselspannung und Wechselstrom.................

Mehr

Übungsaufgaben Elektrotechnik

Übungsaufgaben Elektrotechnik Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

Elektrotechnikprotokoll. 1 Versuch Nr.: 10 Kondensator und Spule Moser Guido im Wechselstromkreis Fulda, den

Elektrotechnikprotokoll. 1 Versuch Nr.: 10 Kondensator und Spule Moser Guido im Wechselstromkreis Fulda, den Moser Guido im Wechselstromkreis ulda, den 9.03.00 Verwendet Meßgeräte und Bauteile Gerät Typ / Hersteller nventarnummer Digitalmultimeter M360D Voltcraft Digitalmultimeter V00 Analogmultimeter Metravo

Mehr

Lösungen zum 6. Übungsblatt

Lösungen zum 6. Übungsblatt Lösungen zum 6. Übungsblatt vom 18.05.2016 6.1 Widerstandsschaltung (6 Punkte) Aus vier Widerständen R 1 = 20 Ω, R 2 = 0 Ω und R = R 4 wird die Schaltung aus Abbildung 1 aufgebaut. An die Schaltung wird

Mehr

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz.

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz. E a Phasenbeziehungen und RC-Filter Toshiki Ishii (Matrikel 3266690) 7.06.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Ermitteln des Phasenverlaufes zwischen Strom und Spannung mithilfe

Mehr

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66 INHALTSVERZEICHNIS 8. Einfiig in die Wecbselspainnungstechnik... 13 8.1. Beziehungen zur Gleichspannungstechnik... 13 8.2. Definition der Wechselspannung... 14 8.3. Arten der Wechselspannung... 15 8.3.1.

Mehr

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011 Aufgabe 1: Berechnen Sie die Resonanzfrequenz des gegebenen Parallelschwingkreises! Lösen Sie die Aufgabe über den komplexen Leitwert! 5 2,5 10 100 Reihenschaltungszweig Parallelschaltung sämtlicher Bauteile

Mehr

Klausur "Elektrotechnik" am 11.02.2000

Klausur Elektrotechnik am 11.02.2000 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 11.02.2000 Aufg. P max 0 2 1 10 2 9 3 10 4 9 5 16 6 10 Σ 66 N P Zugelassene

Mehr

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen, Wechselstromwiderstände. 4.2 Vorversuche zu Kalibration der Messgeräte

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen, Wechselstromwiderstände. 4.2 Vorversuche zu Kalibration der Messgeräte 6 Kapitel 4 Elektrizitätslehre 4. Grundlagen, Definitionen, Wechselstromwiderstände 4.2 Vorversuche zu Kalibration der Messgeräte 4.3 Versuche zu Wechselstromschwingkreisen 4.3. CR-Serienschwingkreis 4.3.2

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Name: Versuch E7a - Wechselstromwiderstände Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung Bestimmen Sie die Impedanz

Mehr

Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte

Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte 30 38 Transformator Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte Die elektrotechnischen Grundlagen des Transformators (Selbstinduktion, Gegeninduktion) sind in Kapitel 8 dargestellt. Die Wirkungsweise

Mehr

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,

Mehr

Stromortskurve Asynchronmaschine

Stromortskurve Asynchronmaschine Stromortskurve der Asynchronmaschine Prof. Dr.-Ing. Carsten Fräger Folie 1 von 61 Prof. Dr.-Ing. Stromortskurve Asynchronmaschine Stromortskurve der Drehstrom-Asynchronmaschine mit kurzgeschlossenem Rotor

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Grundpraktikum Wechselstromwiderstände 1/7 Übungsdatum: 15.05.001 Abgabetermin:.05.001 Grundpraktikum Wechselstromwiderstände Gabath Gerhild Matr. Nr. 98054 Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum

Mehr