Überbestimmte Gleichungssysteme, Regression

Größe: px
Ab Seite anzeigen:

Download "Überbestimmte Gleichungssysteme, Regression"

Transkript

1 Überbestimmte Gleichungssysteme, Regression 8. Vorlesung Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19

2 Gliederung 1 Überbestimmte Systeme Nachtrag und Wiederholung: Punkte aus der 7. Vorlesung Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse Pseudoinverse C. Brand, E. Hausenblas 8. Vorlesung 2 / 19

3 Gliederung 1 Überbestimmte Systeme Nachtrag und Wiederholung: Punkte aus der 7. Vorlesung Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse Pseudoinverse C. Brand, E. Hausenblas 8. Vorlesung 3 / 19

4 Geometrische Interpretation von Ax = b Zwei Möglichkeiten Im Raum der x-vektoren Jede Zeile der Matrix ist ein Normalvektor in einer Geradengleichung für x R 2,... Ebenengleichung für x R 3,... Lösung x ist Schnittpunkt aller Geraden (Ebenen, Hyperebenen...) Im Raum der b-vektoren Jede Spalte der Matrix A ist ein Vektor. Das Produkt Ax ist eine Linearkombination der Spaltenvektoren. Lösung x gibt genau die Koeffizienten an, mit denen sich b als Linearkombination der Spaltenvektoren von A erreichen lässt.

5 Geometrische Interpretation von Ax = b Zwei Möglichkeiten Im Raum der x-vektoren Jede Zeile der Matrix ist ein Normalvektor in einer Geradengleichung für x R 2,... Ebenengleichung für x R 3,... Lösung x ist Schnittpunkt aller Geraden (Ebenen, Hyperebenen...) Im Raum der b-vektoren Jede Spalte der Matrix A ist ein Vektor. Das Produkt Ax ist eine Linearkombination der Spaltenvektoren. Lösung x gibt genau die Koeffizienten an, mit denen sich b als Linearkombination der Spaltenvektoren von A erreichen lässt.

6 Geometrische Interpretation von Ax = b Zwei Möglichkeiten Im Raum der x-vektoren Jede Zeile der Matrix ist ein Normalvektor in einer Geradengleichung für x R 2,... Ebenengleichung für x R 3,... Lösung x ist Schnittpunkt aller Geraden (Ebenen, Hyperebenen...) Im Raum der b-vektoren Jede Spalte der Matrix A ist ein Vektor. Das Produkt Ax ist eine Linearkombination der Spaltenvektoren. Lösung x gibt genau die Koeffizienten an, mit denen sich b als Linearkombination der Spaltenvektoren von A erreichen lässt.

7 Interpretation im x-raum Ausgangsraum der Abbildung x Ax = b drei Messungen: m 1 = 1 m 2 = 2 m 1 + m 2 = 4 Der Raum der x-vektoren [ ] m1 x = m 2 m ist hier R 2 (weil die Matrix zwei Spalten hat). 1 Den drei Zeilen von A entsprechen drei Geraden-Gleichungen m 1

8 Interpretation im b-raum Zielraum der Abbildung x Ax = b Der Ausdruck Ax ist hier die Linearkombination zweier Spaltenvektoren: 1 0 m m Der Punkt (1; 2; 4) lässt sich nicht als Linearkombination erreichen. Erreichbar sind nur Punkte in der von den Spaltenvektoren aufgespannten Ebene. Eingezeichnet sind der Punkt und die bestmöglich erreichbare Annäherung

9 Orthogonalitätsbedingung im Zielraum Der Punkt b liegt nicht auf der von den Spaltenvektoren aufgespannten Ebene. Der Residuenvektor r = b A x hat minimale Länge, wenn er auf die Ebene normal steht. Die Orthogonalitätsbedingung ist erfüllt, wenn r auf die beiden Spaltenvektoren von A normal steht: A T r = o. A T r = A T (b A x) = o Normalengleichungen!

10 Illustration: Farbmischung Farbtöne entsprechen RGB-Vektoren Additive Farbmischung Linerakombination von Farbvektoren Wie gut lässt sich der Farbton SlateGray (RGB ) aus Turquoise (RGB ) und DeepPink (RGB ) zusammenmischen? x x 2 = Bestmögliche Mischfarbe Die Linearkombination mit x 1 = 0,520 x 2 = 0,294 ergibt die bestmögliche Mischfarbe (RGB ) - keine andere kommt näher an RGB heran.

11 Illustration: Farbmischung Farbtöne entsprechen RGB-Vektoren Additive Farbmischung Linerakombination von Farbvektoren Wie gut lässt sich der Farbton SlateGray (RGB ) aus Turquoise (RGB ) und DeepPink (RGB ) zusammenmischen? , ,294 = Bestmögliche Mischfarbe Die Linearkombination mit x 1 = 0,520 x 2 = 0,294 ergibt die bestmögliche Mischfarbe (RGB ) - keine andere kommt näher an RGB heran.

12 Illustration: Farbmischung Farbtöne entsprechen RGB-Vektoren Additive Farbmischung Linerakombination von Farbvektoren Wie gut lässt sich der Farbton SlateGray (RGB ) aus Turquoise (RGB ) und DeepPink (RGB ) zusammenmischen? , ,294 = Bestmögliche Mischfarbe Die Linearkombination mit x 1 = 0,520 x 2 = 0,294 ergibt die bestmögliche Mischfarbe (RGB ) - keine andere kommt näher an RGB heran.

13 Überbestimmte nichtlineare Systeme Beispiel: Standortbestimmung durch Trilateration Die Abstände von drei festen Punkten A, B, C zu einem unbekannten Punkt X sind (etwas ungenau) bekannt. Gesucht ist eine möglichst gute Positionsbestimmung. (x1 1) 2 +(x 2 1) 2 = 6 (x1 8) 2 +(x 2 4) 2 = C d c =4.2 d b =3.6 (x1 5) 2 +(x 2 8) 2 = d a =6 4 X B 2 Den drei Gleichungen entsprechen drei Kreise im R 2. Sie haben keinen gemeinsamen Schnittpunkt. 1 A

14 Überbestimmte nichtlineare Systeme Lösung durch Linearisierung und Iteration f(x) = b, x R n, f(x),b R m, m > n Ausgehend von einem Startvektor x (0) bestimmt man eine Korrektur x. Die Rechenvorschrift des Newton-Verfahrens für f(x) b = o ergibt ein überbestimmtes lineares System mit der Jacobimatrix D f D f x = b f(x) Verbesserte Lösung x (1) = x (0) + x. Für die Konvergenz der Iteration kann Unterrelaxation (Dämpfung) notwendig sein: x (n+1) = x (n) +ω x mit Unterrelaxationsfaktor 0 < ω 1.

15 Überbestimmte nichtlineare Systeme Lösung durch Linearisierung und Iteration f(x) = b, x R n, f(x),b R m, m > n Ausgehend von einem Startvektor x (0) bestimmt man eine Korrektur x. Die Rechenvorschrift des Newton-Verfahrens für f(x) b = o ergibt ein überbestimmtes lineares System mit der Jacobimatrix D f D f x = b f(x) Verbesserte Lösung x (1) = x (0) + x. Für die Konvergenz der Iteration kann Unterrelaxation (Dämpfung) notwendig sein: x (n+1) = x (n) +ω x mit Unterrelaxationsfaktor 0 < ω 1.

16 Rechenbeispiel von vorhin f 1 (x1 1) 2 +(x 2 1) 2 f(x) = f 2 = (x1 8) 2 +(x 2 4) 2, D f = f 3 (x1 5) 2 +(x 2 8) 2 [ 5 Mit Startvektor x = erhält man 4] x 1 1 f 1 x 1 8 f 2 x 1 5 f 3 x 2 1 f 1 x 2 4 f 2 x 2 8 f 3 ([ 5 f = 4]) 5 3, D f = , lin. System ] [ x1 = x /5 1/5 Ergibt x 1 = 1/25, x 2 = 7/25 verbesserte Position [5.04; 4.28].

17 Gliederung 1 Überbestimmte Systeme Nachtrag und Wiederholung: Punkte aus der 7. Vorlesung Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse Pseudoinverse C. Brand, E. Hausenblas 8. Vorlesung 12 / 19

18 Abbildung und inverse Abbildung Eine Matrix definiert durch y = A x eine lineare Abbildung. Die Matrix ist dazu gedacht, dass sie aus einem Vektor einen anderen macht. Die inverse Matrix macht diese Abbildung rückgängig: x = A 1 y Was eine Matrix tut, macht die Inverse wieder gut. Aber das ist nicht immer möglich: Eine lineare Abbildung auf den Nullvektor lässt sich nicht umkehren. Doch wenn ein Vektor ganz verschwindet, gibt s keine Matrix, die ihn wiederfindet. Die pseudoinverse Matrix macht rückgängig, so gut es eben geht.

19 Abbildung und inverse Abbildung Eine Matrix definiert durch y = A x eine lineare Abbildung. Die Matrix ist dazu gedacht, dass sie aus einem Vektor einen anderen macht. Die inverse Matrix macht diese Abbildung rückgängig: x = A 1 y Was eine Matrix tut, macht die Inverse wieder gut. Aber das ist nicht immer möglich: Eine lineare Abbildung auf den Nullvektor lässt sich nicht umkehren. Doch wenn ein Vektor ganz verschwindet, gibt s keine Matrix, die ihn wiederfindet. Die pseudoinverse Matrix macht rückgängig, so gut es eben geht.

20 Abbildung und inverse Abbildung Eine Matrix definiert durch y = A x eine lineare Abbildung. Die Matrix ist dazu gedacht, dass sie aus einem Vektor einen anderen macht. Die inverse Matrix macht diese Abbildung rückgängig: x = A 1 y Was eine Matrix tut, macht die Inverse wieder gut. Aber das ist nicht immer möglich: Eine lineare Abbildung auf den Nullvektor lässt sich nicht umkehren. Doch wenn ein Vektor ganz verschwindet, gibt s keine Matrix, die ihn wiederfindet. Die pseudoinverse Matrix macht rückgängig, so gut es eben geht.

21 Abbildung und inverse Abbildung Eine Matrix definiert durch y = A x eine lineare Abbildung. Die Matrix ist dazu gedacht, dass sie aus einem Vektor einen anderen macht. Die inverse Matrix macht diese Abbildung rückgängig: x = A 1 y Was eine Matrix tut, macht die Inverse wieder gut. Aber das ist nicht immer möglich: Eine lineare Abbildung auf den Nullvektor lässt sich nicht umkehren. Doch wenn ein Vektor ganz verschwindet, gibt s keine Matrix, die ihn wiederfindet. Die pseudoinverse Matrix macht rückgängig, so gut es eben geht.

22 Pseudoinverse tritt auch bei überbestimmten Systemen auf Für überbestimmte Systeme Ax = b lässt sich die kleinste-quadrate-lösung aus den Normalengleichungen bestimmen A T Ax = A T b (A T A) 1 x = (A T A) 1 A T b Substituiere (A T A) 1 A T A + x = A + b (abgesehen von numerischen Problemen und dem Sonderfall, dass A nicht vollen Spaltenrang hat) Die Matrix A + wirkt also ähnlich wie eine Inverse bei der Lösung eines gewöhnlichen Gleichungssystems mit nichtsingulärer quadratischer Matrix. C. Brand, E. Hausenblas 8. Vorlesung 14 / 19

23 Pseudoinverse tritt auch bei überbestimmten Systemen auf Für überbestimmte Systeme Ax = b lässt sich die kleinste-quadrate-lösung aus den Normalengleichungen bestimmen A T Ax = A T b (A T A) 1 x = (A T A) 1 A T b Substituiere (A T A) 1 A T A + x = A + b (abgesehen von numerischen Problemen und dem Sonderfall, dass A nicht vollen Spaltenrang hat) Die Matrix A + wirkt also ähnlich wie eine Inverse bei der Lösung eines gewöhnlichen Gleichungssystems mit nichtsingulärer quadratischer Matrix. C. Brand, E. Hausenblas 8. Vorlesung 14 / 19

24 Pseudoinverse tritt auch bei überbestimmten Systemen auf Für überbestimmte Systeme Ax = b lässt sich die kleinste-quadrate-lösung aus den Normalengleichungen bestimmen A T Ax = A T b (A T A) 1 x = (A T A) 1 A T b Substituiere (A T A) 1 A T A + x = A + b (abgesehen von numerischen Problemen und dem Sonderfall, dass A nicht vollen Spaltenrang hat) Die Matrix A + wirkt also ähnlich wie eine Inverse bei der Lösung eines gewöhnlichen Gleichungssystems mit nichtsingulärer quadratischer Matrix. C. Brand, E. Hausenblas 8. Vorlesung 14 / 19

25 Pseudoinverse Die Definition A + = (A T A) 1 A T ist nicht immer gültig Problem Die Definition A + = (A T A) 1 A T ist nicht möglich, wenn (A T A) singulär ist. Trotzdem lässt sich eine Matrix A + angeben, die eine optimale Lösung des überbestimmten Systems findet. Existenz und Eigenschaften der Pseudoinversen Zu jeder reellen m n-matrix A gibt es eine eindeutig bestimmte reelle n m-matrix A +, die Moore-Penrose Inverse, mit den Eigenschaften A A + A = A (A A + ) T = A A + A + A A + = A + (A + A) T = A + A Falls A + = (A T A) 1 A T existiert, erfüllt diese Matrix alle vier Bedingungen. C. Brand, E. Hausenblas 8. Vorlesung 15 / 19

26 Pseudoinverse Die Definition A + = (A T A) 1 A T ist nicht immer gültig Problem Die Definition A + = (A T A) 1 A T ist nicht möglich, wenn (A T A) singulär ist. Trotzdem lässt sich eine Matrix A + angeben, die eine optimale Lösung des überbestimmten Systems findet. Existenz und Eigenschaften der Pseudoinversen Zu jeder reellen m n-matrix A gibt es eine eindeutig bestimmte reelle n m-matrix A +, die Moore-Penrose Inverse, mit den Eigenschaften A A + A = A (A A + ) T = A A + A + A A + = A + (A + A) T = A + A Falls A + = (A T A) 1 A T existiert, erfüllt diese Matrix alle vier Bedingungen. C. Brand, E. Hausenblas 8. Vorlesung 15 / 19

27 Inverse und Pseudoinverse von Diagonalmatrizen Für quadratische Diagonalmatrizen ist die Definition recht einfach... Diagonalmatrix (falls alle s i 0) 1 s s s S =.... S 1 0 s = s 1 n 0 0 s n Pseudoinverse einer Diagonalmatrix r S + 0 r 2 0 { 1 =.... mit r i = s i r n falls { si 0 s i = 0 C. Brand, E. Hausenblas 8. Vorlesung 16 / 19

28 Inverse und Pseudoinverse von Diagonalmatrizen Für quadratische Diagonalmatrizen ist die Definition recht einfach... Diagonalmatrix (falls alle s i 0) 1 s s s S =.... S 1 0 s = s 1 n 0 0 s n Pseudoinverse einer Diagonalmatrix r S + 0 r 2 0 { 1 =.... mit r i = s i r n falls { si 0 s i = 0 C. Brand, E. Hausenblas 8. Vorlesung 16 / 19

29 Inverse und Pseudoinverse von Diagonalmatrizen Für rechteckige Matrizen Ist S R m R n, dann ist S + R n R m Definition der r i und s i bleibt gleich wie vorhin, es gibt nur zusätzliche Nullzeilen oder -spalten. s s r S = 0 0 s n S + = 0 r r n C. Brand, E. Hausenblas 8. Vorlesung 17 / 19

30 Singulärwert-Zerlegung Singular Value Decomposition, SVD Eine beliebige reelle n m Matrix lässt sich in ein Produkt der Form A = U S V T mit einer orthogonalen n n Matrix U, einer n m-diagonalmatrix S und einer orthogonalen m m Matrix V zerlegen. Die Diagonalwerte von S heißen die Singulärwerte von A. MATLAB: [U S V]=svd(A) Anwendungen Rang einer numerischen Matrix, Pseudoinverse, Über- und unterbestimmte Systeme,...

31 SVD löst Gleichungssysteme egal, ob lösbar oder nicht, ob über- oder unterbestimmt! Ax = b U S V T x = b U T S (V T x) = U T b S y = U T b subst. y = V T x Am transformierten System S y = U T b ist wegen der Diagonalgestalt die Lösung für y direkt ablesbar. Auch der Typ der Lösung (ein-, mehrdeutig, kleinste Quadrate) ist ersichtlich. Die Lösung für x erhält man aus der Substitutionsgleichung V T x = y x = V y V Grundlegend für das Verfahren ist, dass die Multiplikationen mit U T bzw. V die 2-Norm des Fehlervektors bzw. des Lösungsvektors unverändert lassen!

Überbestimmte Systeme, Approximation

Überbestimmte Systeme, Approximation Überbestimmte Systeme, Approximation 7. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. April 2014 Gliederung 1 Überbestimmte Systeme Wiederholung:

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Matrixzerlegungen. Überbestimmte Systeme

Matrixzerlegungen. Überbestimmte Systeme Matrixzerlegungen. Überbestimmte Systeme 6. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. März 2014 Gliederung 1 Matrixzerlegungen Links-Rechts-Zerlegung

Mehr

Mathematik in den technischen Wissenschaften

Mathematik in den technischen Wissenschaften Mathematik in den technischen Wissenschaften eine Themen-Auswahl Clemens Brand Montanuniversität Leoben AG-Tagung AHS Mathematik St. Pölten, 19. März 2014 Gliederung 1 Numerische Lineare Algebra Überbestimmte

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

Lineares Gleichungssystem - Vertiefung

Lineares Gleichungssystem - Vertiefung Lineares Gleichungssystem - Vertiefung Die Lösung Linearer Gleichungssysteme ist das "Gauß'sche Eliminationsverfahren" gut geeignet - schon erklärt unter Z02. Alternativ kann mit einem Matrixformalismus

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! 0 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe und Grundlagen Objekttransformationen Objektrepräsentation und -Modellierung Sichttransformationen

Mehr

Zusammenfassung und Beispiellösungen. zur Linearen Algebra

Zusammenfassung und Beispiellösungen. zur Linearen Algebra Zusammenfassung und Beispiellösungen zur Linearen Algebra Inhaltsverzeichnis TI Taschenrechner Funktionen für Matrizen... n*m Matrix... Diagonal und Dreiecksmatrix... Transponierte der Matrix A (AT)...

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012 Lernbuch Lineare Algebra und Analytische Geometrie, 2 Auflage 22 Korrekturen 8 statt y M lies y N 2 statt m + n = m +(n )=m +(n ) lies m + n = m +(n ) 2 statt #P(M) lies #P (M) 4 7 statt Beispiel c) lies

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 =

Mathematik 2 für ET. Vektoren in R n und C n. Addition von Vektoren Multiplikation von Vektor und Skalar. Der Nullvektor 0 = Mathematik 2 für ET # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit Das Lernen mit Lernkarten funktioniert

Mehr

Mathematik 2 für ET # 0 by Clifford Wolf. Mathematik 2 für ET

Mathematik 2 für ET # 0 by Clifford Wolf. Mathematik 2 für ET Mathematik 2 für ET # 0 by Clifford Wolf Mathematik 2 für ET # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen

Mehr

9. Vorlesung Lineare Algebra, SVD und LSI

9. Vorlesung Lineare Algebra, SVD und LSI 9. Vorlesung Lineare Algebra, SVD und LSI Grundlagen lineare Algebra Vektornorm, Matrixnorm Eigenvektoren und Werte Lineare Unabhängigkeit, Orthogonale Matrizen SVD, Singulärwerte und Matrixzerlegung LSI:Latent

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation;

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation; Kapitel 1 Matrizen und lineare Gleichungssysteme 11 Matrizenkalkül (Vektorraum M(n,m; Matrixmultiplikation; Transposition; Spalten- und Zeilenvektoren Matrizen sind im Prinzip schon bei der schematischen

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem

Mehr

Gleichungssysteme. 3. Vorlesung Numerische Methoden I. Clemens Brand und Erika Hausenblas. 10. März Montanuniversität Leoben

Gleichungssysteme. 3. Vorlesung Numerische Methoden I. Clemens Brand und Erika Hausenblas. 10. März Montanuniversität Leoben Gleichungssysteme 3. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 10. März 2016 Gleichungssysteme 1 Wiederholung: Vektoren, vektorwertige Funktionen

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren 8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1 Vortrag: Lineare Gleichungen am 11. März 2009 von Maximilian Wahner Technische Universität Dortmund Fakultät für Mathematik Proseminar Lineare

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Mathematik 1, Teil B. Inhalt:

Mathematik 1, Teil B. Inhalt: FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Lineare Algebra Zusammenfassung

Lineare Algebra Zusammenfassung Lineare Algebra Zusammenfassung Andreas Biri, D-ITET 2013 31.07.13 Lineares Gleichungssystem Gauss- Zerlegung Lösungsmenge: Menge aller Lösungen eines linearen Gleichungssystems (GS) Äquivalentes GS: 1)

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr