Didak&k der Zahlbereichserweiterungen und der elementaren Algebra. 1. Didak&k der Zahlbereichs erweiterungen. 2. Didak&k der elementaren Algebra

Größe: px
Ab Seite anzeigen:

Download "Didak&k der Zahlbereichserweiterungen und der elementaren Algebra. 1. Didak&k der Zahlbereichs erweiterungen. 2. Didak&k der elementaren Algebra"

Transkript

1 Didak&k der Zahlbereichserweiterungen und der elementaren Algebra 1. Didak&k der Zahlbereichs erweiterungen 2. Didak&k der elementaren Algebra 1.2 Zahlbereichserweiterungen in didak&scher Sicht 1.3 Größenbereiche und Skalenbereiche 1.4 Erweiterung von den natürlichen Zahlen auf die posi&ven ra&onalen Zahlen Bruchrechnung des 6. Schuljahres 1.5 Anwendungen der Bruchrechnung Sachaufgaben im 6. Und 7. Schuljahr 1.6 Erweiterung von den posi&ven ra&onalen Zahlen auf die ra&onalen Zahlen Nega&ve Zahlen im 7. Schuljahr 1.7 Erweiterung von den ra&onalen Zahlen auf die reellen Zahlen irra&onale Zahlen im 9. Und 10. Schuljahr 1.8 Erweiterung von den reellen Zahlen auf die komplexen Zahlen 1

2 Rela&onen Klassifika&onen Klassifika&onen 2

3 4/26/09 Mengenbegriff Mengenkonstanz 1.12 Zahlbegriffsbildung Kardinalzahlaspekt 1.12 Zahlbegriffsbildung 1.12 Zahlbegriffsbildung Kardinalzahlaspekt 3

4 Kardinalzahlaspekt Kardinalzahlaspekt Steckwürfel Rechenplä[chen Steckbre[ Ordinalzahlaspekt Perlenke[en Ordinalzahlaspekt Steckwürfel Zählreihe 4

5 Maßzahlaspekt (Größen) Maßzahlaspekt (Größen) Cuisenaire Stäbe Längen Maßband Längen Maßzahlaspekt (Größen) Messzylinder Volumina Operatoraspekt soperator Päckchen Aufgaben Zahl als Funk&on 5

6 Rechenzahlaspekt Zahlen begegnen Schülern fast ausschließlich im Zusammenhang mit Rechenaucrägen als Teile eines Rechenaucrages oder als sein Ergebnis. Die für den Zahlbegriff wesentlichen Vorstellungen sind deshalb mit formalen Handlungen verbun den. Nur wenn diese Erfahrungen für die Schüler konkret genug sind, können die so erworbenen Vorstellungen ebenfalls konkret, d.h. eine Hilfe beim verständigen Umgang mit Zahlen sein. (Baireuther) Codierungsaspekt Telefonnummer ISBN Nummer 6205 PIN (z.b. für Handy) keine Rechenopera&onen möglich! Zählen Schreiben der Ziffern Rela&onen zwischen Zahlen Zählen Simultanerfassung Zählen durch Weglegen An&ppen Draufzeigen Hinschauen mit Nicken Hinschauen Zählen durch Vergleichen mit der Zählreihe 6

7 4/26/09 Schreiben der Ziffern Schreiben von b adischen Zahlen (Bündelung) Schreiben der Ziffern Schreiben von Dezimalzahlen (Bündelung) Mehrsystem Blöcke Stellenwer[afel Abakus Rela&onen zwischen Zahlen (kleiner, größer) Vorkenntnisse der Schüler Techniken der Anzahlbes&mmung Ordnen nach der Größe Größenvergleich von Mengen sstrategien Heuris&sche Strategien Klassifika&on und Kernscher Rechenkasten 7

8 4/26/09 Zahlenstrahl Rechenmaschinen Zahlenstrahl Zwanziger Darsstellung 8

9 Subtrak&on Stabdarstellung Axiome der natürlichen Zahlen nach PEANO Ein Tripel ( IN, 1, s ) heißt Modell für die natürlichen Zahlen genau dann, wenn gilt: P(0) IN ist eine Menge. P(1) 0 ist ein Element von IN. P(2) s: IN IN ist eine injektive Abbildung mit 0 s(in). (Unendlichkeitsaxiom) P(3) Besitzt eine Teilmenge M IN die beiden Eigenschaften (i) 0 M (ii) n IN n M s(n) M so ist M = IN. (Induktionsaxiom) Axiome der natürlichen Zahlen nach ERHARD SCHMIDT S(0) IN ist eine Menge. S(1) IN ist wohlgeordnet. S(2) IN hat kein letztes Element. S(3) Jedes Element von IN außer dem ersten hat einen Vorgänger in IN. 9

Amrei Naujoks und Marei Böttcher

Amrei Naujoks und Marei Böttcher Amrei Naujoks und Marei Böttcher Das Fach Mathematik ist das einzige Fach in der Schule, das stark hierarchisch aufgebaut ist. wer am Anfang etwas verpasst, kann nicht mehr folgen. In der Grundschule

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind V3 02./03.05.

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind V3 02./03.05. Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind V3 02./03.05. Natürliche Zahlen im Anfangsunterricht V4 09./10.05. Die Grundrechenoperationen

Mehr

Didaktik der Zahlbereiche

Didaktik der Zahlbereiche Didaktik der Zahlbereiche Natürliche Zahlen Aufbau und Einführung Erinnerung: Didaktische Grundfragen Welche Inhalte werden behandelt? In welcher Reihenfolge? Welche mentale Modelle werden erzeugt? Wie

Mehr

6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen

6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen 6.4 Bedeutungsaspekte ausgewählter Begriffe 6.4.1 Zahlbegriffe und Rechenoperationen a) Natürliche Zahl Entspricht Bedeutung des Wortes ZAHL beim Schüler bis Kl. 5 Bedeutungen entwickeln sich durch entsprechende

Mehr

Hauptseminar 31. Fachdidaktik Mathematik. Bruchrechnung. Heinz-Jürgen Harder. Fachleiter für Mathematik

Hauptseminar 31. Fachdidaktik Mathematik. Bruchrechnung. Heinz-Jürgen Harder. Fachleiter für Mathematik Hauptseminar 31 Fachdidaktik Mathematik Fachleiter für Mathematik 1 Sachanalyse 2 Sachanalyse Zahlbereiche: Die Natürlichen Zahlen Die Peano-Axiome der Natürlichen Zahlen Die Natürlichen Zahlen beruhen

Mehr

Erweiterung des Zahlenraumes. Schwerpunkt: Schrittweises Vorgehen

Erweiterung des Zahlenraumes. Schwerpunkt: Schrittweises Vorgehen Erweiterung des Zahlenraumes Schwerpunkt: Schrittweises Vorgehen Konzeptionelle Varianten bei der Erweiterung des Zahlenraumes ganzheitliche Erschließung des Zahlenraumes schrittweise Erschließung des

Mehr

4. Induktives Definieren - Themenübersicht

4. Induktives Definieren - Themenübersicht Induktives Definieren 4. Induktives Definieren - Themenübersicht Induktives Definieren Natürliche Zahlen Operationen auf natürlichen Zahlen Induktive Algorithmen Induktiv definierte Mengen Binärbäume Boolesche

Mehr

Problemlösen. Modellieren

Problemlösen. Modellieren Die Menge Bruchzahlen (Fortsetzung) Primfaktorzerlegungen zur Ermittlung von ggt und kgv Darstellen von Bruchteilen in Sachzusammenhängen und am Zahlenstrahl Eigenschaften von Bruchzahlen, Kürzen, Erweitern

Mehr

Vorkenntnisse von Schulanfängern zu Zahlen Entwicklung der Zählkompetenz

Vorkenntnisse von Schulanfängern zu Zahlen Entwicklung der Zählkompetenz Vorkenntnisse von Schulanfängern zu Zahlen Entwicklung der Zählkompetenz Peanosches Axiomensystem P I P II P III P IV P V Null ist eine natürliche Zahl. Jede natürliche Zahl n hat genau einen Nachfolger

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen Sommersemester 2016 Didaktik der Grundschulmathematik Di, 12-14 Uhr, HS 1 I Zahlen und Operationen V 1 12.04. Arithmetik in der Grundschule V 2 19.04. Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04.

Mehr

Bild Nummer 1: Bild Nummer 2: Seite B 1

Bild Nummer 1: Bild Nummer 2: Seite B 1 Bild Nummer 1: Bild Nummer 2: Seite B 1 Bild Nummer 3: Bild Nummer 4: Seite B 2 Bild Nummer 5: Bild Nummer 6: Seite B 3 Bild Nummer 7: Bild Nummer 8: Seite B 4 Bild Nummer 9: Bild Nummer 10: Seite B 5

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Wie kommen die Zahlen und das Rechnen in den Kopf?

Wie kommen die Zahlen und das Rechnen in den Kopf? Wie kommen die Zahlen und das Rechnen in den Kopf? Voraussetzungen: konkrete Handlungen Handlungen erzeugen Vorstellungsbilder 1 Veranschaulichungsmittel Materialien, die als zentrale Hilfsmittel den Kindern

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

2 Rechnen mit natürlichen Zahlen

2 Rechnen mit natürlichen Zahlen Rechnen mit natürlichen Zahlen 9 2 Rechnen mit natürlichen Zahlen 2.1 Ausgewählte Probleme Zur Berücksichtigung der Aspekte des Begriffs natürliche Zahl Es können folgende Aspekte des Begriffs NATÜRLICHE

Mehr

2.2 der Größenbegriff

2.2 der Größenbegriff (mit Äquivalenzrelationen) Maximilian Geier Institut für Mathematik, Landau Universität Koblenz-Landau Zu Größen gelangt man ausgehend von realen Gegenständen durch einen Abstraktionsvorgang. Man geht

Mehr

Umgang mit Mengen, Zahlen u. Größen - Mathematik. 3.2 Umgang mit Mengen, Zahlen und Größen Mathematik

Umgang mit Mengen, Zahlen u. Größen - Mathematik. 3.2 Umgang mit Mengen, Zahlen und Größen Mathematik 3.2 Umgang mit Mengen, Zahlen und Größen Mathematik Die Mathematik mit ihren verschiedenen Aspekten ist fester Bestandteil des Unterrichts in allen Stufen der St.-Elisabeth-Schule. Die Voraussetzungen

Mehr

Zahlen und Zahldarstellungen kultur- historische und ontogenetische Aspekte einer Begriffsbildung

Zahlen und Zahldarstellungen kultur- historische und ontogenetische Aspekte einer Begriffsbildung Zahlen und Zahldarstellungen kultur- historische und ontogenetische Aspekte einer Begriffsbildung Ein Modell von Begriffsbildung Die Zahlentwicklung im Individuum Zahlen und Zahldarstellungen aus kulturhistorischer

Mehr

Studienschwerpunkt: Diskrete Strukturen Dieser Vorlesungszyklus wird in jedem 2ten Jahr gestartet. Der neue Zyklus beginnt jetzt. Das Angebot: Sommers

Studienschwerpunkt: Diskrete Strukturen Dieser Vorlesungszyklus wird in jedem 2ten Jahr gestartet. Der neue Zyklus beginnt jetzt. Das Angebot: Sommers Studienschwerpunkt Diskrete Strukturen Stefan Felsner Diskrete Mathematik http://www.math.tu-berlin.de/~felsner Studienschwerpunkt: Diskrete Strukturen Dieser Vorlesungszyklus wird in jedem 2ten Jahr gestartet.

Mehr

SchiC Mathematik 7. Klasse 2014/2015. Konkretisierung der Standards. Für Dezimalzahlen und Brüche mit ganzem Zähler und ganzem Nenner

SchiC Mathematik 7. Klasse 2014/2015. Konkretisierung der Standards. Für Dezimalzahlen und Brüche mit ganzem Zähler und ganzem Nenner SchiC Mathematik 7. Klasse 2014/2015 Stundenumfang Themen / Inhalte (Standardbezug) 8 h 1. Wiederholungen (nicht im RLP vorgesehen, aber von der Fachkonferenz als notwendig erachtet) Grundrechenarten +;

Mehr

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen 6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen GM 6-1 6.1 Natürliche Zahlen Vom lieben Gott gemacht Menschenwerk:

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen

2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

Förderung mathematischer Kompetenzen im Spiel

Förderung mathematischer Kompetenzen im Spiel Förderung mathematischer Kompetenzen im Spiel Eine Handreichung für Erzieherinnen und Erzieher zur praxisnahen Prävention von Rechenschwierigkeiten im elementaren Bildungsbereich Ria-Friederike Prote M.

Mehr

Diagnose von lernbeeinträchtigenden Faktoren im Mathematikunterricht und mögliche Förderung

Diagnose von lernbeeinträchtigenden Faktoren im Mathematikunterricht und mögliche Förderung Diagnose von lernbeeinträchtigenden Faktoren im Mathematikunterricht und mögliche Förderung Tagung Pippis Plutimikation Bozen, 20.02.2013 Jens Holger Lorenz www.jh-lorenz.de Repräsentation der Zahlen und

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

5/7/ Verschiedene Methoden zur Einführung von Bruchzahlen. a) Das Größenkonzept Man geht aus von konkreten Brüchen, die den Schülern aus

5/7/ Verschiedene Methoden zur Einführung von Bruchzahlen. a) Das Größenkonzept Man geht aus von konkreten Brüchen, die den Schülern aus /7/09 1. Didak(k der Zahbereichserweiterungen 1.4 Erweiterung von den natürichen Zahen auf die posi(ven ra(onaen Zahen Bruchrechnung des 6. Schujahres 1.41 Verschiedene Methoden zur Einführung von Bruchzahen

Mehr

BAUSTEIN III Unterricht und Förderung III/4 Element 4 Mathematik 1

BAUSTEIN III Unterricht und Förderung III/4 Element 4 Mathematik 1 Größen MOSAIK-Schule Element 4 Mathematik 1 Bedeutung des Lernbereiches an unserer Schule Die Welt steckt voller Zahlen, Mengen und Größen. Mathematisches Wissen ist, auch wenn den meisten unserer Schüler

Mehr

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen 9 Menge der natürlichen Zahlen Axiome von Peano: 1. 1 ist eine natürliche Zahl. 2. Jede Zahl a hat einen bestimmten Nachfolger a + in der Menge der natürlichen Zahlen.. Stets ist a + 1, d.h. es gibt keine

Mehr

Jahrgangsstufe: Klasse 6 Fach: Mathematik Stand: 04/2016. Jahrgangsstufe 6. Thema: Rechnen mit Brüchen im Sachzusammenhang

Jahrgangsstufe: Klasse 6 Fach: Mathematik Stand: 04/2016. Jahrgangsstufe 6. Thema: Rechnen mit Brüchen im Sachzusammenhang Jahrgangsstufe 6 Schulbuch: Neue Wege 6 (2006) Anzahl schriftlicher Arbeiten: 3/3 Zeitrahmen: 1 Schulstunde Vereinbarung bezüglich Tests: Diagnosetest zu Beginn des Schuljahres Unterrichtsvorhaben 6.1

Mehr

3. Frühe Stadien in der Entwicklung des Zahlbegriffs beim Kind

3. Frühe Stadien in der Entwicklung des Zahlbegriffs beim Kind 3. Frühe Stadien in der Entwicklung des Zahlbegriffs beim Kind 39 3. Frühe Stadien in der Entwicklung des Zahlbegriffs beim Kind Lesen Sie zuerst die Studieneinheit El Mengen und ihre Darstellung" sowie

Mehr

Axiome der Mengenlehre nach von Neumann, Bernays, Gödel (NBG)

Axiome der Mengenlehre nach von Neumann, Bernays, Gödel (NBG) Axiome der Mengenlehre nach von Neumann, Bernays, Gödel (NBG) B. Ammann 1 1 Universität Regensburg Vorlesung Analysis am 6.11.13 Ziel: Axiomatischer Aufbau der Mathematik Es gibt verschiedene Axiomensysteme

Mehr

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder Förderkurs im Schuljahr 2016/17 VS Großarl Förderkurs: Mathematik (Festigung und Förderung der mathematischen Basiskompetenzen, Festigung der Grundrechnungsarten, Sachaufgaben verstehen und lösen, Training

Mehr

Mathematiklehrplan GYMNASIUM VOGELSANG SOLINGEN Städtisches Gymnasium für Jungen und Mädchen mit Sekundarstufen I und II

Mathematiklehrplan GYMNASIUM VOGELSANG SOLINGEN Städtisches Gymnasium für Jungen und Mädchen mit Sekundarstufen I und II Klasse : 5 3 Wochen 1. Zahlen und Größen Große Zahlen, Dezimalsystem, Potenzen, Runden, Größen, (optional: Einfache Bruchteile von Größen), Messen und schätzen, Diagramme Projekt Weltraum 2. Die vier Grundrechenarten

Mehr

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 300-seitige

Mehr

Materialien zur Eingangsdiagnostik. erste Zahlerfahrungen. Eingangsdiagnostik

Materialien zur Eingangsdiagnostik. erste Zahlerfahrungen. Eingangsdiagnostik : 1. 10. Woche Lernvoraussetzungen erfassen erste Zahlerfahrungen Eingangsdiagnostik Materialien zur Eingangsdiagnostik die Zahlen von 1 bis 10 benennen und unterscheiden Zuordnungen zwischen Ziffern und

Mehr

Algebra in der Sekundarstufe

Algebra in der Sekundarstufe Hans-Joachim Vollrath Algebra in der Sekundarstufe Spektrum Akademischer Verlag Heidelberg Berlin Inhalt Einleitung I. Algebra in der Schule 1 1. Das Gerüst des Lehrganges 1 2. Zur historischen Entwicklung

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur von Axiomensystemen im Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen

Mehr

Thema 1 Die natürlichen Zahlen

Thema 1 Die natürlichen Zahlen Thema 1 Die natürlichen Zahlen Wir bezeichnen mit N die Menge der natürlichen Zahlen dh N {1,,, } Falls wir das Nullelement 0 dazu nehmen, dann bezeichnen wir die resultierende Menge mit N 0 also N 0 {0,

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Brüche, Bruchzahlen & Bruchrechh- nung II

Brüche, Bruchzahlen & Bruchrechh- nung II Brüche, Bruchzahlen & Bruchrechh- nung II 4 Konzepte zur Behandlung der Bruchrechnung rechnung Zur Anordnung von Bruchzahlen Spielen mit Brüchen: Von Farey-Folgen Folgen und Ford-Kreisen Fliesenlegen:

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1)

Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1) Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1) Didaktische Kriterien: (D1) Erlaubt das Material simultane Zahlauffassung und -darstellung bis 4? (D2) Erlaubt das Material quasi-simultane

Mehr

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =

Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit

Mehr

Mathematik in der Mittelschule 1 (Basismodul MS)

Mathematik in der Mittelschule 1 (Basismodul MS) S Hilger Mathematik in der Mittelschule 1 SS 2015 29 Juni 2015 1 Skript zur Vorlesung Mathematik in der Mittelschule 1 (Basismodul MS) Sommersemester 2015 Dieses Geheft enthält die wesentlichen Inhalte,

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

LEHRPLAN VOLKSSCHULE Mathematik 1.2.Klasse Volksschule

LEHRPLAN VOLKSSCHULE Mathematik 1.2.Klasse Volksschule Grundstufe I LEHRPLAN VOLKSSCHULE Mathematik 1.2.Klasse Volksschule Aufbau der natürlichen Zahlen - das Sichern des Verständnisses für Zahlen unter Berücksichtigung des Kardinal-, Ordinal-, Rechen- und

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

1.3 Abbildungen. Definition : Abbildung, Definitionsbereich, Zielbereich, Bildmenge

1.3 Abbildungen. Definition : Abbildung, Definitionsbereich, Zielbereich, Bildmenge Abbildungen Grundlagen der Mathematik Abbildungen Deinition : Abbildung, Deinitionsbereich, Zielbereich, Bildmenge Eine Abbildung : D Z ordnet jedem Element D eindeutig ein Z zu D heißt Deinitionsbereich

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Schulinterner Lehrplan Mathematik Jahrgangsstufe 6

Schulinterner Lehrplan Mathematik Jahrgangsstufe 6 Themenbereich: (1) Kreise Winkel - Symmetrie Buch: Mathe heute 6 (neu) Seiten: 6-43 Zeitrahmen:8 Wochen - Winkel, Punktsymmetrie, Kreis - Kreise Erfassen - Winkel - Messen und Zeichnen -Winkel, Kreise

Mehr

Didaktik der Arithmetik und Algebra

Didaktik der Arithmetik und Algebra S Hilger Didaktik der Arithmetik und Algebra WS 2013/14 1 Skript zur Vorlesung Didaktik der Arithmetik und Algebra Aufbaumodul Fachdidaktik Mathematik (RS) Wintersemester 2013/14 Dieses Skript enthält

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Argumentieren/Kommunizieren

Argumentieren/Kommunizieren 4 Wochen Geometrie Erfassen Grundbegriffe, Kreisfläche, Kreislinie, Radius, Mittelpunkt, Durchmesser kennen, benennen und differenzieren Benennungen beim Winkel, Scheitel, Beschriftungen Neben, Scheitel,

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Lösungen und Korrekturanweisungen

Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Lösungen und Korrekturanweisungen VOLKSSCHULEN KANTONE BASEL-LANDSCHAFT SOLOTHURN Primarschule 5. Klasse Name Vorname Schuljahr 2014/2015 Datum der Durchführung 4. September 2014 ORIENTIERUNGSARBEIT Primarschule Mathematik Lösungen und

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

Die Entdeckung des Zählens und die Erfindung der Zahl

Die Entdeckung des Zählens und die Erfindung der Zahl Mensa Wien Vortragsreihe WisSIG Vortragsreihe 04.05.2009 Die Entdeckung des Zählens und die Erfindung der Zahl Vienna University of Technology Institute for Analysis and Scientific Computing Warum dieser

Mehr

Didaktik der Bruchrechnung

Didaktik der Bruchrechnung Friedhelm Padberg Didaktik der Bruchrechnung 3. Auflage Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung 1 I Die Bruchrechnung ein Auslaufmodell? 5 1 Einige Argumente gegen

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Wie Kinder rechnen lernen. Kritische Auseinandersetzung mit Piaget

Wie Kinder rechnen lernen. Kritische Auseinandersetzung mit Piaget Wie Kinder rechnen lernen Kritische Auseinandersetzung mit Piaget Entwicklung des Zahlbegriffs - Kritik Anderer Versuch mit Murmeln: Kinder: Gleich lang! Kinder: Unten sind mehr! Entwicklung des Zahlbegriffs

Mehr

Ein Bruchrechenlehrgang

Ein Bruchrechenlehrgang Jürgen Zumdick Ein Bruchrechenlehrgang. Anknüpfen an Vorwissen kg (Hälfte von einem kg; kg 000g 00g; 0,kg) l ( l ; (l) (000ml) 0ml70ml; 0,7 l) Stichworte Bedeutung des Bruches als Teil eines Ganzen; Umwandlung

Mehr

Einführung in die Mathematik

Einführung in die Mathematik Helmut Koch Einführung in die Mathematik Hintergründe der Schulmathematik Zweite, korrigierte und erweiterte Auflage Springer Inhaltsverzeichnis Einleitung 1 1 Natürliche Zahlen 11 1.1 Zählen 11 1.2 Die

Mehr

Orientierung im Hunderterraum

Orientierung im Hunderterraum Orientierung im Hunderterraum Um sich in einem neuen Zahlenraum sicher bewegen und rechnen zu können, müssen Kinder eine Reihe von Kompetenzen beherrschen. Dabei werden nicht nur Vorkenntnisse und Schwierigkeiten,

Mehr

Mathematik 4 Primarstufe

Mathematik 4 Primarstufe Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Diskrete Mathematik (Mathematik II für Informatiker) Erster Abschnitt. Zahlentheorie. Andreas Harder

Diskrete Mathematik (Mathematik II für Informatiker) Erster Abschnitt. Zahlentheorie. Andreas Harder Erster Abschnitt Zahlentheorie Andreas Harder 2008 1 1. Zahlentheorie 1.1. Zahlbegriff und Zahlentheorie Die Fähigkeit des Menschen, Dinge zu zählen und von ihnen losgelöste Zahlbegriffe herauszubilden,

Mehr

Pränumerischer Bereich. Umgang mit Zahlen und Mengen Zahlenraum bis 20. Körperschema

Pränumerischer Bereich. Umgang mit Zahlen und Mengen Zahlenraum bis 20. Körperschema Körperschema Pränumerischer Bereich Umgang mit Zahlen und Mengen 0- Zahlenraum bis 0 Raumbegriff Raum-Lage- Bezieungen Farbzuordnung Stück für Stück Zuordnung Reihenbildung Mengenerhaltung (Invarianz)

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Vektoren in der Ebene Zwei Punkten P, Q in der Ebene

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Selbsteinschätzung. Strategien aufgabenbezogen bewerten. Kenntnis der Rechenwege auch bei schriftlichen Rechenverfahren

Selbsteinschätzung. Strategien aufgabenbezogen bewerten. Kenntnis der Rechenwege auch bei schriftlichen Rechenverfahren Schwerpunkt: Flexibles Rechnen - Klasse 3/4 Flexibles Rechnen Die Schülerinnen und Schüler: - nutzen aufgabenbezogen oder nach eigenen Präferenzen eine Strategie des Zahlenrechnens, ein schriftliches Normalverfahren

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Schriftliche Arbeiten im Fach Mathe 1. Klasse. Mathematik. Anzahl. Inhalte. Bemerkungen

Schriftliche Arbeiten im Fach Mathe 1. Klasse. Mathematik. Anzahl. Inhalte. Bemerkungen Fach Mathe. Klasse Eingangsdiagnostik (Flex und Flo: Wahrnehmung, Lagebeziehungen, Formen, en bestimmen, Ziffern erkennen und schreiben) Mengen / Zahlen zuordnen, Zahlbegriff Orientierung im Zwanzigerraum,

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Mathematik - Klasse 6 -

Mathematik - Klasse 6 - Schuleigener Lehrplan Mathematik - Klasse 6 - Stand: 03.11.2011 2 I. Rationale Zahlen Die n Kompetenzen gelten grundsätzlich für alle Kapitel. Abweichungen werden gesondert aufgeführt. Die hier genannten

Mehr

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe Schwerpunkt: Flexibles Rechnen Thema Kompetenz Kenntnisse/ Fertigkeiten/ Voraussetzungen, um die Kompetenz zu erlangen - Flexibles Rechnen (Addition, Subtraktion, Multiplikation, Division) - nutzen aufgabenbezogen

Mehr

Didaktik der Bruchrechnung

Didaktik der Bruchrechnung Friedhelm Padberg Didaktik der Bruchrechnung Gemeine Brüche Dezimalbrüche, erweiterte Auflage Spektrum Akademischer Verlag Heidelberg Berlin Oxford INHALT 4. 5. 6. II. 4. III. EINLEITUNG 7 ZUR BEHANDLUNG

Mehr

1.9 Ungleichungen (Thema aus dem Gebiet Algebra)

1.9 Ungleichungen (Thema aus dem Gebiet Algebra) 1.9 Ungleichungen (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Ungleichungen 2 2 Intervalle 2 3 Äquivalenzumformungen bei Ungleichungen 3 4 Doppelungleichungen 5 4.1 Verfahren, um Doppelungleichungen

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Rahmenplanbezug. Größen / Sachrechnen Geld (Cent, Euro) Kalender: Einheiten (Tag, Woche) Uhrzeit (volle Stunde) Förderung/Differenzierung

Rahmenplanbezug. Größen / Sachrechnen Geld (Cent, Euro) Kalender: Einheiten (Tag, Woche) Uhrzeit (volle Stunde) Förderung/Differenzierung Klasse 1 Allgemeine Kommunizieren Darstellen Problemlösen Argumentieren Modellieren Arithmetik Zahlenraum bis 20 Zahlen bis 20 erfassen und auf verschiedene Weise darstellen Zahlen bis 20 lesen und schreiben

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Barbara Schmidt-Thieme, Pädagogische Hochschule Ludwigsburg, V Didaktik I: Arithmetik und Sachrechnen, WS

Barbara Schmidt-Thieme, Pädagogische Hochschule Ludwigsburg,  V Didaktik I: Arithmetik und Sachrechnen, WS V Didaktik I: Arithmetik und Sachrechnen, WS 2004/2005, WS 2004/05 0/63 V Didaktik I: Arithmetik und Sachrechnen, WS 2004/2005 Barbara Schmidt-Thieme Pädagogische Hochschule Ludwigsburg V Didaktik I: Arithmetik

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 5 Natürliche Zahlen und Ihre Darstellung (große Zahlen, Stellentafel, Vergleichen; Zahlenstrahl) Rechnen mit natürlichen Zahlen (Grundrechenarten mit Fachbezeichnungen, schriftliche

Mehr

Didaktik der Bruchrechnung. Die Addition und Multiplikation und ihre Probleme

Didaktik der Bruchrechnung. Die Addition und Multiplikation und ihre Probleme Didaktik der Bruchrechnung Die Addition und Multiplikation und ihre Probleme Addition Anschauliche Wege zur Addition 1 2 3 1 7 m 2 7 m m+ m= m 7 7 7 P90-93 2 Addition Kästchenmethode P90-93 3 Addition

Mehr

3. Zahlbereiche und algebraische Strukturen

3. Zahlbereiche und algebraische Strukturen technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche

Mehr

M ATHEMATIK Klasse 2. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 100 (S. 4 23)

M ATHEMATIK Klasse 2. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 100 (S. 4 23) Der Zahlenraum bis 100 (S. 4 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien Zählen und schätzen

Mehr

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch Kapitel 4 Die rationalen Zahlen Wir haben gesehen, dass eine Gleichung a x = b mit a, b Z genau dann eine Lösung x Z besitzt, wenn a b. Zum Beispiel hat 2 x = 1 keine Lösung x Z. Wir wollen nun den Zahlbereich

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 2. Die reellen Zahlen A. Filler Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2016

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

Dezimalzahlen am Zahlenstrahl ablesen und eintragen

Dezimalzahlen am Zahlenstrahl ablesen und eintragen Vertiefen Dezimalzahlen am Zahlenstrahl ablesen und eintragen zu Aufgabe Schulbuch, Seite 56 Weltrekorde am Zahlenstrahl ablesen Die Pfeile zeigen vier Weltrekorde der Frauen über 200 m zwischen 974 und

Mehr