Überbestimmte Systeme, Approximation

Größe: px
Ab Seite anzeigen:

Download "Überbestimmte Systeme, Approximation"

Transkript

1 Überbestimmte Systeme, Approximation 7. Vorlesung Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. April 2014

2 Gliederung 1 Überbestimmte Systeme Wiederholung: Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse 3 Polynomiale Regression Aufgabenstellung Lösungsverfahren Lineare Regression (klassisch, robust, total) Warnung vor zu hohem Grad

3 Gliederung 1 Überbestimmte Systeme Wiederholung: Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse 3 Polynomiale Regression Aufgabenstellung Lösungsverfahren Lineare Regression (klassisch, robust, total) Warnung vor zu hohem Grad C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

4 Geometrische Interpretation von Ax = b Zwei Möglichkeiten Im Raum der x-vektoren Jede Zeile der Matrix ist ein Normalvektor in einer Geradengleichung für x R 2,... Ebenengleichung für x R 3,... Lösung x ist Schnittpunkt aller Geraden (Ebenen, Hyperebenen...) Im Raum der b-vektoren Jede Spalte der Matrix A ist ein Vektor. Das Produkt Ax ist eine Linearkombination der Spaltenvektoren. Lösung x gibt genau die Koeffizienten an, mit denen sich b als Linearkombination der Spaltenvektoren von A erreichen lässt.

5 Geometrische Interpretation von Ax = b Zwei Möglichkeiten Im Raum der x-vektoren Jede Zeile der Matrix ist ein Normalvektor in einer Geradengleichung für x R 2,... Ebenengleichung für x R 3,... Lösung x ist Schnittpunkt aller Geraden (Ebenen, Hyperebenen...) Im Raum der b-vektoren Jede Spalte der Matrix A ist ein Vektor. Das Produkt Ax ist eine Linearkombination der Spaltenvektoren. Lösung x gibt genau die Koeffizienten an, mit denen sich b als Linearkombination der Spaltenvektoren von A erreichen lässt.

6 Geometrische Interpretation von Ax = b Zwei Möglichkeiten Im Raum der x-vektoren Jede Zeile der Matrix ist ein Normalvektor in einer Geradengleichung für x R 2,... Ebenengleichung für x R 3,... Lösung x ist Schnittpunkt aller Geraden (Ebenen, Hyperebenen...) Im Raum der b-vektoren Jede Spalte der Matrix A ist ein Vektor. Das Produkt Ax ist eine Linearkombination der Spaltenvektoren. Lösung x gibt genau die Koeffizienten an, mit denen sich b als Linearkombination der Spaltenvektoren von A erreichen lässt.

7 Illustration: Farbmischung Farbtöne entsprechen RGB-Vektoren Additive Farbmischung Linerakombination von Farbvektoren Wie gut lässt sich der Farbton SlateGray (RGB ) aus Turquoise (RGB ) und DeepPink (RGB ) zusammenmischen? x x 2 = Bestmögliche Mischfarbe Die Linearkombination mit x 1 = 0,520 x 2 = 0,294 ergibt die bestmögliche Mischfarbe (RGB ) - keine andere kommt näher an RGB heran.

8 Illustration: Farbmischung Farbtöne entsprechen RGB-Vektoren Additive Farbmischung Linerakombination von Farbvektoren Wie gut lässt sich der Farbton SlateGray (RGB ) aus Turquoise (RGB ) und DeepPink (RGB ) zusammenmischen? , ,294 = Bestmögliche Mischfarbe Die Linearkombination mit x 1 = 0,520 x 2 = 0,294 ergibt die bestmögliche Mischfarbe (RGB ) - keine andere kommt näher an RGB heran.

9 Illustration: Farbmischung Farbtöne entsprechen RGB-Vektoren Additive Farbmischung Linerakombination von Farbvektoren Wie gut lässt sich der Farbton SlateGray (RGB ) aus Turquoise (RGB ) und DeepPink (RGB ) zusammenmischen? , ,294 = Bestmögliche Mischfarbe Die Linearkombination mit x 1 = 0,520 x 2 = 0,294 ergibt die bestmögliche Mischfarbe (RGB ) - keine andere kommt näher an RGB heran.

10 Rechenweg über Normalengleichungen Die Standard-Lehrbuch-Lösung Gleichungssystem A x = b [ x1 x 2 ] 112 = Zeilen- und Spaltenvektoren von A sind nur der Deutlichkeit halber farblich hinterlegt; die Farben haben sonst keine tiefere Bedeutung Multipliziere Matrix und rechte Seite mit der transponierten Matrix A T A = A T b = [ [ ] ] = 144 = [ ] [ ]

11 Rechenweg über Normalengleichungen (Forts.) System der Normalengleichungen [ ] (A T A) x = A T b [ x1 x 2 ] = [ ] Matrix A T A ist symmetrisch Größenordnung der Zahlenwerte in A T A ist Quadrat der Zahlenwerte in der Originalmatrix Konditionszahl der Normalengleichungen ist Quadrat der Original-Konditionszahl. Das vergrößert Rundungsfehler!

12 Rechenweg mit QR-Zerlegung, anschaulich Original-System in Spaltenvektor-Schreibung x x 2 = System in gedrehten Koordinaten Die Matrix Q T aus der QR-Zerlegung dreht alle Vektoren in ein einfacheres Koordinatensystem. Die Matrix R enthält die gedrehten Spalten von A x x 2 =

13 Singulärwert-Zerlegung, anschaulich System in gedrehten Koordinaten Die Matrix U T aus der Singulärwert-Zerlegung A = U S V T dreht die Spalten in ein neues Koordinatensystem x x 2 = Lösungsvektor auch noch gedreht Die Matrix V T aus der Singulärwert-Zerlegung A = U S V T dreht den Lösungsvektor: y = V T x. Die Gleichungen für y werden ganz einfach y y 2 =

14 Überbestimmte Systeme, Zusammenfassung Normalengleichungen: Löse das System (A T A) x = A T b QR-Zerlegung: Löse das System R x = Q T b Singulärwert-Zerlegung: Löse die Systeme S y = U T b x = V y

15 Gliederung 1 Überbestimmte Systeme Wiederholung: Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse 3 Polynomiale Regression Aufgabenstellung Lösungsverfahren Lineare Regression (klassisch, robust, total) Warnung vor zu hohem Grad C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

16 Überbestimmte nichtlineare Systeme Beispiel: Standortbestimmung durch Trilateration Die Abstände von drei festen Punkten A,B,C zu einem unbekannten Punkt X sind (etwas ungenau) bekannt. Gesucht ist eine möglichst gute Positionsbestimmung. (x1 1) 2 +(x 2 1) 2 = 6 (x1 8) 2 +(x 2 4) 2 = C d c =4.2 d b =3.6 (x1 5) 2 +(x 2 8) 2 = d a =6 4 X B 2 Den drei Gleichungen entsprechen drei Kreise im R 2. Sie haben keinen gemeinsamen Schnittpunkt. 1 A

17 Überbestimmte nichtlineare Systeme Lösung durch Linearisierung und Iteration f(x) = o, x R n, f(x) R m, m > n Ausgehend von Startvektor x (0) bestimmt man eine Korrektur x. Die Rechenvorschrift des Newton-Verfahrens für f(x) b = o ergibt ein überbestimmtes lineares System mit der Jacobimatrix D f D f x = f(x) Verbesserte Lösung x (1) = x (0) + x. Für die Konvergenz der Iteration kann Unterrelaxation (Dämpfung) notwendig sein: x (n+1) = x (n) +ω x mit Unterrelaxationsfaktor 0 < ω 1.

18 Überbestimmte nichtlineare Systeme Lösung durch Linearisierung und Iteration f(x) = o, x R n, f(x) R m, m > n Ausgehend von Startvektor x (0) bestimmt man eine Korrektur x. Die Rechenvorschrift des Newton-Verfahrens für f(x) b = o ergibt ein überbestimmtes lineares System mit der Jacobimatrix D f D f x = f(x) Verbesserte Lösung x (1) = x (0) + x. Für die Konvergenz der Iteration kann Unterrelaxation (Dämpfung) notwendig sein: x (n+1) = x (n) +ω x mit Unterrelaxationsfaktor 0 < ω 1.

19 Rechenbeispiel von vorhin [ ] (x1 1) 2 +(x 2 1) 2 6 f(x) = (x1 8) 2 +(x 2 4) 2 3.6,D f = (x1 5) 2 +(x 2 8) [ 5 Mit Startvektor x = erhält man 4] x 1 1 x 2 1 (x 1 1) 2 +(x 2 1) 2 (x 1 1) 2 +(x 2 1) 2 x 1 8 x 2 4 (x 1 8) 2 +(x 2 4) 2 (x 1 8) 2 +(x 2 4) 2 x 1 5 x 2 8 (x 1 5) 2 +(x 2 8) 2 (x 1 5) 2 +(x 2 8) 2 ([ 5 f = 4]) 1 3/5, D f = 1/ , lin. Syst ] [ x1 = x 2 1 3/5 1/5 Ergibt x 1 = 1/25, x 2 = 7/25 verbesserte Position [5.04; 4.28].

20 Gliederung 1 Überbestimmte Systeme Wiederholung: Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse 3 Polynomiale Regression Aufgabenstellung Lösungsverfahren Lineare Regression (klassisch, robust, total) Warnung vor zu hohem Grad C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

21 Abbildung und inverse Abbildung Eine Matrix definiert durch y = A x eine lineare Abbildung. Die Matrix ist dazu gedacht, dass sie aus einem Vektor einen anderen macht. Die inverse Matrix macht diese Abbildung rückgängig: x = A 1 y Was eine Matrix tut, macht die Inverse wieder gut. Aber das ist nicht immer möglich: Eine lineare Abbildung auf den Nullvektor lässt sich nicht umkehren. Doch wenn ein Vektor ganz verschwindet, gibt s keine Matrix, die ihn wiederfindet. Die pseudoinverse Matrix macht rückgängig, so gut es eben geht.

22 Abbildung und inverse Abbildung Eine Matrix definiert durch y = A x eine lineare Abbildung. Die Matrix ist dazu gedacht, dass sie aus einem Vektor einen anderen macht. Die inverse Matrix macht diese Abbildung rückgängig: x = A 1 y Was eine Matrix tut, macht die Inverse wieder gut. Aber das ist nicht immer möglich: Eine lineare Abbildung auf den Nullvektor lässt sich nicht umkehren. Doch wenn ein Vektor ganz verschwindet, gibt s keine Matrix, die ihn wiederfindet. Die pseudoinverse Matrix macht rückgängig, so gut es eben geht.

23 Abbildung und inverse Abbildung Eine Matrix definiert durch y = A x eine lineare Abbildung. Die Matrix ist dazu gedacht, dass sie aus einem Vektor einen anderen macht. Die inverse Matrix macht diese Abbildung rückgängig: x = A 1 y Was eine Matrix tut, macht die Inverse wieder gut. Aber das ist nicht immer möglich: Eine lineare Abbildung auf den Nullvektor lässt sich nicht umkehren. Doch wenn ein Vektor ganz verschwindet, gibt s keine Matrix, die ihn wiederfindet. Die pseudoinverse Matrix macht rückgängig, so gut es eben geht.

24 Abbildung und inverse Abbildung Eine Matrix definiert durch y = A x eine lineare Abbildung. Die Matrix ist dazu gedacht, dass sie aus einem Vektor einen anderen macht. Die inverse Matrix macht diese Abbildung rückgängig: x = A 1 y Was eine Matrix tut, macht die Inverse wieder gut. Aber das ist nicht immer möglich: Eine lineare Abbildung auf den Nullvektor lässt sich nicht umkehren. Doch wenn ein Vektor ganz verschwindet, gibt s keine Matrix, die ihn wiederfindet. Die pseudoinverse Matrix macht rückgängig, so gut es eben geht.

25 Pseudoinverse tritt auch bei überbestimmten Systemen auf Für überbestimmte Systeme Ax = b lässt sich die kleinste-quadrate-lösung aus den Normalengleichungen bestimmen A T Ax = A T b (A T A) 1 x = (A T A) 1 A T b Substituiere (A T A) 1 A T A + x = A + b (abgesehen von numerischen Problemen und dem Sonderfall, dass A nicht vollen Spaltenrang hat) Die Matrix A + wirkt also ähnlich wie eine Inverse bei der Lösung eines gewöhnlichen Gleichungssystems mit nichtsingulärer quadratischer Matrix. C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

26 Pseudoinverse tritt auch bei überbestimmten Systemen auf Für überbestimmte Systeme Ax = b lässt sich die kleinste-quadrate-lösung aus den Normalengleichungen bestimmen A T Ax = A T b (A T A) 1 x = (A T A) 1 A T b Substituiere (A T A) 1 A T A + x = A + b (abgesehen von numerischen Problemen und dem Sonderfall, dass A nicht vollen Spaltenrang hat) Die Matrix A + wirkt also ähnlich wie eine Inverse bei der Lösung eines gewöhnlichen Gleichungssystems mit nichtsingulärer quadratischer Matrix. C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

27 Pseudoinverse tritt auch bei überbestimmten Systemen auf Für überbestimmte Systeme Ax = b lässt sich die kleinste-quadrate-lösung aus den Normalengleichungen bestimmen A T Ax = A T b (A T A) 1 x = (A T A) 1 A T b Substituiere (A T A) 1 A T A + x = A + b (abgesehen von numerischen Problemen und dem Sonderfall, dass A nicht vollen Spaltenrang hat) Die Matrix A + wirkt also ähnlich wie eine Inverse bei der Lösung eines gewöhnlichen Gleichungssystems mit nichtsingulärer quadratischer Matrix. C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

28 Pseudoinverse Die Definition A + = (A T A) 1 A T ist nicht immer gültig Problem Die Definition A + = (A T A) 1 A T ist nicht möglich, wenn (A T A) singulär ist. Trotzdem lässt sich eine Matrix A + angeben, die eine optimale Lösung des überbestimmten Systems findet. Existenz und Eigenschaften der Pseudoinversen Zu jeder reellen m n-matrix A gibt es eine eindeutig bestimmte reelle n m-matrix A +, die Moore-Penrose Inverse, mit den Eigenschaften A A + A = A (A A + ) T = A A + A + A A + = A + (A + A) T = A + A Falls A + = (A T A) 1 A T existiert, erfüllt diese Matrix alle vier Bedingungen. C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

29 Pseudoinverse Die Definition A + = (A T A) 1 A T ist nicht immer gültig Problem Die Definition A + = (A T A) 1 A T ist nicht möglich, wenn (A T A) singulär ist. Trotzdem lässt sich eine Matrix A + angeben, die eine optimale Lösung des überbestimmten Systems findet. Existenz und Eigenschaften der Pseudoinversen Zu jeder reellen m n-matrix A gibt es eine eindeutig bestimmte reelle n m-matrix A +, die Moore-Penrose Inverse, mit den Eigenschaften A A + A = A (A A + ) T = A A + A + A A + = A + (A + A) T = A + A Falls A + = (A T A) 1 A T existiert, erfüllt diese Matrix alle vier Bedingungen. C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

30 Inverse und Pseudoinverse von Diagonalmatrizen Für quadratische Diagonalmatrizen ist die Definition recht einfach... Diagonalmatrix (falls alle s i 0) 1 s s s S =.... S 1 0 s = s 1 n 0 0 s n Pseudoinverse einer Diagonalmatrix r S + 0 r 2 0 { 1 =.... mit r i = s i r n falls { si 0 s i = 0 C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

31 Inverse und Pseudoinverse von Diagonalmatrizen Für quadratische Diagonalmatrizen ist die Definition recht einfach... Diagonalmatrix (falls alle s i 0) 1 s s s S =.... S 1 0 s = s 1 n 0 0 s n Pseudoinverse einer Diagonalmatrix r S + 0 r 2 0 { 1 =.... mit r i = s i r n falls { si 0 s i = 0 C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

32 Pseudoinverse von rechteckigen Diagonalmatrizen Ist S R m R n, dann ist S + R n R m Definition der r i und s i bleibt gleich wie vorhin, es gibt nur zusätzliche Nullzeilen oder -spalten. s s r S = 0 0 s n S + = 0 r r n C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

33 Pseudoinverse allgemein Verwende Singulärwertzerlegung A = U S V T Bei der Multiplikation y = A x = U S V T x spürt x zuerst V T, dann S, zuletzt U. Um diese drei Multiplikationen rückgängig zu machn, muss man bei der letzten beginnen: U rückgängig machen: mit U T multiplizieren S rückgängig machen: hier braucht man S + V T rückgängig machen: mit V multiplizieren Pseudoinverse A = U S V T A + = V S + U T C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

34 Gliederung 1 Überbestimmte Systeme Wiederholung: Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse 3 Polynomiale Regression Aufgabenstellung Lösungsverfahren Lineare Regression (klassisch, robust, total) Warnung vor zu hohem Grad C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

35 Polynomiale Regression: Aufgabenstellung Gesucht ist ein Polynom, das die Datenpunkte möglichst gut approximiert Gegeben m+1 Wertepaare (x i,y i ), i = 0,...,m Gesucht p(x), ein Polynom n-ten Grades, n < m, so dass die Summe der Fehlerquadrate m (p(x i ) y i ) 2 minimal wird. i=0 C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

36 Anpassen eines Polynoms an Datenpunkte Spezifische Wärmekapazität von kohlenstoffarmem Stahl in J/kg K für 20 C T 700, C T c p y = *x *x + 4.6e+002 y = 1.6e 006*x *x *x + 4.4e Datenpunkte quadratisches Pol. kubisches Pol Die Abbildung illustriert polynomiale Regression (quadratisch und kubisch) an die gegebenen Datenpunkte.

37 Erkennen von Oberflächen-Defekten Ein Anwendungsbeispiel (MUL Dissertation Ingo Reindl, 2006) Polynomialer Regression approximiert Oberflächen-Querschnitte Pixeldaten aus Oberflächenerfassung der abgerundeten Kante eines rohgewalzten Stahlblocks Polynom Referenzquerschnitt Abweichung Oberflächendefekte

38 Polynomiale Regression ist eigentlich ein Spezialfall von linearen Modellen. (Ansatzfunktionen sind nichtlinear, aber die gesuchten Koeffizienten treten nur linear auf!) für die Normalengleichungs-Matrix gibt es einfache Darstellung für Polynome hohen Grades ist der naive Ansatz a 0 +a 1 x +a 2 x 2 + x n völlig ungeeignet. Abhilfe: Orthogonalpolynome. C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

39 Gliederung 1 Überbestimmte Systeme Wiederholung: Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse 3 Polynomiale Regression Aufgabenstellung Lösungsverfahren Lineare Regression (klassisch, robust, total) Warnung vor zu hohem Grad C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

40 Direkter Lösungsweg Ansatz des Polynoms mit unbestimmten Koeffizienten p(x) = a 0 +a 1 x +a 2 x 2 + +a n 1 x n 1 +a n x n. Einsetzen der gegebenen Wertepaare führt auf ein System von m linearen Gleichungen in den n+ 1 unbekannten Koeffizienten a 0,a 1,...,a n. Sofern n < m liegt in der Regel ein überbestimmtes System vor. Lösung nach der Methode der Normalengleichungen. Besser: Lösung durch QR-Zerlegung (Standardverfahren) C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

41 Formel für die Normalengleichungen Bei polynomialer Regression haben die Normalengleichungen spezielle Form; man kann die Koeffizienten direkt angeben. s 0 a 0 + s 1 a s n a n = t 0 s 1 a 0 + s 2 a s n+1 a n = t 1... s n a 0 + s n+1 a s 2n a n = t n mit s k = m xi k, t k = i=0 m xi k y i i=0 C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

42 Was dabei schiefgehen kann Remember Murphy s Law: If anything can go wrong, it will Normalengleichungen für größere n schlecht konditioniert Abhilfe: Daten skalieren. Anderere Lösungswege (QR-Zerlegung, Singulärwertzerlegung), andere Ansatzfunktionen (Orthogonalpolynome) Methode der kleinsten Quadrate wird durch Ausreißer stark irritiert Abhilfe: Robuste Methoden, Minimierung der Summe der absoluten Fehler (Minimierung in der 1-Norm statt in der 2-Norm) C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

43 Gliederung 1 Überbestimmte Systeme Wiederholung: Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse 3 Polynomiale Regression Aufgabenstellung Lösungsverfahren Lineare Regression (klassisch, robust, total) Warnung vor zu hohem Grad C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

44 Lineare Regression Einfacher Spezialfall der polynomialen Regression Anpassen einer Geraden an Datenpunkte. Die Ausgleichsgerade nach der Methode der kleinsten Quadrate lässt sich von den wenigen Ausreissern stark ablenken. Minimieren des absoluten Fehlers legt eine wesentlich plausiblere Gerade durch die Daten. C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

45 Total Least Squares mit SVD Standardverfahren minimiert Summe der Abstandsquadrate in y-richtung, TLS minimiert Quadratsumme der Normalabstände Bestimme Schwerpunkt [ x,ȳ] der Daten. x = 1 x i, ȳ = 1 n n i=1,n i=1,n y i 0.4 Verschiebe die Daten x i = x i x, y i = y i ȳ Bilde Singulärwertzerlegung x 1 y 1 U S V T =.. x n y n TLS-Gerade geht durch den Schwerpunkt in Richtung des ersten Spaltenvektors von V.

46 Statistische Zusammenhänge Die Methode der kleinsten Quadrate liefert maximum likelihood-schätzung der Parameter wenn die Daten mit unabhängigen, zufälligen, normalverteilten Fehlern mit gleicher Standardabweichung behaftet sind. Ist C = (A T A) 1 die inverse Matrix des Systems der Normalengleichungen, und ist die Varianz der Daten gleich σ 2, so ist σ 2 C die Kovarianzmatrix der Parameter. C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

47 Regression in MATLAB Die Übungen enthalten Beispiele zur polynomialen Regression mit den Befehlen polyfit und polyval mit dem Basic-Fitting-Tool Fallstudie in der MATLAB-Hilfe C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

48 Gliederung 1 Überbestimmte Systeme Wiederholung: Geometrische Interpretation Nichtlineare Systeme 2 Inverse, Pseudoinverse und Singlärwertzerlegung Inverse und Pseudoinverse 3 Polynomiale Regression Aufgabenstellung Lösungsverfahren Lineare Regression (klassisch, robust, total) Warnung vor zu hohem Grad C.B & E.H. (MUL) Überbestimmte Systeme, Approximation 20.III / 38

49 Approximation durch polynomiale Regression Datenpunkte sind gegeben. Ein Approximationspolynom vierten Grades modelliert den Verlauf der Daten ganz passabel. Es hängt vom Modell ab, ob es Sinn macht, mehr Parameter (höheren Grad) zu verwenden. Ein Polynom 15. Grades (16 freie Parameter) könnte die Daten exakt modellieren, aber...

50 Datenanpassung mit zu hohem Polynomgrad Kein Fehler an den Datenpunkten, das Polynom oszilliert aber heftig. Typisch für Polynome hohen Grades. Sie oszillieren besonders zu den Rändern hin, wenn man Sie durch vorgegebene Datenpunkte zwingt.

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Sechste Übungseinheit

Sechste Übungseinheit F Sechste Übungseinheit Inhalt der sechsten Übungseinheit: MATLAB-Werkzeuge zum Anpassen von Funktionen an Daten (Bonus-Material) Alternativen zur Minimierung der Fehlerquadrate: Robuste Regression, Total

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Lösung des Kleinste-Quadrate-Problems

Lösung des Kleinste-Quadrate-Problems Lösung des Kleinste-Quadrate-Problems Computergestützte Statistik Lisakowski, Christof 15.05.2009 Lisakowski, Christof ()Lösung des Kleinste-Quadrate-Problems 15.05.2009 1 / 34 Themen 1 Problemstellung

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

7. Numerik mit MATLAB

7. Numerik mit MATLAB Start Inhalt Numerik mit MATLAB 1(24) 7. Numerik mit MATLAB 7.1 Lineare Algebra Normen. Matrixzerlegungen. Gleichungssysteme. 7.2 Lineare Ausgleichsrechnung qr, svd, pinv, \. 7.3 Interpolation interp1,

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Hauptkomponentenanalyse PCA

Hauptkomponentenanalyse PCA Hauptkoponentenanalyse PCA Die Hauptkoponentenanalyse (Principal Coponent Analysis, PCA) ist eine Methode zur linearen Transforation der Variablen, so dass: öglichst wenige neue Variablen die relevante

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0.

Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0. Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 5 0 6 5 2 x + 3 y 3 z = 5 2 3 3 5 2 x 3 y = 4 2 3 0 4 z2 /3 z : 3 2 x 3 y = 4 2 3 0 4 4 x + y z = 5 4 5 6 y + z = 5 0 6 5 z2 + 2 z 2 x 3 y = 4 2

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Übung 3: Einfache Graphiken und Näherungen durch Regression

Übung 3: Einfache Graphiken und Näherungen durch Regression Übung 3: Einfache Graphiken und Näherungen durch Regression M. Schlup, 9. August 010 Aufgabe 1 Einfache Graphik Für die abgegebene Leistung P = UI eines linearen, aktiven Zweipols mit Leerlaufspannung

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Versuchsauswertung mit Polynom-Regression in Excel

Versuchsauswertung mit Polynom-Regression in Excel Versuchsauswertung mit Polynom-Regression in Excel Aufgabenstellung: Gegeben sei die in Bild 1 gezeigte Excel-Tabelle mit Messwertepaaren y i und x i. Aufgrund bekannter physikalischer Zusammenhänge wird

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen

Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Statistische Methoden

Statistische Methoden Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Dünn besetzte Matrizen. Unterschiede in Speicherbedarf und Rechenzeit im Vergleich zu voll besetzten Matrizen. Besetzungsmuster mit spy.

Dünn besetzte Matrizen. Unterschiede in Speicherbedarf und Rechenzeit im Vergleich zu voll besetzten Matrizen. Besetzungsmuster mit spy. 170 005 Übungen zu Numerische Methoden I Fünfte Übungseinheit 21. März, 22. und 23. April 2013 Inhalt der fünften Übungseinheit: Dünn besetzte Matrizen. Unterschiede in Speicherbedarf und Rechenzeit im

Mehr

Ungewöhnliche Gleichungssysteme bei der Mathematik- Olympiade

Ungewöhnliche Gleichungssysteme bei der Mathematik- Olympiade Eric Müller Ungewöhnliche Gleichungssysteme bei der Mathematik- Olympiade Unter den in den vier Runden der Mathematik-Olympiade (MO) gestellten Aufgaben finden sich immer wieder Systeme von Gleichungen

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung Kernel, Perceptron, Regression Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-07-20 KDD Übung Kernel-Fukctionen Kernel kann mehrdeutig sein! Unterscheidet zwischen: Kernel function

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Modellierung, Simulation, Optimierung Diskretisierung 1

Modellierung, Simulation, Optimierung Diskretisierung 1 Modellierung, Simulation, Optimierung Diskretisierung Prof. Michael Resch Dr. Martin Bernreuther, Dr. Natalia Currle-Linde, Dr. Martin Hecht, Uwe Küster, Dr. Oliver Mangold, Melanie Mochmann, Christoph

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte

6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 6. Januar 2004

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 6. Januar 2004 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis Kalibrierung einer Kamera: Grundkonzept...............344

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten

Mehr

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung Mathematik Klausuraufgaben zur Mathematik - von Wolfgang Langguth Aufgabenstellungen

Mehr

Fotografie * Informatik * Mathematik * Computer-Algebra * Handreichung für Lehrer

Fotografie * Informatik * Mathematik * Computer-Algebra * Handreichung für Lehrer BIKUBISCHE INTERPOLATION AM BEISPIEL DER DIGITALEN BILDBEARBEITUNG - AUFGABENSTELLUNG FÜR SCHÜLER Problem Bei Veränderung der Größe eines Digitalbildes sind entweder zuviel Pixel (Verkleinerung) oder zuwenig

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

12. Bivariate Datenanalyse. In den Kapiteln 4-11 wurden univariate Daten betrachtet:

12. Bivariate Datenanalyse. In den Kapiteln 4-11 wurden univariate Daten betrachtet: 12. Bivariate Datenanalyse Während einer nur Zahlen im Kopf hat, kann er nicht auf den Kausalzusammenhang kommen Anonymus In den Kapiteln 4-11 wurden univariate Daten betrachtet: Von univariaten Daten

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

3.4 Histogramm, WENN-Funktion

3.4 Histogramm, WENN-Funktion 3.4 Histogramm, WENN-Funktion 3.4.1 Aufgabe Ausgehend von den Lösungen der zum Aufgabenkomplex 3.3, Absenkung (s. S. 106), aufgestellten Tabellen sollen weitere Elemente der MS-Excel-Programmierung genutzt

Mehr